Robot Programming by Demonstration: Trajectory Learning Enhanced by sEMG-Based User Hand Stiffness Estimation

Trajectory learning is one of the key components of robot Programming by Demonstration approaches, which in many cases, especially in industrial practice, aim at defining complex manipulation patterns. In order to enhance these methods, which are generally based on a physical interaction between the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics Jg. 39; H. 4; S. 3259 - 3278
Hauptverfasser: Biagiotti, Luigi, Meattini, Roberto, Chiaravalli, Davide, Palli, Gianluca, Melchiorri, Claudio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1552-3098, 1941-0468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trajectory learning is one of the key components of robot Programming by Demonstration approaches, which in many cases, especially in industrial practice, aim at defining complex manipulation patterns. In order to enhance these methods, which are generally based on a physical interaction between the user and the robot, guided along the desired path, an additional input channel is considered in this article. The hand stiffness, that the operator continuously modulates during the demonstration, is estimated from the forearm surface electromyography and translated into a request for a higher or lower accuracy level. Then, a constrained optimization problem is built (and solved) in the framework of smoothing B-splines to obtain a minimum curvature trajectory approximating, in this manner, the taught path within the precision imposed by the user. Experimental tests in different applicative scenarios, involving both position and orientation, prove the benefits of the proposed approach in terms of the intuitiveness of the programming procedure for the human operator and characteristics of the final motion.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2023.3258669