A Parallel QZ Algorithm for Distributed Memory HPC Systems

Appearing frequently in applications, generalized eigenvalue problems represent one of the core problems in numerical linear algebra. The QZ algorithm of Moler and Stewart is the most widely used algorithm for addressing such problems. Despite its importance, little attention has been paid to the pa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on scientific computing Ročník 36; číslo 5; s. C480 - C503
Hlavní autori: Adlerborn, Björn, Kågström, Bo, Kressner, Daniel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.01.2014
Predmet:
ISSN:1064-8275, 1095-7197, 1095-7197
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Appearing frequently in applications, generalized eigenvalue problems represent one of the core problems in numerical linear algebra. The QZ algorithm of Moler and Stewart is the most widely used algorithm for addressing such problems. Despite its importance, little attention has been paid to the parallelization of the QZ algorithm. The purpose of this work is to fill this gap. We propose a parallelization of the QZ algorithm that incorporates all modern ingredients of dense eigensolvers, such as multishift and aggressive early deflation techniques. To deal with (possibly many) infinite eigenvalues, a new parallel deflation strategy is developed. Numerical experiments for several random and application examples demonstrate the effectiveness of our algorithm on two different distributed memory HPC systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1064-8275
1095-7197
1095-7197
DOI:10.1137/140954817