Density-sensitive fuzzy kernel maximum entropy clustering algorithm

Maximum entropy clustering algorithm (ME) has lately received great attention for its high performance in large-scale data clustering and simplicity in implementation. However, previous studies have demonstrated that different clusters obtained by traditional ME tend to converge to the same one duri...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 166; pp. 42 - 57
Main Authors: Tao, Xinmin, Wang, Ruotong, Chang, Rui, Li, Chenxi
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.02.2019
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Maximum entropy clustering algorithm (ME) has lately received great attention for its high performance in large-scale data clustering and simplicity in implementation. However, previous studies have demonstrated that different clusters obtained by traditional ME tend to converge to the same one during its process of iteration affected by regularization coefficient and these cluster centers are subject to bias due to its sensitivity to different distributions of objects. These drawbacks of traditional ME can result in its failure of revealing the natural groupings in most datasets, especially in non-Gaussian distributed datasets. In order to address those limitations, we present a novel density-sensitive fuzzy kernel maximum entropy clustering algorithm in this paper. In the proposed approach, to accommodate non-Gaussian distributed cases, the dataset to be clustered in the original space is firstly implicitly mapped into high-dimensional feature space through the kernel function. By introducing the kernel function-based similarity terms in the update formula of the cluster centers, the effect of the objects not belonging to the current cluster on the update of its corresponding center can be counteracted, and simultaneously the influence of regularization coefficient on the clustering result is restricted as well, which can effectively overcome the convergence of the different clusters encountered by traditional ME. In addition, in order to prevent cluster centers from biases caused by the different distribution of the objects in the feature space, the relative density-based weights are also incorporated into the cost function, which can help the proposed approach produce more reasonable and accurate clustering results. In the experiments, the influence of the different parameters on the clustering performance is discussed in detail and some suggestions are also provided. Theoretical analysis and experimental results on several synthetic datasets, UCI benchmark datasets and generated large MNIST handwritten digits datasets demonstrate that the proposed approach is superior to other existing clustering techniques with good robustness.
AbstractList Maximum entropy clustering algorithm (ME) has lately received great attention for its high performance in large-scale data clustering and simplicity in implementation. However, previous studies have demonstrated that different clusters obtained by traditional ME tend to converge to the same one during its process of iteration affected by regularization coefficient and these cluster centers are subject to bias due to its sensitivity to different distributions of objects. These drawbacks of traditional ME can result in its failure of revealing the natural groupings in most datasets, especially in non-Gaussian distributed datasets. In order to address those limitations, we present a novel density-sensitive fuzzy kernel maximum entropy clustering algorithm in this paper. In the proposed approach, to accommodate non-Gaussian distributed cases, the dataset to be clustered in the original space is firstly implicitly mapped into high-dimensional feature space through the kernel function. By introducing the kernel function-based similarity terms in the update formula of the cluster centers, the effect of the objects not belonging to the current cluster on the update of its corresponding center can be counteracted, and simultaneously the influence of regularization coefficient on the clustering result is restricted as well, which can effectively overcome the convergence of the different clusters encountered by traditional ME. In addition, in order to prevent cluster centers from biases caused by the different distribution of the objects in the feature space, the relative density-based weights are also incorporated into the cost function, which can help the proposed approach produce more reasonable and accurate clustering results. In the experiments, the influence of the different parameters on the clustering performance is discussed in detail and some suggestions are also provided. Theoretical analysis and experimental results on several synthetic datasets, UCI benchmark datasets and generated large MNIST handwritten digits datasets demonstrate that the proposed approach is superior to other existing clustering techniques with good robustness.
Author Tao, Xinmin
Wang, Ruotong
Li, Chenxi
Chang, Rui
Author_xml – sequence: 1
  givenname: Xinmin
  surname: Tao
  fullname: Tao, Xinmin
  email: taoxinmin@nefu.edu.cn
– sequence: 2
  givenname: Ruotong
  surname: Wang
  fullname: Wang, Ruotong
– sequence: 3
  givenname: Rui
  surname: Chang
  fullname: Chang, Rui
– sequence: 4
  givenname: Chenxi
  surname: Li
  fullname: Li, Chenxi
BookMark eNqFkEtPwzAQhC1UJErhH3CIxDlhnbh5cEBC5SlV4gJny3U2xW1iF9upSH89LuXEAaSV5rAzu5rvlIy00UjIBYWEAs2vVslaGze4JAVaJjRNAIojMqZlkcYFg2pExlBNIS5gSk_IqXMrAEhTWo7J7A61U36I3beqLUZNv9sN0RqtxjbqxKfq-i5C7a3ZDJFse-fRKr2MRLs0Vvn37owcN6J1eP6jE_L2cP86e4rnL4_Ps9t5LLOM-ZiVGWAlhaRpVi2gZkVdVrRmeS0E0kKUTC5A0jwrGpnnFKeYYxM201KGKRfZhFwe7m6s-ejReb4yvdXhJQ9dclpVDFhwsYNLWuOcxYZvrOqEHTgFvsfFV_yAi-9xcZrygCvErn_FpPLCKxOKC9X-F745hDHU3yq03EmFWmKtLErPa6P-PvAFMUWMzw
CitedBy_id crossref_primary_10_1007_s10489_023_04831_x
crossref_primary_10_1016_j_asoc_2021_107922
crossref_primary_10_1007_s10489_021_02722_7
crossref_primary_10_1016_j_patcog_2023_109341
crossref_primary_10_1007_s10489_023_04803_1
crossref_primary_10_1007_s12652_019_01416_w
crossref_primary_10_1016_j_dsp_2021_103351
crossref_primary_10_1016_j_engappai_2024_109909
crossref_primary_10_1016_j_eswa_2020_114326
crossref_primary_10_1016_j_eswa_2022_118280
crossref_primary_10_3233_WEB_220045
crossref_primary_10_1007_s00354_023_00229_y
crossref_primary_10_1016_j_knosys_2021_107046
crossref_primary_10_1016_j_asoc_2023_110321
crossref_primary_10_1109_TFUZZ_2022_3188363
crossref_primary_10_3390_make6020047
crossref_primary_10_1007_s10489_020_01812_2
crossref_primary_10_1016_j_knosys_2021_107191
crossref_primary_10_1016_j_neucom_2023_01_020
crossref_primary_10_1016_j_patcog_2024_111261
crossref_primary_10_1016_j_cie_2019_106087
crossref_primary_10_1016_j_patcog_2023_109749
crossref_primary_10_1109_TFUZZ_2023_3327688
Cites_doi 10.1016/j.engfailanal.2016.04.001
10.1007/s00521-016-2208-9
10.1142/S0219635216500151
10.3390/e19090452
10.1016/j.knosys.2018.03.018
10.1016/j.neunet.2017.06.004
10.1016/S0165-0114(97)00126-7
10.1016/j.neucom.2015.09.127
10.1109/TII.2016.2628747
10.1016/j.neucom.2017.06.025
10.1016/j.patcog.2009.09.010
10.1016/j.patrec.2004.03.008
10.1002/cem.2728
10.1109/TNN.2009.2030190
10.1016/j.knosys.2016.12.015
10.1016/j.neucom.2017.01.017
10.1016/j.knosys.2017.05.018
10.3724/SP.J.1001.2008.01683
10.1016/j.patcog.2017.05.017
10.1109/34.85677
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 15, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 15, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2018.12.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 57
ExternalDocumentID 10_1016_j_knosys_2018_12_007
S095070511830594X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-4830e9cac1239b0d47d891d46daae17a84cb0c1637fc661e5e6efae158c58c8b3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458468600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 19:19:43 EST 2025
Sat Nov 29 06:41:34 EST 2025
Tue Nov 18 21:34:46 EST 2025
Fri Feb 23 02:18:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Relative density-based weight
Maximum entropy clustering algorithm
Robustness
Clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-4830e9cac1239b0d47d891d46daae17a84cb0c1637fc661e5e6efae158c58c8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2186199404
PQPubID 2035257
PageCount 16
ParticipantIDs proquest_journals_2186199404
crossref_primary_10_1016_j_knosys_2018_12_007
crossref_citationtrail_10_1016_j_knosys_2018_12_007
elsevier_sciencedirect_doi_10_1016_j_knosys_2018_12_007
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Yang, Nataliani (b2) 2017; 71
Zhang, Liu, Zhang (b14) 2017; 93
Zhou, Chen, Chen (b24) 2015; 198
Karayiannis (b26) 2002; vol. 1
Li, Zhang, Lu (b1) 2017; 237
Chrol-Cannon, Jin, Gruning (b5) 2017; 267
Qian, Zhao, Jiang (b10) 2017; 130
Huang, Li, Luo (b7) 2017; 119
Zhou, Liao, Shi (b27) 2014; 29
Wang, Wang, Wang (b21) 2004; 25
Sing, Adhikari, Basu (b25) 2015; 29
Borgelt (b22) 2008; 1
Benavent, Ruiz, Sáez (b28) 2009; 20
Zhou, Fu, Yang (b18) 2014; 57
Thilaga, Vijayalakshmi, Nadarajan (b6) 2016; 15
Akogul, Erisoglu (b17) 2017; 19
Kang, Ji, Ji (b20) 2010; 31
Luo, Peng, Li (b15) 2016; 28
Vidal, Monge, Villalba (b4) 2018
Song, Ji, Sun (b11) 2014; 40
Fred, Jain (b19) 2005; 27
Wu, Wilamowski (b16) 2016; 13
Chemweno, Morag, Sheikhalishahi (b8) 2016; 66
Tan, Chen (b30) 2000
Lei, Xie, Lin (b12) 2008
Bai, Ji, He (b3) 2013; 43
Cheng, Wang (b31) 2016; 31
Xie, Beni (b32) 1991; 13
Cai, Liu, Cao (b9) 2017; 45
Talu (b13) 2017; 2017
Li, Mukaidono (b29) 1999; 102
Z.Deng K.S. Choi, Chung, Wang (b23) 2010; 43
Lei (10.1016/j.knosys.2018.12.007_b12) 2008
Benavent (10.1016/j.knosys.2018.12.007_b28) 2009; 20
Fred (10.1016/j.knosys.2018.12.007_b19) 2005; 27
Talu (10.1016/j.knosys.2018.12.007_b13) 2017; 2017
Tan (10.1016/j.knosys.2018.12.007_b30) 2000
Cai (10.1016/j.knosys.2018.12.007_b9) 2017; 45
Wu (10.1016/j.knosys.2018.12.007_b16) 2016; 13
Chrol-Cannon (10.1016/j.knosys.2018.12.007_b5) 2017; 267
Chemweno (10.1016/j.knosys.2018.12.007_b8) 2016; 66
Wang (10.1016/j.knosys.2018.12.007_b21) 2004; 25
Zhang (10.1016/j.knosys.2018.12.007_b14) 2017; 93
Zhou (10.1016/j.knosys.2018.12.007_b18) 2014; 57
Li (10.1016/j.knosys.2018.12.007_b1) 2017; 237
Luo (10.1016/j.knosys.2018.12.007_b15) 2016; 28
Thilaga (10.1016/j.knosys.2018.12.007_b6) 2016; 15
Sing (10.1016/j.knosys.2018.12.007_b25) 2015; 29
Yang (10.1016/j.knosys.2018.12.007_b2) 2017; 71
Kang (10.1016/j.knosys.2018.12.007_b20) 2010; 31
Huang (10.1016/j.knosys.2018.12.007_b7) 2017; 119
Qian (10.1016/j.knosys.2018.12.007_b10) 2017; 130
Akogul (10.1016/j.knosys.2018.12.007_b17) 2017; 19
Vidal (10.1016/j.knosys.2018.12.007_b4) 2018
Zhou (10.1016/j.knosys.2018.12.007_b27) 2014; 29
Karayiannis (10.1016/j.knosys.2018.12.007_b26) 2002; vol. 1
Z.Deng K.S. Choi (10.1016/j.knosys.2018.12.007_b23) 2010; 43
Zhou (10.1016/j.knosys.2018.12.007_b24) 2015; 198
Borgelt (10.1016/j.knosys.2018.12.007_b22) 2008; 1
Bai (10.1016/j.knosys.2018.12.007_b3) 2013; 43
Li (10.1016/j.knosys.2018.12.007_b29) 1999; 102
Cheng (10.1016/j.knosys.2018.12.007_b31) 2016; 31
Xie (10.1016/j.knosys.2018.12.007_b32) 1991; 13
Song (10.1016/j.knosys.2018.12.007_b11) 2014; 40
References_xml – volume: 40
  start-page: 1754
  year: 2014
  end-page: 1763
  ident: b11
  article-title: Brain MR image segmentation algorithm based on Markov random field withimage patch
  publication-title: Acta Automat. Sinica
– volume: 102
  start-page: 253
  year: 1999
  end-page: 258
  ident: b29
  article-title: Gaussian clustering method based on maximum-fuzzy-entropy interpretation
  publication-title: Fuzzy Sets & Systems
– volume: 27
  start-page: 835
  year: 2005
  end-page: 850
  ident: b19
  article-title: Combining multiple clusterings using evidence accumulation
  publication-title: IEEE Comput. Soc.
– volume: 31
  start-page: 1657
  year: 2010
  end-page: 1663
  ident: b20
  article-title: Kernelized fuzzy C-means clustering algorithm and its application
  publication-title: Chin. J. Sci. Instrum.
– start-page: 1683
  year: 2008
  end-page: 1692
  ident: b12
  article-title: An efficient clustering algorithm based on optimality of k-means
  publication-title: J. Softw.
– volume: vol. 1
  start-page: 630
  year: 2002
  end-page: 635
  ident: b26
  article-title: MECA: Maximum entropy clustering algorithm
  publication-title: Fuzzy Systems, 1994 IEEE World Congress on Computational Intelligence. Proceedings of the Third IEEE Conference on
– volume: 31
  start-page: 551
  year: 2016
  end-page: 554
  ident: b31
  article-title: Support vector data description based on fast clustering analysis
  publication-title: Control Decis.
– volume: 29
  start-page: 1991
  year: 2014
  end-page: 1996
  ident: b27
  article-title: SVM parameters selection method based on fisher criterion and maximum entropy principle
  publication-title: Control Decis.
– volume: 66
  start-page: 19
  year: 2016
  end-page: 34
  ident: b8
  article-title: Development of a novel methodology for root cause analysis and selection of maintenance strategy for a thermal power plant: a data exploration approach
  publication-title: Eng. Fail. Anal.
– volume: 25
  start-page: 1123
  year: 2004
  end-page: 1132
  ident: b21
  article-title: Improving fuzzy C-means clustering based on feature-weight learning
  publication-title: Pattern Recognit. Lett.
– volume: 13
  start-page: 1620
  year: 2016
  end-page: 1628
  ident: b16
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
– volume: 20
  start-page: 1756
  year: 2009
  end-page: 1771
  ident: b28
  article-title: Learning Gaussian mixture models with entropy-based criteria
  publication-title: IEEE Trans. Neural Netw.
– volume: 71
  start-page: 45
  year: 2017
  end-page: 59
  ident: b2
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recognit.
– volume: 19
  start-page: 452
  year: 2017
  ident: b17
  article-title: An approach for determining the number of clusters in a model-based cluster analysis
  publication-title: Entropy
– volume: 198
  start-page: 125
  year: 2015
  end-page: 134
  ident: b24
  article-title: Fuzzy clustering with the entropy of attribute weights
  publication-title: Neurocomputing
– volume: 130
  start-page: 33
  year: 2017
  end-page: 50
  ident: b10
  article-title: Knowledge-leveraged transfer fuzzy C-means for texture image segmentation with self-adaptive cluster prototype matching
  publication-title: Knowl.-Based Syst.
– volume: 93
  start-page: 240
  year: 2017
  end-page: 255
  ident: b14
  article-title: Novel density-based and hierarchical density-based clustering algorithms for uncertain data
  publication-title: Neural Netw.
– volume: 43
  start-page: 130
  year: 2013
  end-page: 134
  ident: b3
  article-title: New clustering method of mixed-attribute data
  publication-title: J. Jilin Univ.(Eng. Technol. Ed.)
– volume: 15
  start-page: 223
  year: 2016
  end-page: 245
  ident: b6
  article-title: A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks
  publication-title: J. Integr. Neurosci.
– volume: 45
  start-page: 1911
  year: 2017
  end-page: 1918
  ident: b9
  article-title: A watershed image segmentation algorithm based on self-adaptive marking and interregional affinity propagation clustering
  publication-title: ACTA Electron. Sin.
– volume: 267
  start-page: 644
  year: 2017
  end-page: 650
  ident: b5
  article-title: An efficient method for online detection of polychronous patterns in spiking neural networks
  publication-title: Neurocomputing
– volume: 57
  start-page: 1
  year: 2014
  end-page: 8
  ident: b18
  article-title: Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation
  publication-title: Sci. China Inf. Sci.
– volume: 43
  start-page: 767
  year: 2010
  end-page: 781
  ident: b23
  article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information
  publication-title: Pattern Recognit.
– volume: 237
  start-page: 316
  year: 2017
  end-page: 331
  ident: b1
  article-title: Interval kernel Fuzzy C-means clustering of incomplete data
  publication-title: Neurocomputing
– volume: 28
  start-page: 2545
  year: 2016
  end-page: 2556
  ident: b15
  article-title: MWPCA-ICURD: Density-based clustering method discovering specific shape original features
  publication-title: Neural Comput. Appl.
– start-page: 269
  year: 2000
  end-page: 272
  ident: b30
  article-title: A Gaussian clustering algorithm based on maximum fuzzy entropy
  publication-title: J. Univ. Electron. Sci. Tech. China
– volume: 119
  start-page: 273
  year: 2017
  end-page: 283
  ident: b7
  article-title: Matrix-based dynamic updating rough fuzzy approximations for data mining
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 841
  year: 1991
  end-page: 847
  ident: b32
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 838
  year: 2008
  end-page: 844
  ident: b22
  article-title: Feature weighting and feature selection in fuzzy clustering
  publication-title: Proc. IEEE Conf. Fuzzy Syt.
– volume: 29
  start-page: 492
  year: 2015
  end-page: 505
  ident: b25
  article-title: A modified fuzzy C-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise
  publication-title: J. Chemom.
– year: 2018
  ident: b4
  article-title: A novel pattern recognition system for detecting android malware by analyzing suspicious boot sequences
  publication-title: Knowl.-Based Syst.
– volume: 2017
  start-page: 1742
  year: 2017
  end-page: 5468
  ident: b13
  article-title: Multi-level spectral graph partitioning method
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 66
  start-page: 19
  year: 2016
  ident: 10.1016/j.knosys.2018.12.007_b8
  article-title: Development of a novel methodology for root cause analysis and selection of maintenance strategy for a thermal power plant: a data exploration approach
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2016.04.001
– volume: 2017
  start-page: 1742
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b13
  article-title: Multi-level spectral graph partitioning method
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 28
  start-page: 2545
  issue: 9
  year: 2016
  ident: 10.1016/j.knosys.2018.12.007_b15
  article-title: MWPCA-ICURD: Density-based clustering method discovering specific shape original features
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2208-9
– volume: 15
  start-page: 223
  issue: 02
  year: 2016
  ident: 10.1016/j.knosys.2018.12.007_b6
  article-title: A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S0219635216500151
– volume: 19
  start-page: 452
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b17
  article-title: An approach for determining the number of clusters in a model-based cluster analysis
  publication-title: Entropy
  doi: 10.3390/e19090452
– year: 2018
  ident: 10.1016/j.knosys.2018.12.007_b4
  article-title: A novel pattern recognition system for detecting android malware by analyzing suspicious boot sequences
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.018
– volume: 93
  start-page: 240
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b14
  article-title: Novel density-based and hierarchical density-based clustering algorithms for uncertain data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.06.004
– volume: 1
  start-page: 838
  year: 2008
  ident: 10.1016/j.knosys.2018.12.007_b22
  article-title: Feature weighting and feature selection in fuzzy clustering
  publication-title: Proc. IEEE Conf. Fuzzy Syt.
– volume: 102
  start-page: 253
  issue: 2
  year: 1999
  ident: 10.1016/j.knosys.2018.12.007_b29
  article-title: Gaussian clustering method based on maximum-fuzzy-entropy interpretation
  publication-title: Fuzzy Sets & Systems
  doi: 10.1016/S0165-0114(97)00126-7
– volume: 198
  start-page: 125
  year: 2015
  ident: 10.1016/j.knosys.2018.12.007_b24
  article-title: Fuzzy clustering with the entropy of attribute weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.127
– volume: 13
  start-page: 1620
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2018.12.007_b16
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2628747
– start-page: 269
  issue: 3
  year: 2000
  ident: 10.1016/j.knosys.2018.12.007_b30
  article-title: A Gaussian clustering algorithm based on maximum fuzzy entropy
  publication-title: J. Univ. Electron. Sci. Tech. China
– volume: 27
  start-page: 835
  issue: 6
  year: 2005
  ident: 10.1016/j.knosys.2018.12.007_b19
  article-title: Combining multiple clusterings using evidence accumulation
  publication-title: IEEE Comput. Soc.
– volume: 267
  start-page: 644
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b5
  article-title: An efficient method for online detection of polychronous patterns in spiking neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.025
– volume: 43
  start-page: 767
  year: 2010
  ident: 10.1016/j.knosys.2018.12.007_b23
  article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.09.010
– volume: 25
  start-page: 1123
  year: 2004
  ident: 10.1016/j.knosys.2018.12.007_b21
  article-title: Improving fuzzy C-means clustering based on feature-weight learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.03.008
– volume: 29
  start-page: 492
  issue: 9
  year: 2015
  ident: 10.1016/j.knosys.2018.12.007_b25
  article-title: A modified fuzzy C-means algorithm using scale control spatial information for MRI image segmentation in the presence of noise
  publication-title: J. Chemom.
  doi: 10.1002/cem.2728
– volume: 43
  start-page: 130
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2018.12.007_b3
  article-title: New clustering method of mixed-attribute data
  publication-title: J. Jilin Univ.(Eng. Technol. Ed.)
– volume: 20
  start-page: 1756
  issue: 11
  year: 2009
  ident: 10.1016/j.knosys.2018.12.007_b28
  article-title: Learning Gaussian mixture models with entropy-based criteria
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2030190
– volume: 29
  start-page: 1991
  issue: 11
  year: 2014
  ident: 10.1016/j.knosys.2018.12.007_b27
  article-title: SVM parameters selection method based on fisher criterion and maximum entropy principle
  publication-title: Control Decis.
– volume: 119
  start-page: 273
  issue: C
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b7
  article-title: Matrix-based dynamic updating rough fuzzy approximations for data mining
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.12.015
– volume: 237
  start-page: 316
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b1
  article-title: Interval kernel Fuzzy C-means clustering of incomplete data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.017
– volume: 45
  start-page: 1911
  issue: 8
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b9
  article-title: A watershed image segmentation algorithm based on self-adaptive marking and interregional affinity propagation clustering
  publication-title: ACTA Electron. Sin.
– volume: 130
  start-page: 33
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b10
  article-title: Knowledge-leveraged transfer fuzzy C-means for texture image segmentation with self-adaptive cluster prototype matching
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.05.018
– start-page: 1683
  issue: 7
  year: 2008
  ident: 10.1016/j.knosys.2018.12.007_b12
  article-title: An efficient clustering algorithm based on optimality of k-means
  publication-title: J. Softw.
  doi: 10.3724/SP.J.1001.2008.01683
– volume: 71
  start-page: 45
  year: 2017
  ident: 10.1016/j.knosys.2018.12.007_b2
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.017
– volume: 31
  start-page: 551
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2018.12.007_b31
  article-title: Support vector data description based on fast clustering analysis
  publication-title: Control Decis.
– volume: vol. 1
  start-page: 630
  year: 2002
  ident: 10.1016/j.knosys.2018.12.007_b26
  article-title: MECA: Maximum entropy clustering algorithm
– volume: 40
  start-page: 1754
  issue: 8
  year: 2014
  ident: 10.1016/j.knosys.2018.12.007_b11
  article-title: Brain MR image segmentation algorithm based on Markov random field withimage patch
  publication-title: Acta Automat. Sinica
– volume: 31
  start-page: 1657
  issue: 7
  year: 2010
  ident: 10.1016/j.knosys.2018.12.007_b20
  article-title: Kernelized fuzzy C-means clustering algorithm and its application
  publication-title: Chin. J. Sci. Instrum.
– volume: 57
  start-page: 1
  issue: 11
  year: 2014
  ident: 10.1016/j.knosys.2018.12.007_b18
  article-title: Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation
  publication-title: Sci. China Inf. Sci.
– volume: 13
  start-page: 841
  issue: 13
  year: 1991
  ident: 10.1016/j.knosys.2018.12.007_b32
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.85677
SSID ssj0002218
Score 2.3730416
Snippet Maximum entropy clustering algorithm (ME) has lately received great attention for its high performance in large-scale data clustering and simplicity in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Algorithms
Bias
Clustering
Convergence
Datasets
Density
Digits
Entropy
Experiments
Function
Fuzzy sets
Handwriting
Implementation
Iterative methods
Kernel functions
Maximum entropy
Maximum entropy clustering algorithm
Normal distribution
Object recognition
Regularization
Relative density-based weight
Robustness
Simplicity
Title Density-sensitive fuzzy kernel maximum entropy clustering algorithm
URI https://dx.doi.org/10.1016/j.knosys.2018.12.007
https://www.proquest.com/docview/2186199404
Volume 166
WOSCitedRecordID wos000458468600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5By4ELb0ShIB-4RYv8WHt3j1Up4lFVCAL4ZnnX6-I2tqPERkl_PbMPu6ERKiAhRU60jh1n5_Psl8nMNwi9jIo4EjIG7xeXCSbUp1jQpMQKbB2UEQ9sbdXXY3pywtKUf3QpQUvTToA2DVut-Py_mhrGwNi6dPYvzD2eFAbgNRgdtmB22P6R4V_rlPRujZfm2ah69xcX68m5WjRqNqnzVVX39URHddv5eiJnvdZKMLWKs9N2UXXf603G-mEIumG94BVO-nlk4tPcxFrTqqmrEWffXBD6U98CtTzdSCEYxqth7Liyf_qrZlVtRiB00VOIbQ2mDYttlca4-KKPqe_UZJX1rowCnSc-_8X9JpsO1EptuaXYSldvOXkbbzh7dd608J11eh4zIV3bPveKfPZnfSH6OsB3aW2a9CbaDWnMwQPuHrw7St-P63YYmmjweOFDoaXJBtz-rN8RmStLuuEp03vojvuB4R1YYNxHN1TzAN0dmnd4zpc_RIdbOPEMTjyLE8_hxHM48S5x4o04eYS-vDmaHr7FrqMGllFEOh059hWXuQS-woVfEFowHhQkKfJcBTRnRApfAkWnpQTipmKVqBL2xEzCg4noMdpp2kY9QV6Qx0K3qpE5j0jBVa4KKWRQBpESTBCxh6JhejLp5OZ115NZNuQVnmV2UjM9qVkQZjCpewiPR82t3Mo176fDzGeOMloqmAFYrjlyfzBU5u5e2B-wRItl--TpP5_4Gbp9eZPso51u0avn6Jb80VXLxQsHup_8p6BJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density-sensitive+fuzzy+kernel+maximum+entropy+clustering+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Tao%2C+Xinmin&rft.au=Wang%2C+Ruotong&rft.au=Chang%2C+Rui&rft.au=Li%2C+Chenxi&rft.date=2019-02-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=166&rft.spage=42&rft.epage=57&rft_id=info:doi/10.1016%2Fj.knosys.2018.12.007&rft.externalDocID=S095070511830594X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon