EGMM: An evidential version of the Gaussian mixture model for clustering
The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better c...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 129; s. 109619 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.11.2022
Elsevier |
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation–Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation.
•An evidential Gaussian mixture model is proposed to characterize cluster uncertainty.•Model parameters are estimated by Expectation-Maximization algorithm.•A validity index allowing determination of the number of clusters is provided.•Experiments demonstrate the better performance of the proposed method.•An application to multi-modal brain image segmentation is exploited. |
|---|---|
| AbstractList | The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation-Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation. The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation–Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation. •An evidential Gaussian mixture model is proposed to characterize cluster uncertainty.•Model parameters are estimated by Expectation-Maximization algorithm.•A validity index allowing determination of the number of clusters is provided.•Experiments demonstrate the better performance of the proposed method.•An application to multi-modal brain image segmentation is exploited. |
| ArticleNumber | 109619 |
| Author | Pan, Quan Jiao, Lianmeng Liu, Zhun-ga Denœux, Thierry |
| Author_xml | – sequence: 1 givenname: Lianmeng surname: Jiao fullname: Jiao, Lianmeng email: jiaolianmeng@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China – sequence: 2 givenname: Thierry surname: Denœux fullname: Denœux, Thierry email: tdenoeux@hds.utc.fr organization: CNRS UMR 7253 Heudiasyc, Université de Technologie de Compiègne, Compiègne 60200, France – sequence: 3 givenname: Zhun-ga surname: Liu fullname: Liu, Zhun-ga email: liuzhunga@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China – sequence: 4 givenname: Quan surname: Pan fullname: Pan, Quan email: quanpan@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China |
| BackLink | https://hal.science/hal-03781537$$DView record in HAL |
| BookMark | eNp9kD1PwzAURS0EEm3hDzB5ZUjxV5wEsVRVaZFascBsufYLdZXGyHYj-PekCmJg6PSuru55wxmjy9a3gNAdJVNKqHzYT3X0ZsoIY31RSVpdoBEtC5ZVsqSXfc5lmYlKyGs0jnFPeqhi5QitFsvN5hHPWgyds9AmpxvcQYjOt9jXOO0AL_UxRqdbfHBf6RgAH7yFBtc-YNMcY4Lg2o8bdFXrJsLt752g9-fF23yVrV-XL_PZOjOci5TlXEAtisJywizLDbcMoCAl01RLuWUgBC8kAUoFsbbeki1QCVsDoiir3ACfoPvh70436jO4gw7fymunVrO1OnWEFyXNedHRfsuGrQk-xgD1H0CJOnlTe3Xypk7e1OCth8p_kHFJp95HCto159GnAYVeQOcgqGgctAasC2CSst6dw38AFNqJ7Q |
| CitedBy_id | crossref_primary_10_21272_mmi_2025_1_08 crossref_primary_10_1109_TFUZZ_2024_3421564 crossref_primary_10_1007_s13042_024_02139_x crossref_primary_10_1007_s10936_024_10060_1 crossref_primary_10_1016_j_jobe_2025_112636 crossref_primary_10_3390_app14104260 crossref_primary_10_3390_app132212511 crossref_primary_10_1016_j_jksuci_2023_101904 crossref_primary_10_1080_21681163_2024_2343711 crossref_primary_10_1016_j_geoen_2023_212587 crossref_primary_10_1016_j_patcog_2024_111261 crossref_primary_10_1016_j_patcog_2023_109846 crossref_primary_10_3390_agronomy14081620 crossref_primary_10_1109_ACCESS_2025_3589620 crossref_primary_10_1016_j_ins_2025_122329 crossref_primary_10_1088_1361_6501_acdff0 crossref_primary_10_1016_j_ins_2022_08_077 crossref_primary_10_1016_j_knosys_2022_109937 crossref_primary_10_1109_JSTARS_2024_3354455 crossref_primary_10_4316_AECE_2024_02008 crossref_primary_10_1016_j_ijar_2025_109400 crossref_primary_10_1109_TR_2024_3393985 crossref_primary_10_1016_j_fss_2024_109168 crossref_primary_10_1016_j_rser_2023_113841 crossref_primary_10_1016_j_procs_2025_03_032 crossref_primary_10_1016_j_engappai_2024_109011 crossref_primary_10_1016_j_jocs_2023_102116 crossref_primary_10_1016_j_conbuildmat_2024_137321 crossref_primary_10_1109_ACCESS_2023_3249294 crossref_primary_10_3390_sym15101875 crossref_primary_10_1007_s10489_024_05813_3 crossref_primary_10_1016_j_inffus_2024_102736 crossref_primary_10_1016_j_asoc_2024_112628 crossref_primary_10_1002_dac_70193 crossref_primary_10_3390_e25060925 |
| Cites_doi | 10.1198/016214502760047131 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.patcog.2007.08.014 10.1109/TFUZZ.2018.2869125 10.1016/j.ins.2019.07.100 10.1016/j.asoc.2021.107677 10.1214/aoms/1177698950 10.1146/annurev-statistics-031017-100325 10.1016/j.knosys.2020.106167 10.1109/ICTAI.2019.00047 10.1016/0167-8655(96)00026-8 10.1016/j.knosys.2020.106178 10.1007/s11063-009-9094-4 10.1109/TIT.2014.2386329 10.1016/j.ins.2020.04.014 10.1093/biomet/asy018 10.1016/j.knosys.2020.105982 10.1109/TCYB.2020.2968750 10.2307/2532201 10.1109/TSMCB.2002.806496 10.1109/91.227387 10.1016/j.knosys.2014.11.010 10.1016/j.knosys.2016.05.043 10.1016/j.patrec.2014.11.003 10.1016/j.asoc.2016.12.049 10.1016/j.patrec.2009.09.011 10.1016/j.ijar.2004.05.003 10.1016/j.csda.2010.09.021 10.1016/j.knosys.2019.04.020 10.1214/09-SS053 10.1126/science.1242072 10.1016/j.ins.2017.07.010 10.1016/j.knosys.2014.11.013 10.1016/j.knosys.2015.08.007 10.1016/j.asoc.2021.107924 10.1016/j.knosys.2019.03.030 10.1016/j.ijar.2016.07.010 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.asoc.2022.109619 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | oai:HAL:hal-03781537v1 10_1016_j_asoc_2022_109619 S1568494622006688 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c334t-534ef477d302d25c3d2ee7082a1a66b2e443760e1140ddfb0be16ebce47895ce3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861042200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Oct 14 20:09:03 EDT 2025 Sat Nov 29 07:04:24 EST 2025 Tue Nov 18 22:36:16 EST 2025 Fri Feb 23 02:42:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Belief function theory Evidential partition Gaussian mixture model Model-based clustering Expectation–Maximization evidential partition belief function theory expectation-maximization model-based clustering |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-534ef477d302d25c3d2ee7082a1a66b2e443760e1140ddfb0be16ebce47895ce3 |
| ORCID | 0000-0002-0660-5436 |
| OpenAccessLink | https://hal.science/hal-03781537 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03781537v1 crossref_primary_10_1016_j_asoc_2022_109619 crossref_citationtrail_10_1016_j_asoc_2022_109619 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109619 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Davé (b51) 1996; 17 Denœux (b30) 2020; 528 Dempster (b17) 1967; 38 Smets (b31) 2005; 38 Dua, Karra Taniskidou (b49) 2021 Denœux, Kanjanatarakul, Sriboonchitta (b27) 2015; 88 Charkhi, Claeskens (b48) 2018; 105 Jia, Tan, Liu, Li, Zhang, Zhao (b12) 2019; 178 Ma, Jiang, Liu, Li (b10) 2017; 417 Fraley, Raftery (b9) 2002; 97 Aggarwal, Reddy (b1) 2014 Su, Denœux (b28) 2019; 27 Peters (b42) 2015; 53 Namburu, kumar Samay, Edara (b43) 2017; 53 Denœux, Kanjanatarakul (b22) 2016 Yatracos (b47) 2015; 61 Askari, Montazerin, Zarandi (b41) 2017; 53 Denœux (b19) 2016; 79 Melnykov, Maitra (b8) 2010; 4 Dempster, Laird, Rubin (b33) 1977; 39 Denœux, Sriboonchitta, Kanjanatarakul (b20) 2019; 176 Oskouei, Hashemzadeh, Asheghi, Balafar (b2) 2021; 113 G. Costa, R. Ortale, Document clustering and topic modeling: a unified Bayesian probabilistic perspective, in: Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, Portland, OR, 2019, pp. 278–285. McLachlan, Lee, Rathnayake (b32) 2019; 6 Banfield, Raftery (b36) 1993; 49 Denœux, Sriboonchitta, Kanjanatarakul (b16) 2016; 106 McLachlan, Peel (b45) 2000 Antoine, Quost, Masson, Denœux (b23) 2012; 56 Han, Pei, Kamber (b7) 2011 Park, Ozeki (b44) 2009; 29 Sun, Zuo, Liang, Ming, Chen, Qiu (b4) 2021; 111 Li, Fu, Xiong, Bai (b6) 2020; 204 Shafer (b18) 1976 Chen, Qi, Chen, Chen, Cheng (b3) 2020; 203 Li, Chu, Tian, Feng, Mu (b5) 2021; 113 Zhou, Martin, Pan, Liu (b24) 2015; 74 Jain (b34) 2010; 31 McLachlan, Krishnan (b37) 2007 Masson, Denœux (b15) 2008; 41 Grünwald (b46) 2007 Bezdek (b38) 1981 Manning, Raghavan, Schütze (b50) 2008 Liu, Pan, Dezert, Mercier (b25) 2015; 74 D’Urso, Massari (b39) 2019; 505 Denœux, Masson (b14) 2004; 34 Dešmar (b52) 2006; 7 Rodriguez, Laio (b35) 2014; 344 Denœux, Dubois, Prade (b21) 2020 Gong, Su, Wang, Wang (b29) 2020; 200 Li, Li, Du, Tao (b13) 2021; 51 Jiao, Wang, Pan (b26) 2021 Krishnapuram, Keller (b40) 1993; 1 Han (10.1016/j.asoc.2022.109619_b7) 2011 Denœux (10.1016/j.asoc.2022.109619_b21) 2020 Yatracos (10.1016/j.asoc.2022.109619_b47) 2015; 61 McLachlan (10.1016/j.asoc.2022.109619_b32) 2019; 6 McLachlan (10.1016/j.asoc.2022.109619_b45) 2000 Dua (10.1016/j.asoc.2022.109619_b49) 2021 Dempster (10.1016/j.asoc.2022.109619_b33) 1977; 39 Askari (10.1016/j.asoc.2022.109619_b41) 2017; 53 Park (10.1016/j.asoc.2022.109619_b44) 2009; 29 Jiao (10.1016/j.asoc.2022.109619_b26) 2021 Melnykov (10.1016/j.asoc.2022.109619_b8) 2010; 4 Liu (10.1016/j.asoc.2022.109619_b25) 2015; 74 Ma (10.1016/j.asoc.2022.109619_b10) 2017; 417 Denœux (10.1016/j.asoc.2022.109619_b16) 2016; 106 Smets (10.1016/j.asoc.2022.109619_b31) 2005; 38 Grünwald (10.1016/j.asoc.2022.109619_b46) 2007 Dešmar (10.1016/j.asoc.2022.109619_b52) 2006; 7 Denœux (10.1016/j.asoc.2022.109619_b20) 2019; 176 Fraley (10.1016/j.asoc.2022.109619_b9) 2002; 97 10.1016/j.asoc.2022.109619_b11 Namburu (10.1016/j.asoc.2022.109619_b43) 2017; 53 Su (10.1016/j.asoc.2022.109619_b28) 2019; 27 Li (10.1016/j.asoc.2022.109619_b5) 2021; 113 Antoine (10.1016/j.asoc.2022.109619_b23) 2012; 56 Denœux (10.1016/j.asoc.2022.109619_b19) 2016; 79 Denœux (10.1016/j.asoc.2022.109619_b22) 2016 Rodriguez (10.1016/j.asoc.2022.109619_b35) 2014; 344 Sun (10.1016/j.asoc.2022.109619_b4) 2021; 111 Gong (10.1016/j.asoc.2022.109619_b29) 2020; 200 Manning (10.1016/j.asoc.2022.109619_b50) 2008 McLachlan (10.1016/j.asoc.2022.109619_b37) 2007 Zhou (10.1016/j.asoc.2022.109619_b24) 2015; 74 Li (10.1016/j.asoc.2022.109619_b6) 2020; 204 Bezdek (10.1016/j.asoc.2022.109619_b38) 1981 Oskouei (10.1016/j.asoc.2022.109619_b2) 2021; 113 Charkhi (10.1016/j.asoc.2022.109619_b48) 2018; 105 Banfield (10.1016/j.asoc.2022.109619_b36) 1993; 49 Krishnapuram (10.1016/j.asoc.2022.109619_b40) 1993; 1 Denœux (10.1016/j.asoc.2022.109619_b14) 2004; 34 Dempster (10.1016/j.asoc.2022.109619_b17) 1967; 38 Chen (10.1016/j.asoc.2022.109619_b3) 2020; 203 Masson (10.1016/j.asoc.2022.109619_b15) 2008; 41 Peters (10.1016/j.asoc.2022.109619_b42) 2015; 53 Aggarwal (10.1016/j.asoc.2022.109619_b1) 2014 Denœux (10.1016/j.asoc.2022.109619_b27) 2015; 88 Shafer (10.1016/j.asoc.2022.109619_b18) 1976 Jia (10.1016/j.asoc.2022.109619_b12) 2019; 178 Denœux (10.1016/j.asoc.2022.109619_b30) 2020; 528 Li (10.1016/j.asoc.2022.109619_b13) 2021; 51 D’Urso (10.1016/j.asoc.2022.109619_b39) 2019; 505 Davé (10.1016/j.asoc.2022.109619_b51) 1996; 17 Jain (10.1016/j.asoc.2022.109619_b34) 2010; 31 |
| References_xml | – volume: 505 start-page: 513 year: 2019 end-page: 534 ident: b39 article-title: Fuzzy clustering of mixed data publication-title: Inform. Sci. – volume: 38 start-page: 325 year: 1967 end-page: 339 ident: b17 article-title: Upper and lower probabilities induced by a multi-valued mapping publication-title: Ann. Math. Stat. – volume: 176 start-page: 54 year: 2019 end-page: 67 ident: b20 article-title: Logistic regression, neural networks and Dempster-Shafer theory: a new perspective publication-title: Knowl.-Based Syst. – volume: 74 start-page: 119 year: 2015 end-page: 132 ident: b25 article-title: Credal publication-title: Knowl.-Based Syst. – volume: 34 start-page: 95 year: 2004 end-page: 109 ident: b14 article-title: EVCLUS: Evidential clustering of proximity data publication-title: IEEE Trans. Syst. Man Cybern. B – year: 2011 ident: b7 article-title: Data Mining: Concepts and Techniques – year: 1976 ident: b18 article-title: A Mathematical Theory of Evidence – volume: 113 year: 2021 ident: b2 article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation publication-title: Appl. Soft Comput. – reference: G. Costa, R. Ortale, Document clustering and topic modeling: a unified Bayesian probabilistic perspective, in: Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019, Portland, OR, 2019, pp. 278–285. – year: 1981 ident: b38 article-title: Pattern Recognition with Fuzzy Objective Function Algorithm – volume: 203 year: 2020 ident: b3 article-title: Quantum-inspired ant lion optimized hybrid publication-title: Knowl.-Based Syst. – volume: 113 year: 2021 ident: b5 article-title: Customer segmentation using k-means clustering and the adaptive particle swarm optimization algorithm publication-title: Appl. Soft Comput. – volume: 97 start-page: 611 year: 2002 end-page: 631 ident: b9 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: J. Amer. Statist. Assoc. – volume: 29 start-page: 45 year: 2009 end-page: 59 ident: b44 article-title: Singularity and slow convergence of the EM algorithm for Gaussian mixtures publication-title: Neural Process. Lett. – year: 2014 ident: b1 article-title: Data Clustering: Algorithms and Applications – year: 2007 ident: b37 article-title: The EM Algorithm and Extensions – year: 2000 ident: b45 article-title: Finite Mixture Models – year: 2007 ident: b46 article-title: The Minimum Description Length Principle – volume: 88 start-page: 57 year: 2015 end-page: 59 ident: b27 article-title: EK-NNclus: a clustering procedure based on the evidential publication-title: Knowl.-Based Syst. – year: 2021 ident: b49 article-title: UCI machine learning repository – volume: 17 start-page: 613 year: 1996 end-page: 623 ident: b51 article-title: Validating fuzzy partition obtained through publication-title: Pattern Recognit. Lett. – volume: 200 year: 2020 ident: b29 article-title: Cumulative belief peaks evidential K-nearest neighbor clustering publication-title: Knowl.-Based Syst. – volume: 56 start-page: 894 year: 2012 end-page: 914 ident: b23 article-title: CECM: Constrained evidential publication-title: Comput. Statist. Data Anal. – volume: 79 start-page: 1 year: 2016 end-page: 6 ident: b19 article-title: 40 Years of Dempster-Shafer theory publication-title: Internat. J. Approx. Reason. – volume: 1 start-page: 98 year: 1993 end-page: 111 ident: b40 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 74 start-page: 69 year: 2015 end-page: 88 ident: b24 article-title: Median evidential publication-title: Knowl.-Based Syst. – volume: 61 start-page: 1426 year: 2015 end-page: 1431 ident: b47 article-title: MLE’s bias pathology, model updated MLE, and Wallace’s minimum message length method publication-title: IEEE Trans. Inform. Theory – volume: 111 year: 2021 ident: b4 article-title: GPHC: A heuristic clustering method to customer segmentation publication-title: Appl. Soft Comput. – start-page: 47 year: 2021 end-page: 55 ident: b26 article-title: Transfer evidential c-means clustering publication-title: Belief Functions: Theory and Applications – volume: 417 start-page: 128 year: 2017 end-page: 142 ident: b10 article-title: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration publication-title: Inform. Sci. – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: b33 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol. – volume: 528 start-page: 17 year: 2020 end-page: 45 ident: b30 article-title: Calibrated model-based evidential clustering using bootstrapping publication-title: Inform. Sci. – volume: 204 year: 2020 ident: b6 article-title: Deep learning-based unsupervised representation clustering methodology for automatic nuclear reactor operating transient identification publication-title: Knowl.-Based Syst. – volume: 53 start-page: 31 year: 2015 end-page: 37 ident: b42 article-title: Is there any need for rough clustering? publication-title: Pattern Recognit. Lett. – volume: 38 start-page: 133 year: 2005 end-page: 147 ident: b31 article-title: Decision making in the TBM: the necessity of the pignistic transformation publication-title: Internat. J. Approx. Reason. – volume: 49 start-page: 803 year: 1993 end-page: 821 ident: b36 article-title: Model-based Gaussian and non-Gaussian clustering publication-title: Biometrics – start-page: 119 year: 2020 end-page: 150 ident: b21 article-title: Representations of uncertainty in artificial intelligence: beyond probability and possibility publication-title: A Guided Tour of Artificial Intelligence Research, Vol. 1 – year: 2008 ident: b50 article-title: Introduction to Information Retrieval – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b52 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 4 start-page: 80 year: 2010 end-page: 116 ident: b8 article-title: Finite mixture models and model-based clustering publication-title: Stat. Surv. – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: b34 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. – volume: 53 start-page: 262 year: 2017 end-page: 283 ident: b41 article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data publication-title: Appl. Soft Comput. – volume: 41 start-page: 1384 year: 2008 end-page: 1397 ident: b15 article-title: ECM: An evidential version of the fuzzy publication-title: Pattern Recognit. – volume: 106 start-page: 179 year: 2016 end-page: 185 ident: b16 article-title: Evidential clustering of large dissimilarity data publication-title: Knowl.-Based Syst. – volume: 51 start-page: 4363 year: 2021 end-page: 4372 ident: b13 article-title: Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection publication-title: IEEE Trans. Cybern. – volume: 53 start-page: 262 year: 2017 end-page: 283 ident: b43 article-title: Soft fuzzy rough set-based MR brain image segmentation publication-title: Appl. Soft Comput. – volume: 6 start-page: 355 year: 2019 end-page: 378 ident: b32 article-title: Finite mixture models publication-title: Annu. Rev. Stat. Appl. – volume: 344 start-page: 1492 year: 2014 end-page: 1496 ident: b35 article-title: Clustering by fast search and find of density peaks publication-title: Science – start-page: 24 year: 2016 end-page: 35 ident: b22 article-title: Evidential clustering: A review publication-title: International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making – volume: 178 start-page: 84 year: 2019 end-page: 97 ident: b12 article-title: Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system publication-title: Knowl.-Based Syst. – volume: 105 start-page: 645 year: 2018 end-page: 664 ident: b48 article-title: Asymptotic post-selection inference for the Akaike information criterion publication-title: Biometrics – volume: 27 start-page: 111 year: 2019 end-page: 123 ident: b28 article-title: BPEC: Belief-peaks evidential clustering publication-title: IEEE Trans. Fuzzy Syst. – year: 2021 ident: 10.1016/j.asoc.2022.109619_b49 – volume: 97 start-page: 611 year: 2002 ident: 10.1016/j.asoc.2022.109619_b9 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214502760047131 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.asoc.2022.109619_b33 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 41 start-page: 1384 year: 2008 ident: 10.1016/j.asoc.2022.109619_b15 article-title: ECM: An evidential version of the fuzzy c-means algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.08.014 – volume: 27 start-page: 111 year: 2019 ident: 10.1016/j.asoc.2022.109619_b28 article-title: BPEC: Belief-peaks evidential clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2869125 – volume: 505 start-page: 513 year: 2019 ident: 10.1016/j.asoc.2022.109619_b39 article-title: Fuzzy clustering of mixed data publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.07.100 – year: 2000 ident: 10.1016/j.asoc.2022.109619_b45 – volume: 111 year: 2021 ident: 10.1016/j.asoc.2022.109619_b4 article-title: GPHC: A heuristic clustering method to customer segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107677 – volume: 38 start-page: 325 year: 1967 ident: 10.1016/j.asoc.2022.109619_b17 article-title: Upper and lower probabilities induced by a multi-valued mapping publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177698950 – volume: 6 start-page: 355 year: 2019 ident: 10.1016/j.asoc.2022.109619_b32 article-title: Finite mixture models publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-031017-100325 – volume: 203 year: 2020 ident: 10.1016/j.asoc.2022.109619_b3 article-title: Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106167 – year: 2007 ident: 10.1016/j.asoc.2022.109619_b37 – ident: 10.1016/j.asoc.2022.109619_b11 doi: 10.1109/ICTAI.2019.00047 – volume: 17 start-page: 613 year: 1996 ident: 10.1016/j.asoc.2022.109619_b51 article-title: Validating fuzzy partition obtained through c-shell clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(96)00026-8 – year: 2008 ident: 10.1016/j.asoc.2022.109619_b50 – year: 2011 ident: 10.1016/j.asoc.2022.109619_b7 – start-page: 119 year: 2020 ident: 10.1016/j.asoc.2022.109619_b21 article-title: Representations of uncertainty in artificial intelligence: beyond probability and possibility – volume: 204 year: 2020 ident: 10.1016/j.asoc.2022.109619_b6 article-title: Deep learning-based unsupervised representation clustering methodology for automatic nuclear reactor operating transient identification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106178 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.asoc.2022.109619_b52 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 45 year: 2009 ident: 10.1016/j.asoc.2022.109619_b44 article-title: Singularity and slow convergence of the EM algorithm for Gaussian mixtures publication-title: Neural Process. Lett. doi: 10.1007/s11063-009-9094-4 – volume: 61 start-page: 1426 year: 2015 ident: 10.1016/j.asoc.2022.109619_b47 article-title: MLE’s bias pathology, model updated MLE, and Wallace’s minimum message length method publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2014.2386329 – year: 1976 ident: 10.1016/j.asoc.2022.109619_b18 – volume: 528 start-page: 17 year: 2020 ident: 10.1016/j.asoc.2022.109619_b30 article-title: Calibrated model-based evidential clustering using bootstrapping publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.04.014 – volume: 105 start-page: 645 year: 2018 ident: 10.1016/j.asoc.2022.109619_b48 article-title: Asymptotic post-selection inference for the Akaike information criterion publication-title: Biometrics doi: 10.1093/biomet/asy018 – volume: 200 year: 2020 ident: 10.1016/j.asoc.2022.109619_b29 article-title: Cumulative belief peaks evidential K-nearest neighbor clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105982 – start-page: 47 year: 2021 ident: 10.1016/j.asoc.2022.109619_b26 article-title: Transfer evidential c-means clustering – year: 1981 ident: 10.1016/j.asoc.2022.109619_b38 – start-page: 24 year: 2016 ident: 10.1016/j.asoc.2022.109619_b22 article-title: Evidential clustering: A review – volume: 51 start-page: 4363 year: 2021 ident: 10.1016/j.asoc.2022.109619_b13 article-title: Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2968750 – volume: 49 start-page: 803 year: 1993 ident: 10.1016/j.asoc.2022.109619_b36 article-title: Model-based Gaussian and non-Gaussian clustering publication-title: Biometrics doi: 10.2307/2532201 – volume: 34 start-page: 95 year: 2004 ident: 10.1016/j.asoc.2022.109619_b14 article-title: EVCLUS: Evidential clustering of proximity data publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2002.806496 – volume: 113 year: 2021 ident: 10.1016/j.asoc.2022.109619_b2 article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation publication-title: Appl. Soft Comput. – volume: 1 start-page: 98 year: 1993 ident: 10.1016/j.asoc.2022.109619_b40 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.227387 – volume: 74 start-page: 69 year: 2015 ident: 10.1016/j.asoc.2022.109619_b24 article-title: Median evidential c-means algorithm and its application to community detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.11.010 – volume: 106 start-page: 179 year: 2016 ident: 10.1016/j.asoc.2022.109619_b16 article-title: Evidential clustering of large dissimilarity data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.05.043 – volume: 53 start-page: 31 year: 2015 ident: 10.1016/j.asoc.2022.109619_b42 article-title: Is there any need for rough clustering? publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.11.003 – volume: 53 start-page: 262 year: 2017 ident: 10.1016/j.asoc.2022.109619_b43 article-title: Soft fuzzy rough set-based MR brain image segmentation publication-title: Appl. Soft Comput. – volume: 53 start-page: 262 year: 2017 ident: 10.1016/j.asoc.2022.109619_b41 article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.049 – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.asoc.2022.109619_b34 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 38 start-page: 133 year: 2005 ident: 10.1016/j.asoc.2022.109619_b31 article-title: Decision making in the TBM: the necessity of the pignistic transformation publication-title: Internat. J. Approx. Reason. doi: 10.1016/j.ijar.2004.05.003 – volume: 56 start-page: 894 year: 2012 ident: 10.1016/j.asoc.2022.109619_b23 article-title: CECM: Constrained evidential c-means algorithm publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2010.09.021 – volume: 178 start-page: 84 year: 2019 ident: 10.1016/j.asoc.2022.109619_b12 article-title: Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.04.020 – volume: 4 start-page: 80 year: 2010 ident: 10.1016/j.asoc.2022.109619_b8 article-title: Finite mixture models and model-based clustering publication-title: Stat. Surv. doi: 10.1214/09-SS053 – volume: 344 start-page: 1492 year: 2014 ident: 10.1016/j.asoc.2022.109619_b35 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 417 start-page: 128 year: 2017 ident: 10.1016/j.asoc.2022.109619_b10 article-title: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.07.010 – volume: 74 start-page: 119 year: 2015 ident: 10.1016/j.asoc.2022.109619_b25 article-title: Credal c-means clustering method based on belief functions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.11.013 – volume: 88 start-page: 57 year: 2015 ident: 10.1016/j.asoc.2022.109619_b27 article-title: EK-NNclus: a clustering procedure based on the evidential k-nearest neighbor rule publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.08.007 – year: 2014 ident: 10.1016/j.asoc.2022.109619_b1 – volume: 113 year: 2021 ident: 10.1016/j.asoc.2022.109619_b5 article-title: Customer segmentation using k-means clustering and the adaptive particle swarm optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107924 – volume: 176 start-page: 54 year: 2019 ident: 10.1016/j.asoc.2022.109619_b20 article-title: Logistic regression, neural networks and Dempster-Shafer theory: a new perspective publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.03.030 – year: 2007 ident: 10.1016/j.asoc.2022.109619_b46 – volume: 79 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2022.109619_b19 article-title: 40 Years of Dempster-Shafer theory publication-title: Internat. J. Approx. Reason. doi: 10.1016/j.ijar.2016.07.010 |
| SSID | ssj0016928 |
| Score | 2.5357037 |
| Snippet | The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper,... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 109619 |
| SubjectTerms | Artificial Intelligence Belief function theory Computer Science Evidential partition Expectation–Maximization Gaussian mixture model Model-based clustering |
| Title | EGMM: An evidential version of the Gaussian mixture model for clustering |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.109619 https://hal.science/hal-03781537 |
| Volume | 129 |
| WOSCitedRecordID | wos000861042200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RlAMX3ojy0grBCbmyvet9cItKaEBtVUSRcrP8GNNUxakaO8rPZ_blqFRUgMTFila215r5Mjvz7ewMIW-EggRiVUas0SLiiJJIa84iXF1rlpgCcGlhm03IoyM1m-ljf7pkadsJyLZV67W--K-qxjFUtjk6-xfqHl6KA_gblY5XVDte_0jxk_3DQ0_3gW0Z2hlSfOV4sZASsF_0S3t88sd8bfcQbEccm3NYnfemeEJY0kKFWu-tLtFs2zz0vgt3mPybebFwEX5hsguG8Q9o1Payt5r1a5eNhIvwJu_4YN7bvZHTvo2-D8vDsaNkv_Qet56SwGg2uUJJXD8r40yrUBHXnnAEN6ZkGmnhmrYM9thRINdsu6MZznYLhO2umdaUwhLe4F6tmf3VTGbmSu3eklJbZDuVmVYjsj3-NJl9HjaahLbtd4eP8-eqXArgrzP9znfZOg0svPVKTu6Tuz6coGMHgwfkFrQPyb3QqoN6y_2ITA0q3tNxSzeYoB4TdNFQxAQNmKAeE9RigiIm6AYTj8m3j5OTvWnkm2hEFWO8izLGoeFS1ixO6zSrWJ0CSHT8iqQQokyBc5MXBRgXx3XdlHEJiYCyAi6VzipgT8ioXbTwlFBRKOA1qyRUmnOM20E1RQmmJmKTJHWzQ5IgnrzyFeZNo5PzPKQSnuVGpLkRae5EukPeDc9cuPoqN96dBann3kN0nl-OILnxudeoomECU1J9Oj7IzVjMpMJVX66SZ__48ufkzuZP8IKMusseXpLb1aqbLy9fecD9BPd_kls |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EGMM%3A+An+evidential+version+of+the+Gaussian+mixture+model+for+clustering&rft.jtitle=Applied+soft+computing&rft.au=Jiao%2C+Lianmeng&rft.au=Den%C5%93ux%2C+Thierry&rft.au=Liu%2C+Zhun-ga&rft.au=Pan%2C+Quan&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=129&rft_id=info:doi/10.1016%2Fj.asoc.2022.109619&rft.externalDocID=S1568494622006688 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |