EGMM: An evidential version of the Gaussian mixture model for clustering

The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 129; s. 109619
Hlavní autoři: Jiao, Lianmeng, Denœux, Thierry, Liu, Zhun-ga, Pan, Quan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2022
Elsevier
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation–Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation. •An evidential Gaussian mixture model is proposed to characterize cluster uncertainty.•Model parameters are estimated by Expectation-Maximization algorithm.•A validity index allowing determination of the number of clusters is provided.•Experiments demonstrate the better performance of the proposed method.•An application to multi-modal brain image segmentation is exploited.
AbstractList The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation-Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation.
The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation–Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation. •An evidential Gaussian mixture model is proposed to characterize cluster uncertainty.•Model parameters are estimated by Expectation-Maximization algorithm.•A validity index allowing determination of the number of clusters is provided.•Experiments demonstrate the better performance of the proposed method.•An application to multi-modal brain image segmentation is exploited.
ArticleNumber 109619
Author Pan, Quan
Jiao, Lianmeng
Liu, Zhun-ga
Denœux, Thierry
Author_xml – sequence: 1
  givenname: Lianmeng
  surname: Jiao
  fullname: Jiao, Lianmeng
  email: jiaolianmeng@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China
– sequence: 2
  givenname: Thierry
  surname: Denœux
  fullname: Denœux, Thierry
  email: tdenoeux@hds.utc.fr
  organization: CNRS UMR 7253 Heudiasyc, Université de Technologie de Compiègne, Compiègne 60200, France
– sequence: 3
  givenname: Zhun-ga
  surname: Liu
  fullname: Liu, Zhun-ga
  email: liuzhunga@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China
– sequence: 4
  givenname: Quan
  surname: Pan
  fullname: Pan, Quan
  email: quanpan@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China
BackLink https://hal.science/hal-03781537$$DView record in HAL
BookMark eNp9kD1PwzAURS0EEm3hDzB5ZUjxV5wEsVRVaZFascBsufYLdZXGyHYj-PekCmJg6PSuru55wxmjy9a3gNAdJVNKqHzYT3X0ZsoIY31RSVpdoBEtC5ZVsqSXfc5lmYlKyGs0jnFPeqhi5QitFsvN5hHPWgyds9AmpxvcQYjOt9jXOO0AL_UxRqdbfHBf6RgAH7yFBtc-YNMcY4Lg2o8bdFXrJsLt752g9-fF23yVrV-XL_PZOjOci5TlXEAtisJywizLDbcMoCAl01RLuWUgBC8kAUoFsbbeki1QCVsDoiir3ACfoPvh70436jO4gw7fymunVrO1OnWEFyXNedHRfsuGrQk-xgD1H0CJOnlTe3Xypk7e1OCth8p_kHFJp95HCto159GnAYVeQOcgqGgctAasC2CSst6dw38AFNqJ7Q
CitedBy_id crossref_primary_10_21272_mmi_2025_1_08
crossref_primary_10_1109_TFUZZ_2024_3421564
crossref_primary_10_1007_s13042_024_02139_x
crossref_primary_10_1007_s10936_024_10060_1
crossref_primary_10_1016_j_jobe_2025_112636
crossref_primary_10_3390_app14104260
crossref_primary_10_3390_app132212511
crossref_primary_10_1016_j_jksuci_2023_101904
crossref_primary_10_1080_21681163_2024_2343711
crossref_primary_10_1016_j_geoen_2023_212587
crossref_primary_10_1016_j_patcog_2024_111261
crossref_primary_10_1016_j_patcog_2023_109846
crossref_primary_10_3390_agronomy14081620
crossref_primary_10_1109_ACCESS_2025_3589620
crossref_primary_10_1016_j_ins_2025_122329
crossref_primary_10_1088_1361_6501_acdff0
crossref_primary_10_1016_j_ins_2022_08_077
crossref_primary_10_1016_j_knosys_2022_109937
crossref_primary_10_1109_JSTARS_2024_3354455
crossref_primary_10_4316_AECE_2024_02008
crossref_primary_10_1016_j_ijar_2025_109400
crossref_primary_10_1109_TR_2024_3393985
crossref_primary_10_1016_j_fss_2024_109168
crossref_primary_10_1016_j_rser_2023_113841
crossref_primary_10_1016_j_procs_2025_03_032
crossref_primary_10_1016_j_engappai_2024_109011
crossref_primary_10_1016_j_jocs_2023_102116
crossref_primary_10_1016_j_conbuildmat_2024_137321
crossref_primary_10_1109_ACCESS_2023_3249294
crossref_primary_10_3390_sym15101875
crossref_primary_10_1007_s10489_024_05813_3
crossref_primary_10_1016_j_inffus_2024_102736
crossref_primary_10_1016_j_asoc_2024_112628
crossref_primary_10_1002_dac_70193
crossref_primary_10_3390_e25060925
Cites_doi 10.1198/016214502760047131
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.patcog.2007.08.014
10.1109/TFUZZ.2018.2869125
10.1016/j.ins.2019.07.100
10.1016/j.asoc.2021.107677
10.1214/aoms/1177698950
10.1146/annurev-statistics-031017-100325
10.1016/j.knosys.2020.106167
10.1109/ICTAI.2019.00047
10.1016/0167-8655(96)00026-8
10.1016/j.knosys.2020.106178
10.1007/s11063-009-9094-4
10.1109/TIT.2014.2386329
10.1016/j.ins.2020.04.014
10.1093/biomet/asy018
10.1016/j.knosys.2020.105982
10.1109/TCYB.2020.2968750
10.2307/2532201
10.1109/TSMCB.2002.806496
10.1109/91.227387
10.1016/j.knosys.2014.11.010
10.1016/j.knosys.2016.05.043
10.1016/j.patrec.2014.11.003
10.1016/j.asoc.2016.12.049
10.1016/j.patrec.2009.09.011
10.1016/j.ijar.2004.05.003
10.1016/j.csda.2010.09.021
10.1016/j.knosys.2019.04.020
10.1214/09-SS053
10.1126/science.1242072
10.1016/j.ins.2017.07.010
10.1016/j.knosys.2014.11.013
10.1016/j.knosys.2015.08.007
10.1016/j.asoc.2021.107924
10.1016/j.knosys.2019.03.030
10.1016/j.ijar.2016.07.010
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.asoc.2022.109619
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID oai:HAL:hal-03781537v1
10_1016_j_asoc_2022_109619
S1568494622006688
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c334t-534ef477d302d25c3d2ee7082a1a66b2e443760e1140ddfb0be16ebce47895ce3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861042200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Oct 14 20:09:03 EDT 2025
Sat Nov 29 07:04:24 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 23 02:42:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Belief function theory
Evidential partition
Gaussian mixture model
Model-based clustering
Expectation–Maximization
evidential partition
belief function theory
expectation-maximization
model-based clustering
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-534ef477d302d25c3d2ee7082a1a66b2e443760e1140ddfb0be16ebce47895ce3
ORCID 0000-0002-0660-5436
OpenAccessLink https://hal.science/hal-03781537
ParticipantIDs hal_primary_oai_HAL_hal_03781537v1
crossref_primary_10_1016_j_asoc_2022_109619
crossref_citationtrail_10_1016_j_asoc_2022_109619
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109619
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Davé (b51) 1996; 17
Denœux (b30) 2020; 528
Dempster (b17) 1967; 38
Smets (b31) 2005; 38
Dua, Karra Taniskidou (b49) 2021
Denœux, Kanjanatarakul, Sriboonchitta (b27) 2015; 88
Charkhi, Claeskens (b48) 2018; 105
Jia, Tan, Liu, Li, Zhang, Zhao (b12) 2019; 178
Ma, Jiang, Liu, Li (b10) 2017; 417
Fraley, Raftery (b9) 2002; 97
Aggarwal, Reddy (b1) 2014
Su, Denœux (b28) 2019; 27
Peters (b42) 2015; 53
Namburu, kumar Samay, Edara (b43) 2017; 53
Denœux, Kanjanatarakul (b22) 2016
Yatracos (b47) 2015; 61
Askari, Montazerin, Zarandi (b41) 2017; 53
Denœux (b19) 2016; 79
Melnykov, Maitra (b8) 2010; 4
Dempster, Laird, Rubin (b33) 1977; 39
Denœux, Sriboonchitta, Kanjanatarakul (b20) 2019; 176
Oskouei, Hashemzadeh, Asheghi, Balafar (b2) 2021; 113
G. Costa, R. Ortale, Document clustering and topic modeling: a unified Bayesian probabilistic perspective, in: Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, Portland, OR, 2019, pp. 278–285.
McLachlan, Lee, Rathnayake (b32) 2019; 6
Banfield, Raftery (b36) 1993; 49
Denœux, Sriboonchitta, Kanjanatarakul (b16) 2016; 106
McLachlan, Peel (b45) 2000
Antoine, Quost, Masson, Denœux (b23) 2012; 56
Han, Pei, Kamber (b7) 2011
Park, Ozeki (b44) 2009; 29
Sun, Zuo, Liang, Ming, Chen, Qiu (b4) 2021; 111
Li, Fu, Xiong, Bai (b6) 2020; 204
Shafer (b18) 1976
Chen, Qi, Chen, Chen, Cheng (b3) 2020; 203
Li, Chu, Tian, Feng, Mu (b5) 2021; 113
Zhou, Martin, Pan, Liu (b24) 2015; 74
Jain (b34) 2010; 31
McLachlan, Krishnan (b37) 2007
Masson, Denœux (b15) 2008; 41
Grünwald (b46) 2007
Bezdek (b38) 1981
Manning, Raghavan, Schütze (b50) 2008
Liu, Pan, Dezert, Mercier (b25) 2015; 74
D’Urso, Massari (b39) 2019; 505
Denœux, Masson (b14) 2004; 34
Dešmar (b52) 2006; 7
Rodriguez, Laio (b35) 2014; 344
Denœux, Dubois, Prade (b21) 2020
Gong, Su, Wang, Wang (b29) 2020; 200
Li, Li, Du, Tao (b13) 2021; 51
Jiao, Wang, Pan (b26) 2021
Krishnapuram, Keller (b40) 1993; 1
Han (10.1016/j.asoc.2022.109619_b7) 2011
Denœux (10.1016/j.asoc.2022.109619_b21) 2020
Yatracos (10.1016/j.asoc.2022.109619_b47) 2015; 61
McLachlan (10.1016/j.asoc.2022.109619_b32) 2019; 6
McLachlan (10.1016/j.asoc.2022.109619_b45) 2000
Dua (10.1016/j.asoc.2022.109619_b49) 2021
Dempster (10.1016/j.asoc.2022.109619_b33) 1977; 39
Askari (10.1016/j.asoc.2022.109619_b41) 2017; 53
Park (10.1016/j.asoc.2022.109619_b44) 2009; 29
Jiao (10.1016/j.asoc.2022.109619_b26) 2021
Melnykov (10.1016/j.asoc.2022.109619_b8) 2010; 4
Liu (10.1016/j.asoc.2022.109619_b25) 2015; 74
Ma (10.1016/j.asoc.2022.109619_b10) 2017; 417
Denœux (10.1016/j.asoc.2022.109619_b16) 2016; 106
Smets (10.1016/j.asoc.2022.109619_b31) 2005; 38
Grünwald (10.1016/j.asoc.2022.109619_b46) 2007
Dešmar (10.1016/j.asoc.2022.109619_b52) 2006; 7
Denœux (10.1016/j.asoc.2022.109619_b20) 2019; 176
Fraley (10.1016/j.asoc.2022.109619_b9) 2002; 97
10.1016/j.asoc.2022.109619_b11
Namburu (10.1016/j.asoc.2022.109619_b43) 2017; 53
Su (10.1016/j.asoc.2022.109619_b28) 2019; 27
Li (10.1016/j.asoc.2022.109619_b5) 2021; 113
Antoine (10.1016/j.asoc.2022.109619_b23) 2012; 56
Denœux (10.1016/j.asoc.2022.109619_b19) 2016; 79
Denœux (10.1016/j.asoc.2022.109619_b22) 2016
Rodriguez (10.1016/j.asoc.2022.109619_b35) 2014; 344
Sun (10.1016/j.asoc.2022.109619_b4) 2021; 111
Gong (10.1016/j.asoc.2022.109619_b29) 2020; 200
Manning (10.1016/j.asoc.2022.109619_b50) 2008
McLachlan (10.1016/j.asoc.2022.109619_b37) 2007
Zhou (10.1016/j.asoc.2022.109619_b24) 2015; 74
Li (10.1016/j.asoc.2022.109619_b6) 2020; 204
Bezdek (10.1016/j.asoc.2022.109619_b38) 1981
Oskouei (10.1016/j.asoc.2022.109619_b2) 2021; 113
Charkhi (10.1016/j.asoc.2022.109619_b48) 2018; 105
Banfield (10.1016/j.asoc.2022.109619_b36) 1993; 49
Krishnapuram (10.1016/j.asoc.2022.109619_b40) 1993; 1
Denœux (10.1016/j.asoc.2022.109619_b14) 2004; 34
Dempster (10.1016/j.asoc.2022.109619_b17) 1967; 38
Chen (10.1016/j.asoc.2022.109619_b3) 2020; 203
Masson (10.1016/j.asoc.2022.109619_b15) 2008; 41
Peters (10.1016/j.asoc.2022.109619_b42) 2015; 53
Aggarwal (10.1016/j.asoc.2022.109619_b1) 2014
Denœux (10.1016/j.asoc.2022.109619_b27) 2015; 88
Shafer (10.1016/j.asoc.2022.109619_b18) 1976
Jia (10.1016/j.asoc.2022.109619_b12) 2019; 178
Denœux (10.1016/j.asoc.2022.109619_b30) 2020; 528
Li (10.1016/j.asoc.2022.109619_b13) 2021; 51
D’Urso (10.1016/j.asoc.2022.109619_b39) 2019; 505
Davé (10.1016/j.asoc.2022.109619_b51) 1996; 17
Jain (10.1016/j.asoc.2022.109619_b34) 2010; 31
References_xml – volume: 505
  start-page: 513
  year: 2019
  end-page: 534
  ident: b39
  article-title: Fuzzy clustering of mixed data
  publication-title: Inform. Sci.
– volume: 38
  start-page: 325
  year: 1967
  end-page: 339
  ident: b17
  article-title: Upper and lower probabilities induced by a multi-valued mapping
  publication-title: Ann. Math. Stat.
– volume: 176
  start-page: 54
  year: 2019
  end-page: 67
  ident: b20
  article-title: Logistic regression, neural networks and Dempster-Shafer theory: a new perspective
  publication-title: Knowl.-Based Syst.
– volume: 74
  start-page: 119
  year: 2015
  end-page: 132
  ident: b25
  article-title: Credal
  publication-title: Knowl.-Based Syst.
– volume: 34
  start-page: 95
  year: 2004
  end-page: 109
  ident: b14
  article-title: EVCLUS: Evidential clustering of proximity data
  publication-title: IEEE Trans. Syst. Man Cybern. B
– year: 2011
  ident: b7
  article-title: Data Mining: Concepts and Techniques
– year: 1976
  ident: b18
  article-title: A Mathematical Theory of Evidence
– volume: 113
  year: 2021
  ident: b2
  article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation
  publication-title: Appl. Soft Comput.
– reference: G. Costa, R. Ortale, Document clustering and topic modeling: a unified Bayesian probabilistic perspective, in: Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, Portland, OR, 2019, pp. 278–285.
– year: 1981
  ident: b38
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithm
– volume: 203
  year: 2020
  ident: b3
  article-title: Quantum-inspired ant lion optimized hybrid
  publication-title: Knowl.-Based Syst.
– volume: 113
  year: 2021
  ident: b5
  article-title: Customer segmentation using k-means clustering and the adaptive particle swarm optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 97
  start-page: 611
  year: 2002
  end-page: 631
  ident: b9
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: J. Amer. Statist. Assoc.
– volume: 29
  start-page: 45
  year: 2009
  end-page: 59
  ident: b44
  article-title: Singularity and slow convergence of the EM algorithm for Gaussian mixtures
  publication-title: Neural Process. Lett.
– year: 2014
  ident: b1
  article-title: Data Clustering: Algorithms and Applications
– year: 2007
  ident: b37
  article-title: The EM Algorithm and Extensions
– year: 2000
  ident: b45
  article-title: Finite Mixture Models
– year: 2007
  ident: b46
  article-title: The Minimum Description Length Principle
– volume: 88
  start-page: 57
  year: 2015
  end-page: 59
  ident: b27
  article-title: EK-NNclus: a clustering procedure based on the evidential
  publication-title: Knowl.-Based Syst.
– year: 2021
  ident: b49
  article-title: UCI machine learning repository
– volume: 17
  start-page: 613
  year: 1996
  end-page: 623
  ident: b51
  article-title: Validating fuzzy partition obtained through
  publication-title: Pattern Recognit. Lett.
– volume: 200
  year: 2020
  ident: b29
  article-title: Cumulative belief peaks evidential K-nearest neighbor clustering
  publication-title: Knowl.-Based Syst.
– volume: 56
  start-page: 894
  year: 2012
  end-page: 914
  ident: b23
  article-title: CECM: Constrained evidential
  publication-title: Comput. Statist. Data Anal.
– volume: 79
  start-page: 1
  year: 2016
  end-page: 6
  ident: b19
  article-title: 40 Years of Dempster-Shafer theory
  publication-title: Internat. J. Approx. Reason.
– volume: 1
  start-page: 98
  year: 1993
  end-page: 111
  ident: b40
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 74
  start-page: 69
  year: 2015
  end-page: 88
  ident: b24
  article-title: Median evidential
  publication-title: Knowl.-Based Syst.
– volume: 61
  start-page: 1426
  year: 2015
  end-page: 1431
  ident: b47
  article-title: MLE’s bias pathology, model updated MLE, and Wallace’s minimum message length method
  publication-title: IEEE Trans. Inform. Theory
– volume: 111
  year: 2021
  ident: b4
  article-title: GPHC: A heuristic clustering method to customer segmentation
  publication-title: Appl. Soft Comput.
– start-page: 47
  year: 2021
  end-page: 55
  ident: b26
  article-title: Transfer evidential c-means clustering
  publication-title: Belief Functions: Theory and Applications
– volume: 417
  start-page: 128
  year: 2017
  end-page: 142
  ident: b10
  article-title: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration
  publication-title: Inform. Sci.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b33
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol.
– volume: 528
  start-page: 17
  year: 2020
  end-page: 45
  ident: b30
  article-title: Calibrated model-based evidential clustering using bootstrapping
  publication-title: Inform. Sci.
– volume: 204
  year: 2020
  ident: b6
  article-title: Deep learning-based unsupervised representation clustering methodology for automatic nuclear reactor operating transient identification
  publication-title: Knowl.-Based Syst.
– volume: 53
  start-page: 31
  year: 2015
  end-page: 37
  ident: b42
  article-title: Is there any need for rough clustering?
  publication-title: Pattern Recognit. Lett.
– volume: 38
  start-page: 133
  year: 2005
  end-page: 147
  ident: b31
  article-title: Decision making in the TBM: the necessity of the pignistic transformation
  publication-title: Internat. J. Approx. Reason.
– volume: 49
  start-page: 803
  year: 1993
  end-page: 821
  ident: b36
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
– start-page: 119
  year: 2020
  end-page: 150
  ident: b21
  article-title: Representations of uncertainty in artificial intelligence: beyond probability and possibility
  publication-title: A Guided Tour of Artificial Intelligence Research, Vol. 1
– year: 2008
  ident: b50
  article-title: Introduction to Information Retrieval
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b52
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 80
  year: 2010
  end-page: 116
  ident: b8
  article-title: Finite mixture models and model-based clustering
  publication-title: Stat. Surv.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b34
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
– volume: 53
  start-page: 262
  year: 2017
  end-page: 283
  ident: b41
  article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data
  publication-title: Appl. Soft Comput.
– volume: 41
  start-page: 1384
  year: 2008
  end-page: 1397
  ident: b15
  article-title: ECM: An evidential version of the fuzzy
  publication-title: Pattern Recognit.
– volume: 106
  start-page: 179
  year: 2016
  end-page: 185
  ident: b16
  article-title: Evidential clustering of large dissimilarity data
  publication-title: Knowl.-Based Syst.
– volume: 51
  start-page: 4363
  year: 2021
  end-page: 4372
  ident: b13
  article-title: Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection
  publication-title: IEEE Trans. Cybern.
– volume: 53
  start-page: 262
  year: 2017
  end-page: 283
  ident: b43
  article-title: Soft fuzzy rough set-based MR brain image segmentation
  publication-title: Appl. Soft Comput.
– volume: 6
  start-page: 355
  year: 2019
  end-page: 378
  ident: b32
  article-title: Finite mixture models
  publication-title: Annu. Rev. Stat. Appl.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b35
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– start-page: 24
  year: 2016
  end-page: 35
  ident: b22
  article-title: Evidential clustering: A review
  publication-title: International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making
– volume: 178
  start-page: 84
  year: 2019
  end-page: 97
  ident: b12
  article-title: Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system
  publication-title: Knowl.-Based Syst.
– volume: 105
  start-page: 645
  year: 2018
  end-page: 664
  ident: b48
  article-title: Asymptotic post-selection inference for the Akaike information criterion
  publication-title: Biometrics
– volume: 27
  start-page: 111
  year: 2019
  end-page: 123
  ident: b28
  article-title: BPEC: Belief-peaks evidential clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2021
  ident: 10.1016/j.asoc.2022.109619_b49
– volume: 97
  start-page: 611
  year: 2002
  ident: 10.1016/j.asoc.2022.109619_b9
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214502760047131
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.asoc.2022.109619_b33
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 41
  start-page: 1384
  year: 2008
  ident: 10.1016/j.asoc.2022.109619_b15
  article-title: ECM: An evidential version of the fuzzy c-means algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.08.014
– volume: 27
  start-page: 111
  year: 2019
  ident: 10.1016/j.asoc.2022.109619_b28
  article-title: BPEC: Belief-peaks evidential clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2869125
– volume: 505
  start-page: 513
  year: 2019
  ident: 10.1016/j.asoc.2022.109619_b39
  article-title: Fuzzy clustering of mixed data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.07.100
– year: 2000
  ident: 10.1016/j.asoc.2022.109619_b45
– volume: 111
  year: 2021
  ident: 10.1016/j.asoc.2022.109619_b4
  article-title: GPHC: A heuristic clustering method to customer segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107677
– volume: 38
  start-page: 325
  year: 1967
  ident: 10.1016/j.asoc.2022.109619_b17
  article-title: Upper and lower probabilities induced by a multi-valued mapping
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177698950
– volume: 6
  start-page: 355
  year: 2019
  ident: 10.1016/j.asoc.2022.109619_b32
  article-title: Finite mixture models
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-031017-100325
– volume: 203
  year: 2020
  ident: 10.1016/j.asoc.2022.109619_b3
  article-title: Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106167
– year: 2007
  ident: 10.1016/j.asoc.2022.109619_b37
– ident: 10.1016/j.asoc.2022.109619_b11
  doi: 10.1109/ICTAI.2019.00047
– volume: 17
  start-page: 613
  year: 1996
  ident: 10.1016/j.asoc.2022.109619_b51
  article-title: Validating fuzzy partition obtained through c-shell clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(96)00026-8
– year: 2008
  ident: 10.1016/j.asoc.2022.109619_b50
– year: 2011
  ident: 10.1016/j.asoc.2022.109619_b7
– start-page: 119
  year: 2020
  ident: 10.1016/j.asoc.2022.109619_b21
  article-title: Representations of uncertainty in artificial intelligence: beyond probability and possibility
– volume: 204
  year: 2020
  ident: 10.1016/j.asoc.2022.109619_b6
  article-title: Deep learning-based unsupervised representation clustering methodology for automatic nuclear reactor operating transient identification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106178
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2022.109619_b52
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 45
  year: 2009
  ident: 10.1016/j.asoc.2022.109619_b44
  article-title: Singularity and slow convergence of the EM algorithm for Gaussian mixtures
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-009-9094-4
– volume: 61
  start-page: 1426
  year: 2015
  ident: 10.1016/j.asoc.2022.109619_b47
  article-title: MLE’s bias pathology, model updated MLE, and Wallace’s minimum message length method
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2014.2386329
– year: 1976
  ident: 10.1016/j.asoc.2022.109619_b18
– volume: 528
  start-page: 17
  year: 2020
  ident: 10.1016/j.asoc.2022.109619_b30
  article-title: Calibrated model-based evidential clustering using bootstrapping
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.04.014
– volume: 105
  start-page: 645
  year: 2018
  ident: 10.1016/j.asoc.2022.109619_b48
  article-title: Asymptotic post-selection inference for the Akaike information criterion
  publication-title: Biometrics
  doi: 10.1093/biomet/asy018
– volume: 200
  year: 2020
  ident: 10.1016/j.asoc.2022.109619_b29
  article-title: Cumulative belief peaks evidential K-nearest neighbor clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105982
– start-page: 47
  year: 2021
  ident: 10.1016/j.asoc.2022.109619_b26
  article-title: Transfer evidential c-means clustering
– year: 1981
  ident: 10.1016/j.asoc.2022.109619_b38
– start-page: 24
  year: 2016
  ident: 10.1016/j.asoc.2022.109619_b22
  article-title: Evidential clustering: A review
– volume: 51
  start-page: 4363
  year: 2021
  ident: 10.1016/j.asoc.2022.109619_b13
  article-title: Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2968750
– volume: 49
  start-page: 803
  year: 1993
  ident: 10.1016/j.asoc.2022.109619_b36
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
  doi: 10.2307/2532201
– volume: 34
  start-page: 95
  year: 2004
  ident: 10.1016/j.asoc.2022.109619_b14
  article-title: EVCLUS: Evidential clustering of proximity data
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2002.806496
– volume: 113
  year: 2021
  ident: 10.1016/j.asoc.2022.109619_b2
  article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 98
  year: 1993
  ident: 10.1016/j.asoc.2022.109619_b40
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 74
  start-page: 69
  year: 2015
  ident: 10.1016/j.asoc.2022.109619_b24
  article-title: Median evidential c-means algorithm and its application to community detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.11.010
– volume: 106
  start-page: 179
  year: 2016
  ident: 10.1016/j.asoc.2022.109619_b16
  article-title: Evidential clustering of large dissimilarity data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.05.043
– volume: 53
  start-page: 31
  year: 2015
  ident: 10.1016/j.asoc.2022.109619_b42
  article-title: Is there any need for rough clustering?
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.11.003
– volume: 53
  start-page: 262
  year: 2017
  ident: 10.1016/j.asoc.2022.109619_b43
  article-title: Soft fuzzy rough set-based MR brain image segmentation
  publication-title: Appl. Soft Comput.
– volume: 53
  start-page: 262
  year: 2017
  ident: 10.1016/j.asoc.2022.109619_b41
  article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.049
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.asoc.2022.109619_b34
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 38
  start-page: 133
  year: 2005
  ident: 10.1016/j.asoc.2022.109619_b31
  article-title: Decision making in the TBM: the necessity of the pignistic transformation
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/j.ijar.2004.05.003
– volume: 56
  start-page: 894
  year: 2012
  ident: 10.1016/j.asoc.2022.109619_b23
  article-title: CECM: Constrained evidential c-means algorithm
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2010.09.021
– volume: 178
  start-page: 84
  year: 2019
  ident: 10.1016/j.asoc.2022.109619_b12
  article-title: Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.04.020
– volume: 4
  start-page: 80
  year: 2010
  ident: 10.1016/j.asoc.2022.109619_b8
  article-title: Finite mixture models and model-based clustering
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS053
– volume: 344
  start-page: 1492
  year: 2014
  ident: 10.1016/j.asoc.2022.109619_b35
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 417
  start-page: 128
  year: 2017
  ident: 10.1016/j.asoc.2022.109619_b10
  article-title: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.07.010
– volume: 74
  start-page: 119
  year: 2015
  ident: 10.1016/j.asoc.2022.109619_b25
  article-title: Credal c-means clustering method based on belief functions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.11.013
– volume: 88
  start-page: 57
  year: 2015
  ident: 10.1016/j.asoc.2022.109619_b27
  article-title: EK-NNclus: a clustering procedure based on the evidential k-nearest neighbor rule
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.08.007
– year: 2014
  ident: 10.1016/j.asoc.2022.109619_b1
– volume: 113
  year: 2021
  ident: 10.1016/j.asoc.2022.109619_b5
  article-title: Customer segmentation using k-means clustering and the adaptive particle swarm optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107924
– volume: 176
  start-page: 54
  year: 2019
  ident: 10.1016/j.asoc.2022.109619_b20
  article-title: Logistic regression, neural networks and Dempster-Shafer theory: a new perspective
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.03.030
– year: 2007
  ident: 10.1016/j.asoc.2022.109619_b46
– volume: 79
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2022.109619_b19
  article-title: 40 Years of Dempster-Shafer theory
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/j.ijar.2016.07.010
SSID ssj0016928
Score 2.5357714
Snippet The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper,...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109619
SubjectTerms Artificial Intelligence
Belief function theory
Computer Science
Evidential partition
Expectation–Maximization
Gaussian mixture model
Model-based clustering
Title EGMM: An evidential version of the Gaussian mixture model for clustering
URI https://dx.doi.org/10.1016/j.asoc.2022.109619
https://hal.science/hal-03781537
Volume 129
WOSCitedRecordID wos000861042200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbolgMXylOUArIQnFBWSezENrdVWbqgtipSkfYWOYndblWyVTdZ7c9n_EpERSt64BJFljOxMl_G48_jGYQ-UC61YiWPdJ2TiFISR0JoFYFnrnhOUqFrbYtNsONjPp-LE09lr2w5AdY0fLMRV_9V1dAGyjZHZ--h7l4oNMA9KB2uoHa4_pPipwdHR57uU7ZkaGtI8bXjxUJIwIHsVvb45K_Fxu4h2Io4NuawuuxM8oQwpYUMtd5bXYHZtnHoXRt6mPibhVy6Fb400QV9-xcwavvZR0G6jYtGgkl4iDs-XHR2b-S8a6Kzfno4cZTsj87j1lMSsJpNekrCW9GcR1R4bjGYWc9sOEOZmFIz4q823NEJF2MJ8Bwb8eOh858Js29MZH14YYhcuyiMjMLIKJyMLbSdskzwEdqefJvOv_cbTrmwZXj7kfvzVS4U8OZIbvNhts4DG2-9k9Mn6LFfVuCJg8NT9EA1z9BOKNmBvQV_jmYGHZ_xpMEDNrDHBl5qDNjAARvYYwNbbGDABh6w8QL9_Do93Z9FvphGVBFC2ygjVGnKWE3itE6zitSpUgwcQJnIPC9TBf8py2MF6-O4rnUZlyrJVVkpyrjIKkVeolGzbNQrhGVWc5lVSaW1ppKpsqQlpZKWaQ3OX0l2URI-T1H5TPOm4MllcbtidtGn_pkrl2flzt5Z-OqF9xSdB1gAiO587j2oqH-BSa0-mxwWpi0mjMPsz9bJ63sNZQ89Gn6BN2jUXnfqLXpYrdvF6vqdh9lvXAqTWw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EGMM%3A+An+evidential+version+of+the+Gaussian+mixture+model+for+clustering&rft.jtitle=Applied+soft+computing&rft.au=Jiao%2C+Lianmeng&rft.au=Den%C5%93ux%2C+Thierry&rft.au=Liu%2C+Zhun-ga&rft.au=Pan%2C+Quan&rft.date=2022-11-01&rft.issn=1568-4946&rft.volume=129&rft.spage=109619&rft_id=info:doi/10.1016%2Fj.asoc.2022.109619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon