A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles

Increasing energy shortages and environmental pollution have made energy efficiency an urgent concern in manufacturing plants. Most studies looking into sustainable production in general and energy-efficient production scheduling in particular, however, have not paid much attention to logistical fac...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 243; p. 108315
Main Authors: He, Lijun, Chiong, Raymond, Li, Wenfeng, Budhi, Gregorius Satia, Zhang, Yu
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 11.05.2022
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Increasing energy shortages and environmental pollution have made energy efficiency an urgent concern in manufacturing plants. Most studies looking into sustainable production in general and energy-efficient production scheduling in particular, however, have not paid much attention to logistical factors (e.g., transport and setup). This study integrates multiple automated guided vehicles (AGVs) into a job-shop environment. We propose a multiobjective scheduling model that considers machine processing, sequence-dependent setup and AGV transport, aiming to simultaneously minimize the makespan, total idle time of machines and total energy consumption of both machines and AGVs. To solve this problem, an effective multiobjective evolutionary algorithm (EMOEA) is developed. Within the EMOEA, an efficient encoding/decoding method is designed to represent and decode each solution. A new crossover operator is proposed for AGV assignment and AGV speed sequences. To balance the exploration and exploitation ability of the EMOEA, an opposition-based learning strategy is incorporated. A total of 75 benchmark instances and a real-world case are used for our experimental study. Taguchi analysis is applied to determine the best combination of key parameters for the EMOEA. Extensive computational experiments show that properly increasing the number of AGVs can shorten the waiting time of machines and achieve a balance between economic and environmental objectives for production systems. The experimental results confirm that the proposed EMOEA is significantly better at solving the problem than three other well-known algorithms. Our findings here have significant managerial implications for real-world manufacturing environments integrated with AGVs. •Automated guided vehicles (AGVs) are used for energy-efficient job-shop scheduling.•A new multiobjective mathematical model is formulated for the problem.•An effective multiobjective evolutionary algorithm (EMOEA) is designed.•Opposition-based learning is employed to balance exploration and exploitation.•Results confirm the validity of the model and efficacy of the proposed EMOEA.
AbstractList Increasing energy shortages and environmental pollution have made energy efficiency an urgent concern in manufacturing plants. Most studies looking into sustainable production in general and energy-efficient production scheduling in particular, however, have not paid much attention to logistical factors (e.g., transport and setup). This study integrates multiple automated guided vehicles (AGVs) into a job-shop environment. We propose a multiobjective scheduling model that considers machine processing, sequence-dependent setup and AGV transport, aiming to simultaneously minimize the makespan, total idle time of machines and total energy consumption of both machines and AGVs. To solve this problem, an effective multiobjective evolutionary algorithm (EMOEA) is developed. Within the EMOEA, an efficient encoding/decoding method is designed to represent and decode each solution. A new crossover operator is proposed for AGV assignment and AGV speed sequences. To balance the exploration and exploitation ability of the EMOEA, an opposition-based learning strategy is incorporated. A total of 75 benchmark instances and a real-world case are used for our experimental study. Taguchi analysis is applied to determine the best combination of key parameters for the EMOEA. Extensive computational experiments show that properly increasing the number of AGVs can shorten the waiting time of machines and achieve a balance between economic and environmental objectives for production systems. The experimental results confirm that the proposed EMOEA is significantly better at solving the problem than three other well-known algorithms. Our findings here have significant managerial implications for real-world manufacturing environments integrated with AGVs. •Automated guided vehicles (AGVs) are used for energy-efficient job-shop scheduling.•A new multiobjective mathematical model is formulated for the problem.•An effective multiobjective evolutionary algorithm (EMOEA) is designed.•Opposition-based learning is employed to balance exploration and exploitation.•Results confirm the validity of the model and efficacy of the proposed EMOEA.
Increasing energy shortages and environmental pollution have made energy efficiency an urgent concern in manufacturing plants. Most studies looking into sustainable production in general and energy-efficient production scheduling in particular, however, have not paid much attention to logistical factors (e.g., transport and setup). This study integrates multiple automated guided vehicles (AGVs) into a job-shop environment. We propose a multiobjective scheduling model that considers machine processing, sequence-dependent setup and AGV transport, aiming to simultaneously minimize the makespan, total idle time of machines and total energy consumption of both machines and AGVs. To solve this problem, an effective multiobjective evolutionary algorithm (EMOEA) is developed. Within the EMOEA, an efficient encoding/decoding method is designed to represent and decode each solution. A new crossover operator is proposed for AGV assignment and AGV speed sequences. To balance the exploration and exploitation ability of the EMOEA, an opposition-based learning strategy is incorporated. A total of 75 benchmark instances and a real-world case are used for our experimental study. Taguchi analysis is applied to determine the best combination of key parameters for the EMOEA. Extensive computational experiments show that properly increasing the number of AGVs can shorten the waiting time of machines and achieve a balance between economic and environmental objectives for production systems. The experimental results confirm that the proposed EMOEA is significantly better at solving the problem than three other well-known algorithms. Our findings here have significant managerial implications for real-world manufacturing environments integrated with AGVs.
ArticleNumber 108315
Author Budhi, Gregorius Satia
Chiong, Raymond
Li, Wenfeng
He, Lijun
Zhang, Yu
Author_xml – sequence: 1
  givenname: Lijun
  surname: He
  fullname: He, Lijun
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei 430063, PR China
– sequence: 2
  givenname: Raymond
  surname: Chiong
  fullname: Chiong, Raymond
  organization: School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 3
  givenname: Wenfeng
  orcidid: 0000-0001-5493-7200
  surname: Li
  fullname: Li, Wenfeng
  email: liwf@whut.edu.cn
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei 430063, PR China
– sequence: 4
  givenname: Gregorius Satia
  surname: Budhi
  fullname: Budhi, Gregorius Satia
  organization: School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 5
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei 430063, PR China
BookMark eNqFUctO3DAUtRCVGGj_oAtLXWew4ziPLpAQKg8JiU27thz7JuM0sQfbSTUfwv_iIay6gNWVzj3n3Mc5R6fWWUDoOyVbSmh5OWz_WhcOYZuTPE9QzSg_QRtaV3lWFaQ5RRvScJJVhNMzdB7CQEhi0nqDXq7xNI_RuHYAFc0CGBY3zgmw0h-wHHvnTdxNuHMeS7UzsBjbY7Dg-wOGrjPKgFUHbCzee6dndZSm_mK8sxPYGFIrQu9lBI3_Ja914H4ELOfopje8n41OZYGdUSOEr-hLJ8cA397rBfpz--v3zX32-HT3cHP9mCnGipixruS6Y7VWvJW81UVZtqBII1tZaSJVS1sOjFSVBMZUrtpCKlrlvJFUVaqh7AL9WH3T6s8zhCgGN3ubRoq85JyWBWvqxPq5spR3IXjohDJRHu-MXppRUCKOMYhBrDGIYwxijSGJi__Ee2-m9NvPZFerDNL5iwEvwtujQRufghLamY8NXgF7iayS
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129536
crossref_primary_10_1016_j_rcim_2024_102782
crossref_primary_10_1177_09544054251327439
crossref_primary_10_1109_TASE_2024_3356255
crossref_primary_10_1016_j_engappai_2023_107458
crossref_primary_10_1109_ACCESS_2023_3293029
crossref_primary_10_1016_j_compag_2025_110344
crossref_primary_10_1016_j_cie_2024_110192
crossref_primary_10_1016_j_aei_2025_103216
crossref_primary_10_1016_j_eswa_2025_129591
crossref_primary_10_1016_j_neucom_2024_127897
crossref_primary_10_1007_s10845_023_02252_8
crossref_primary_10_1016_j_cie_2025_111361
crossref_primary_10_1080_0305215X_2025_2537241
crossref_primary_10_1177_00202940231173750
crossref_primary_10_1007_s00170_023_11755_w
crossref_primary_10_3389_fnhum_2024_1400077
crossref_primary_10_1016_j_engappai_2025_111771
crossref_primary_10_3390_pr10101944
crossref_primary_10_1016_j_knosys_2023_110663
crossref_primary_10_1016_j_swevo_2025_101950
crossref_primary_10_1016_j_swevo_2025_101852
crossref_primary_10_1109_TEM_2022_3182380
crossref_primary_10_1016_j_swevo_2024_101774
crossref_primary_10_3390_biomimetics9010035
crossref_primary_10_1016_j_jclepro_2023_136472
crossref_primary_10_1016_j_knosys_2023_110968
crossref_primary_10_1016_j_aei_2024_102647
crossref_primary_10_1109_TITS_2024_3388468
crossref_primary_10_1631_FITEE_2300795
crossref_primary_10_3390_jmse11101884
crossref_primary_10_1016_j_asoc_2023_110563
crossref_primary_10_1186_s10033_025_01247_1
crossref_primary_10_1016_j_asoc_2023_110884
crossref_primary_10_3390_app132212106
crossref_primary_10_1007_s40747_025_01828_6
crossref_primary_10_1007_s12293_023_00401_3
crossref_primary_10_1016_j_scitotenv_2022_159613
crossref_primary_10_1016_j_swevo_2024_101544
crossref_primary_10_1016_j_engappai_2025_110537
crossref_primary_10_1016_j_eswa_2023_122197
crossref_primary_10_1007_s00500_023_09016_9
Cites_doi 10.1016/j.omega.2018.01.001
10.1016/j.biosystems.2019.04.012
10.1016/j.ins.2014.08.031
10.1016/j.jclepro.2016.03.150
10.1080/0305215X.2017.1296437
10.1016/j.jclepro.2017.01.011
10.1016/j.cie.2012.10.002
10.1016/j.ejor.2015.07.017
10.1016/j.ijpe.2004.12.008
10.1016/j.ejor.2005.01.036
10.1016/j.ejor.2015.08.064
10.1016/j.ejor.2015.05.019
10.1016/J.ENG.2017.05.015
10.1016/j.asoc.2021.107654
10.1016/j.swevo.2019.100575
10.1016/j.ijpe.2012.03.034
10.1109/TASE.2015.2495328
10.1177/1729881417703571
10.1007/s10845-015-1060-6
10.1016/j.asoc.2016.11.031
10.1109/4235.996017
10.1016/j.cie.2015.01.003
10.1016/j.jmsy.2011.08.004
10.1016/j.engappai.2021.104359
10.1080/0020754032000123579
10.1080/00207540903049407
10.1007/s10845-009-0294-6
10.1080/19397030802257236
10.1016/j.cor.2017.04.004
10.1007/s11771-011-0863-7
10.1016/j.engappai.2017.04.004
10.1007/s00500-017-2885-z
10.1016/j.jclepro.2015.09.097
10.1080/00207543.2018.1444806
10.1016/j.ejor.2004.09.020
10.1016/j.ijpe.2010.07.012
10.1016/j.ejor.2008.03.051
10.1109/TII.2021.3056425
10.1016/j.eswa.2019.112902
10.1007/s11771-005-0033-x
10.1109/TEVC.2007.892759
10.1007/s00170-011-3727-2
10.1016/j.ijpe.2013.01.028
10.1016/j.ins.2014.11.036
10.1504/IJMIC.2012.046407
10.1007/s10845-005-0019-4
10.1016/j.jclepro.2013.12.024
10.1016/j.jclepro.2018.02.224
10.1016/j.eswa.2020.113348
10.1016/j.knosys.2019.07.011
10.1080/00207543.2014.910628
10.1016/j.rcim.2013.04.001
10.1177/1687814017695959
10.1016/j.jclepro.2017.10.342
10.1016/j.asoc.2012.04.032
10.1007/s10845-015-1121-x
10.1016/j.ejor.2015.04.004
10.1007/s00170-005-0223-6
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. May 11, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. May 11, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2022.108315
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_108315
S0950705122001125
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-3f65df38dc5ba5bd466bec09aba7d0acb1b5e3077ae33c2cb4ac17259a1c7c913
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788139700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:42:34 EST 2025
Sat Nov 29 07:07:48 EST 2025
Tue Nov 18 20:59:31 EST 2025
Fri Feb 23 02:40:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy efficiency
Evolutionary algorithms
Opposition-based learning
Automated guided vehicles
Multiobjective optimization
Job-shop scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-3f65df38dc5ba5bd466bec09aba7d0acb1b5e3077ae33c2cb4ac17259a1c7c913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5493-7200
PQID 2655164398
PQPubID 2035257
ParticipantIDs proquest_journals_2655164398
crossref_citationtrail_10_1016_j_knosys_2022_108315
crossref_primary_10_1016_j_knosys_2022_108315
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108315
PublicationCentury 2000
PublicationDate 2022-05-11
PublicationDateYYYYMMDD 2022-05-11
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-11
  day: 11
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Dao, Pan, Nguyen, Pan (b21) 2018; 29
Gong, Deng, Chiong (b1) 2019; 182
Le-Anh, De Koster (b15) 2006; 171
Remli, Deris, Mohamad, Omatu, Corchado (b64) 2017; 62
Che, Zeng, Lyu (b41) 2016; 129
Zheng, Xiao, Seo (b48) 2014; 52
Saidi-Mehrabad, Dehnavi-Arani, Evazabadian, Mahmoodian (b13) 2015; 86
Xu, Wu, Yin, Lin (b53) 2017; 52
Kachitvichyanukul, Sitthitham (b22) 2011; 22
(b2) 2015
Liu, Yao, Tao, Jin (b19) 2019; 25
Mansouri, Aktas, Besikci (b37) 2016; 248
E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving the Strength Pareto Evolutionary Algorithm, TIK-report, 2001.
He, Li, Chiong (b65) 2021; 111
Wu, Sun (b34) 2018; 172
Abed-alguni (b60) 2019; 17
Shrouf, Ordieres-Mer_e, García-S_anchez, Ortega-Mier (b10) 2014; 67
Yao, Lian, Yang (b16) 2014; 20
Li, He, Cao (b24) 2022
Udhayakumar, Kumanan (b52) 2012; 61
Zeng, Hong, Man, Li, Zhang, Liu (b43) 2018; 183
Che, Wu, Peng, Yan (b9) 2017; 85
L. Davis, Applying adaptive algorithms to epistatic domains, in: Proceedings of the IJCAI, 1985, pp. 162–164.
Gahm, Denz, Dirr, Tuma (b33) 2016; 248
Ding, Song, Wu (b38) 2016; 248
Abdelmaguid, Nassef, Kamal, Hassan (b49) 2004; 42
Babu, Jerald, Haq, Luxmi, Vigneswaralu (b50) 2010; 48
Lu, Gao, Li (b4) 2017; 144
Subai, Baptiste, Niel (b32) 2006; 99
Tai, Li, Liu (b17) 2017; 14
Zhang, Li (b70) 2007; 11
Lacomme, Larabi, Tchernev (b20) 2013; 143
Wu, Wu (b26) 2017; 28
Yin, Li, Gao, Lu, Zhang (b39) 2017; 9
Fang, Lin (b36) 2013; 64
Vis (b14) 2006; 170
Chiang, Lin (b27) 2013; 141
Deb, Pratap, Agarwal, Meyarivan (b66) 2002; 6
Abedi, Chiong, Noman, Zhang (b30) 2020; 157
Dai, Tang, Giret, Salido, Li (b5) 2013; 29
Shen, Yao (b28) 2015; 298
Gao, Chen, Jiang (b58) 2012; 15
Ahandani, Alavi-rad (b63) 2015; 291
Nageswararao, Rao, Rangajanardhana (b46) 2012; 1
Zeng, Che, Wu (b44) 2018; 50
Allahverdi (b54) 2015; 246
Xu, Xu, Li (b11) 2018; 56
Montgomery (b67) 2008
He, Liu, Cao, Li (b31) 2005; 12
Zhang, Chiong (b7) 2016; 112
Reddy, Rao (b51) 2006; 31
Gong, Chiong, Deng, Han, Zhang, Huang (b35) 2021; 104
Goldberg, Lingle (b57) 1985
Zhong, Xu, Klotz, Newman (b12) 2017; 3
Sarker, Omar, Kamrul-Hasan, Essam (b29) 2013; 13
Wu, Che (b6) 2019; 82
Caumond, Lacomme, Moukrim, Tchernev (b47) 2009; 199
Tizhoosh (b62) 2005
Gong, Chiong, Deng, Han, Zhang, Lin, Li (b68) 2020; 141
Wisittipanich, Kachitvichyanukul (b23) 2013; 12
Mouzon, Yildirim (b8) 2008; 1
Lin, Shinn, Gen, Hwang (b18) 2006; 17
Chaudhry, Mahmood, Shami (b45) 2011; 18
He, Chiong, Li (b25) 2022; 18
Sun, Lan, Zhao (b59) 2019; 23
He, Li, Zhang, Cao (b55) 2019; 51
Fang, Uhan, Zhao, Sutherland (b3) 2011; 30
Ding, Song, Zhang, Chiong, Wu (b40) 2016; 13
Wnętrzak, Błazej, Mackiewicz (b61) 2019; 181
Luo, Du, Huang, Chen, Li (b42) 2013; 146
Wisittipanich (10.1016/j.knosys.2022.108315_b23) 2013; 12
Kachitvichyanukul (10.1016/j.knosys.2022.108315_b22) 2011; 22
Le-Anh (10.1016/j.knosys.2022.108315_b15) 2006; 171
Fang (10.1016/j.knosys.2022.108315_b3) 2011; 30
Shen (10.1016/j.knosys.2022.108315_b28) 2015; 298
Vis (10.1016/j.knosys.2022.108315_b14) 2006; 170
Sarker (10.1016/j.knosys.2022.108315_b29) 2013; 13
He (10.1016/j.knosys.2022.108315_b65) 2021; 111
Goldberg (10.1016/j.knosys.2022.108315_b57) 1985
Shrouf (10.1016/j.knosys.2022.108315_b10) 2014; 67
He (10.1016/j.knosys.2022.108315_b55) 2019; 51
Gong (10.1016/j.knosys.2022.108315_b1) 2019; 182
Chaudhry (10.1016/j.knosys.2022.108315_b45) 2011; 18
Abdelmaguid (10.1016/j.knosys.2022.108315_b49) 2004; 42
Chiang (10.1016/j.knosys.2022.108315_b27) 2013; 141
He (10.1016/j.knosys.2022.108315_b31) 2005; 12
Li (10.1016/j.knosys.2022.108315_b24) 2022
Zhang (10.1016/j.knosys.2022.108315_b70) 2007; 11
Ahandani (10.1016/j.knosys.2022.108315_b63) 2015; 291
Fang (10.1016/j.knosys.2022.108315_b36) 2013; 64
Che (10.1016/j.knosys.2022.108315_b9) 2017; 85
Babu (10.1016/j.knosys.2022.108315_b50) 2010; 48
Mouzon (10.1016/j.knosys.2022.108315_b8) 2008; 1
Dao (10.1016/j.knosys.2022.108315_b21) 2018; 29
Allahverdi (10.1016/j.knosys.2022.108315_b54) 2015; 246
Zheng (10.1016/j.knosys.2022.108315_b48) 2014; 52
Xu (10.1016/j.knosys.2022.108315_b11) 2018; 56
Liu (10.1016/j.knosys.2022.108315_b19) 2019; 25
Remli (10.1016/j.knosys.2022.108315_b64) 2017; 62
Udhayakumar (10.1016/j.knosys.2022.108315_b52) 2012; 61
Tai (10.1016/j.knosys.2022.108315_b17) 2017; 14
Xu (10.1016/j.knosys.2022.108315_b53) 2017; 52
Abedi (10.1016/j.knosys.2022.108315_b30) 2020; 157
(10.1016/j.knosys.2022.108315_b2) 2015
Wnętrzak (10.1016/j.knosys.2022.108315_b61) 2019; 181
Tizhoosh (10.1016/j.knosys.2022.108315_b62) 2005
10.1016/j.knosys.2022.108315_b56
Dai (10.1016/j.knosys.2022.108315_b5) 2013; 29
Reddy (10.1016/j.knosys.2022.108315_b51) 2006; 31
Sun (10.1016/j.knosys.2022.108315_b59) 2019; 23
Subai (10.1016/j.knosys.2022.108315_b32) 2006; 99
Ding (10.1016/j.knosys.2022.108315_b38) 2016; 248
Ding (10.1016/j.knosys.2022.108315_b40) 2016; 13
Wu (10.1016/j.knosys.2022.108315_b34) 2018; 172
Gong (10.1016/j.knosys.2022.108315_b68) 2020; 141
Che (10.1016/j.knosys.2022.108315_b41) 2016; 129
Saidi-Mehrabad (10.1016/j.knosys.2022.108315_b13) 2015; 86
He (10.1016/j.knosys.2022.108315_b25) 2022; 18
Lu (10.1016/j.knosys.2022.108315_b4) 2017; 144
Zeng (10.1016/j.knosys.2022.108315_b43) 2018; 183
Yin (10.1016/j.knosys.2022.108315_b39) 2017; 9
Zhong (10.1016/j.knosys.2022.108315_b12) 2017; 3
Nageswararao (10.1016/j.knosys.2022.108315_b46) 2012; 1
Gao (10.1016/j.knosys.2022.108315_b58) 2012; 15
Abed-alguni (10.1016/j.knosys.2022.108315_b60) 2019; 17
Gong (10.1016/j.knosys.2022.108315_b35) 2021; 104
Wu (10.1016/j.knosys.2022.108315_b6) 2019; 82
Deb (10.1016/j.knosys.2022.108315_b66) 2002; 6
10.1016/j.knosys.2022.108315_b69
Wu (10.1016/j.knosys.2022.108315_b26) 2017; 28
Gahm (10.1016/j.knosys.2022.108315_b33) 2016; 248
Zeng (10.1016/j.knosys.2022.108315_b44) 2018; 50
Zhang (10.1016/j.knosys.2022.108315_b7) 2016; 112
Lacomme (10.1016/j.knosys.2022.108315_b20) 2013; 143
Mansouri (10.1016/j.knosys.2022.108315_b37) 2016; 248
Yao (10.1016/j.knosys.2022.108315_b16) 2014; 20
Lin (10.1016/j.knosys.2022.108315_b18) 2006; 17
Luo (10.1016/j.knosys.2022.108315_b42) 2013; 146
Caumond (10.1016/j.knosys.2022.108315_b47) 2009; 199
Montgomery (10.1016/j.knosys.2022.108315_b67) 2008
References_xml – volume: 157
  year: 2020
  ident: b30
  article-title: A multi-population, multi-objective memetic algorithm for energy-efficient job-shop scheduling with deteriorating machines
  publication-title: Expert Syst. Appl.
– volume: 172
  start-page: 3249
  year: 2018
  end-page: 3264
  ident: b34
  article-title: A green scheduling algorithm for flexible job shop with energy-saving measures
  publication-title: J. Clean. Prod.
– volume: 82
  start-page: 155
  year: 2019
  end-page: 165
  ident: b6
  article-title: A memetic differential evolution algorithm for energy-efficient parallel machine scheduling
  publication-title: Omega
– volume: 1
  start-page: 10
  year: 2012
  end-page: 20
  ident: b46
  article-title: Integration of strategic tactical and operational level planning of scheduling in FMS by metaheuristic algorithm
  publication-title: Int. J. Adv. Eng. Res. Stud.
– volume: 52
  start-page: 5748
  year: 2014
  end-page: 5763
  ident: b48
  article-title: A tabu search algorithm for simultaneous machine/AGV scheduling problem
  publication-title: Int. J. Prod. Res.
– volume: 99
  start-page: 74
  year: 2006
  end-page: 87
  ident: b32
  article-title: Scheduling issues for environmentally responsible manufacturing: the case of hoist scheduling in an electroplating line
  publication-title: Int. J. Prod. Econ.
– volume: 248
  start-page: 772
  year: 2016
  end-page: 788
  ident: b37
  article-title: Green scheduling of a two-machine flow-shop: trade-off between makespan and energy consumption
  publication-title: European J. Oper. Res.
– volume: 181
  start-page: 44
  year: 2019
  end-page: 50
  ident: b61
  article-title: Optimization of the standard genetic code in terms of two mutation types: point mutations and frameshifts
  publication-title: BioSystems
– volume: 29
  start-page: 418
  year: 2013
  end-page: 429
  ident: b5
  article-title: Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 86
  start-page: 2
  year: 2015
  end-page: 13
  ident: b13
  article-title: An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs
  publication-title: Comput. Ind. Eng.
– volume: 141
  start-page: 87
  year: 2013
  end-page: 98
  ident: b27
  article-title: A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling
  publication-title: Int. J. Prod. Econ.
– volume: 28
  start-page: 1441
  year: 2017
  end-page: 1457
  ident: b26
  article-title: An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem
  publication-title: J. Int. Manuf.
– volume: 56
  start-page: 2941
  year: 2018
  end-page: 2962
  ident: b11
  article-title: Industry 4.0: state of the art and future trends
  publication-title: Int. J. Prod. Res.
– volume: 141
  year: 2020
  ident: b68
  article-title: Energy-efficient flexible flow shop scheduling with worker flexibility
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 234
  year: 2011
  end-page: 240
  ident: b3
  article-title: A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction
  publication-title: J. Manuf. Syst.
– volume: 25
  start-page: 2219
  year: 2019
  end-page: 2236
  ident: b19
  article-title: Improved flower pollination algorithm for job shop scheduling problems integrated with AGVs
  publication-title: Comput. Integr. Manuf. Syst.
– year: 2022
  ident: b24
  article-title: Many-objective evolutionary algorithm with reference point-based fuzzy correlation entropy for energy-efficient job shop scheduling with limited workers
  publication-title: IEEE Trans. Cybern.
– volume: 85
  start-page: 172
  year: 2017
  end-page: 183
  ident: b9
  article-title: Energy-efficient bi-objective single-machine scheduling with power-down mechanism
  publication-title: Comput. Oper. Res.
– volume: 20
  start-page: 1490
  year: 2014
  end-page: 1498
  ident: b16
  article-title: Wisdom manufacturing: new humans-computers-things collaborative manufacturing model
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 104
  year: 2021
  ident: b35
  article-title: Energy-efficient production scheduling through machine on/off control during preventive maintenance
  publication-title: Eng. Appl. Artif. Intell.
– volume: 64
  start-page: 224
  year: 2013
  end-page: 234
  ident: b36
  article-title: Parallel-machine scheduling to minimise tardiness penalty and power cost
  publication-title: Comput. Ind. Eng.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b70
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 248
  start-page: 758
  year: 2016
  end-page: 771
  ident: b38
  article-title: Carbon-efficient scheduling of flow shops by multi-objective optimization
  publication-title: European J. Oper. Res.
– volume: 246
  start-page: 345
  year: 2015
  end-page: 378
  ident: b54
  article-title: The third comprehensive survey on scheduling problems with setup times/costs
  publication-title: European J. Oper. Res.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 21
  ident: b39
  article-title: Energy-efficient job shop scheduling problem with variable spindle speed using a novel multi-objective algorithm
  publication-title: Adv. Mech. Eng.
– volume: 13
  start-page: 1138
  year: 2016
  end-page: 1154
  ident: b40
  article-title: Parallel machine scheduling under time-of-use electricity prices: new models and optimization approaches
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 112
  start-page: 3361
  year: 2016
  end-page: 3375
  ident: b7
  article-title: Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption
  publication-title: J. Clean. Prod.
– volume: 170
  start-page: 677
  year: 2006
  end-page: 709
  ident: b14
  article-title: Survey of research in the design and control of automated guided vehicle systems
  publication-title: European J. Oper. Res.
– volume: 182
  year: 2019
  ident: b1
  article-title: An effective memetic algorithm for multi-objective job-shop scheduling
  publication-title: Knowl.-Based Syst.
– volume: 67
  start-page: 197
  year: 2014
  end-page: 207
  ident: b10
  article-title: Optimizing the production scheduling of a single machine to minimise total energy consumption costs
  publication-title: J. Clean. Prod.
– volume: 50
  start-page: 19
  year: 2018
  end-page: 36
  ident: b44
  article-title: Bi-objective scheduling on uniform parallel machines considering electricity cost
  publication-title: Eng. Optim.
– reference: E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving the Strength Pareto Evolutionary Algorithm, TIK-report, 2001.
– volume: 248
  start-page: 744
  year: 2016
  end-page: 757
  ident: b33
  article-title: Energy-efficient scheduling in manufacturing companies: a review and research framework
  publication-title: European J. Oper. Res.
– reference: L. Davis, Applying adaptive algorithms to epistatic domains, in: Proceedings of the IJCAI, 1985, pp. 162–164.
– volume: 61
  start-page: 621
  year: 2012
  end-page: 635
  ident: b52
  article-title: Integrated scheduling of flexible manufacturing system using evolutionary algorithms
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 171
  start-page: 1
  year: 2006
  end-page: 23
  ident: b15
  article-title: A review of design and control of automated guided vehicle systems
  publication-title: European J. Oper. Res.
– volume: 48
  start-page: 4683
  year: 2010
  end-page: 4699
  ident: b50
  article-title: Scheduling of machines and automated guided vehicles in FMS using differential evolution
  publication-title: Int. J. Prod. Res.
– volume: 22
  start-page: 355
  year: 2011
  end-page: 365
  ident: b22
  article-title: A two-stage genetic algorithm for multi-objective job shop scheduling problems
  publication-title: J. Int. Manuf.
– volume: 52
  start-page: 39
  year: 2017
  end-page: 47
  ident: b53
  article-title: An iterated local search for the multi-objective permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 451
  year: 2018
  end-page: 462
  ident: b21
  article-title: Parallel bat algorithm for optimizing makespan in job shop scheduling problems
  publication-title: J. Int. Manuf.
– volume: 183
  start-page: 925
  year: 2018
  end-page: 939
  ident: b43
  article-title: Multi-object optimization of flexible flow shop scheduling with batch process-consideration total electricity consumption and material wastage
  publication-title: J. Clean. Prod.
– volume: 17
  start-page: 465
  year: 2006
  end-page: 477
  ident: b18
  article-title: Network model and effective evolutionary approach for AGV dispatching in manufacturing system
  publication-title: J. Int. Manuf.
– volume: 1
  start-page: 105
  year: 2008
  end-page: 116
  ident: b8
  article-title: A framework to minimise total energy consumption and total tardiness on a single machine
  publication-title: Int. J. Sustain. Eng.
– volume: 144
  start-page: 228
  year: 2017
  end-page: 238
  ident: b4
  article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm
  publication-title: J. Clean. Prod.
– volume: 18
  start-page: 600
  year: 2022
  end-page: 610
  ident: b25
  article-title: Multiobjective optimization of energy-efficient job-shop scheduling with dynamic reference point-based fuzzy relative entropy
  publication-title: IEEE Trans. Ind. Inf.
– volume: 42
  start-page: 267
  year: 2004
  end-page: 281
  ident: b49
  article-title: A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles
  publication-title: Int. J. Prod. Res.
– volume: 15
  start-page: 284
  year: 2012
  end-page: 289
  ident: b58
  article-title: Multi-objective differential evolution algorithm based on the non-uniform mutation
  publication-title: Int. J. Model. Identif. Control
– volume: 12
  start-page: 167
  year: 2005
  end-page: 171
  ident: b31
  article-title: A bi-objective model for job-shop scheduling problem to minimise both energy consumption and makespan
  publication-title: J. Cent. South Univ. Technol.
– volume: 17
  start-page: 57
  year: 2019
  end-page: 82
  ident: b60
  article-title: Island-based cuckoo search with highly disruptive polynomial mutation
  publication-title: Int. J. Artif. Intell.
– volume: 3
  start-page: 616
  year: 2017
  end-page: 630
  ident: b12
  article-title: Intelligent manufacturing in the context of industry 4.0: A review
  publication-title: Engineering
– volume: 298
  start-page: 198
  year: 2015
  end-page: 224
  ident: b28
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Inform. Sci.
– volume: 13
  start-page: 1440
  year: 2013
  end-page: 1447
  ident: b29
  article-title: Hybrid evolutionary algorithm for job scheduling under machine maintenance
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 1
  year: 2017
  end-page: 9
  ident: b17
  article-title: Autonomous exploration of mobile robots through deep neural networks
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 143
  start-page: 24
  year: 2013
  end-page: 34
  ident: b20
  article-title: Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles
  publication-title: Int. J. Prod. Econ.
– year: 1985
  ident: b57
  article-title: Alleles, loci, and the traveling salesman
  publication-title: Proceedings of the International Conference on Genetic Algorithms and their Applications
– volume: 51
  year: 2019
  ident: b55
  article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
– year: 2008
  ident: b67
  article-title: Design & Analysis of Experiments
– volume: 12
  start-page: 151
  year: 2013
  end-page: 160
  ident: b23
  article-title: An efficient PSO algorithm for finding pareto-frontier in multi-objective job shop scheduling problems
  publication-title: Ind. Eng. Manage. Syst.
– volume: 23
  start-page: 1615
  year: 2019
  end-page: 1642
  ident: b59
  article-title: Differential evolution with Gaussian mutation and dynamic parameter adjustment
  publication-title: Soft Comput.
– volume: 146
  start-page: 423
  year: 2013
  end-page: 439
  ident: b42
  article-title: Hybrid flow shop scheduling considering machine electricity consumption cost
  publication-title: Int. J. Prod. Econ.
– year: 2015
  ident: b2
  article-title: World Energy Investment Outlook
– year: 2005
  ident: b62
  article-title: Opposition-based learning: a new scheme for machine intelligence
  publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06)
– volume: 62
  start-page: 164
  year: 2017
  end-page: 180
  ident: b64
  article-title: An enhanced scatter search with combined opposition-based learning for parameter estimation in large-scale kinetic models of biochemical systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 199
  start-page: 706
  year: 2009
  end-page: 722
  ident: b47
  article-title: An MILP for scheduling problems in an FMS with one vehicle
  publication-title: European J. Oper. Res.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b66
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 1473
  year: 2011
  end-page: 1486
  ident: b45
  article-title: Simultaneous scheduling of machines and automated guided vehicles in flexible manufacturing systems using genetic algorithms
  publication-title: J. Cent. South Univ. Technol.
– volume: 31
  start-page: 602
  year: 2006
  end-page: 613
  ident: b51
  article-title: A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 129
  start-page: 565
  year: 2016
  end-page: 577
  ident: b41
  article-title: An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs
  publication-title: J. Clean. Prod.
– volume: 111
  year: 2021
  ident: b65
  article-title: Optimising the job-shop scheduling problem using a multi-objective Jaya algorithm
  publication-title: Appl. Soft Comput.
– volume: 291
  start-page: 19
  year: 2015
  end-page: 42
  ident: b63
  article-title: Opposition-based learning in shuffled frog leaping: an application for parameter identification
  publication-title: Inform. Sci.
– volume: 82
  start-page: 155
  year: 2019
  ident: 10.1016/j.knosys.2022.108315_b6
  article-title: A memetic differential evolution algorithm for energy-efficient parallel machine scheduling
  publication-title: Omega
  doi: 10.1016/j.omega.2018.01.001
– volume: 181
  start-page: 44
  year: 2019
  ident: 10.1016/j.knosys.2022.108315_b61
  article-title: Optimization of the standard genetic code in terms of two mutation types: point mutations and frameshifts
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2019.04.012
– volume: 291
  start-page: 19
  issue: 291
  year: 2015
  ident: 10.1016/j.knosys.2022.108315_b63
  article-title: Opposition-based learning in shuffled frog leaping: an application for parameter identification
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.08.031
– volume: 129
  start-page: 565
  year: 2016
  ident: 10.1016/j.knosys.2022.108315_b41
  article-title: An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.03.150
– volume: 50
  start-page: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2022.108315_b44
  article-title: Bi-objective scheduling on uniform parallel machines considering electricity cost
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2017.1296437
– volume: 144
  start-page: 228
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b4
  article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.01.011
– volume: 64
  start-page: 224
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2022.108315_b36
  article-title: Parallel-machine scheduling to minimise tardiness penalty and power cost
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2012.10.002
– volume: 248
  start-page: 744
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2022.108315_b33
  article-title: Energy-efficient scheduling in manufacturing companies: a review and research framework
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.07.017
– volume: 1
  start-page: 10
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2022.108315_b46
  article-title: Integration of strategic tactical and operational level planning of scheduling in FMS by metaheuristic algorithm
  publication-title: Int. J. Adv. Eng. Res. Stud.
– volume: 99
  start-page: 74
  issue: 1–2
  year: 2006
  ident: 10.1016/j.knosys.2022.108315_b32
  article-title: Scheduling issues for environmentally responsible manufacturing: the case of hoist scheduling in an electroplating line
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2004.12.008
– volume: 171
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.knosys.2022.108315_b15
  article-title: A review of design and control of automated guided vehicle systems
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.01.036
– volume: 17
  start-page: 57
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.108315_b60
  article-title: Island-based cuckoo search with highly disruptive polynomial mutation
  publication-title: Int. J. Artif. Intell.
– volume: 25
  start-page: 2219
  issue: 9
  year: 2019
  ident: 10.1016/j.knosys.2022.108315_b19
  article-title: Improved flower pollination algorithm for job shop scheduling problems integrated with AGVs
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 248
  start-page: 772
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2022.108315_b37
  article-title: Green scheduling of a two-machine flow-shop: trade-off between makespan and energy consumption
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.08.064
– volume: 248
  start-page: 758
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2022.108315_b38
  article-title: Carbon-efficient scheduling of flow shops by multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.05.019
– volume: 3
  start-page: 616
  issue: 5
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b12
  article-title: Intelligent manufacturing in the context of industry 4.0: A review
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.05.015
– volume: 111
  year: 2021
  ident: 10.1016/j.knosys.2022.108315_b65
  article-title: Optimising the job-shop scheduling problem using a multi-objective Jaya algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107654
– volume: 20
  start-page: 1490
  issue: 6
  year: 2014
  ident: 10.1016/j.knosys.2022.108315_b16
  article-title: Wisdom manufacturing: new humans-computers-things collaborative manufacturing model
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 51
  year: 2019
  ident: 10.1016/j.knosys.2022.108315_b55
  article-title: A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100575
– volume: 141
  start-page: 87
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2022.108315_b27
  article-title: A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2012.03.034
– volume: 13
  start-page: 1138
  year: 2016
  ident: 10.1016/j.knosys.2022.108315_b40
  article-title: Parallel machine scheduling under time-of-use electricity prices: new models and optimization approaches
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2495328
– volume: 14
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b17
  article-title: Autonomous exploration of mobile robots through deep neural networks
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881417703571
– volume: 28
  start-page: 1441
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b26
  article-title: An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem
  publication-title: J. Int. Manuf.
  doi: 10.1007/s10845-015-1060-6
– volume: 52
  start-page: 39
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b53
  article-title: An iterated local search for the multi-objective permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.031
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.knosys.2022.108315_b66
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 86
  start-page: 2
  year: 2015
  ident: 10.1016/j.knosys.2022.108315_b13
  article-title: An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.01.003
– volume: 30
  start-page: 234
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2022.108315_b3
  article-title: A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2011.08.004
– volume: 104
  year: 2021
  ident: 10.1016/j.knosys.2022.108315_b35
  article-title: Energy-efficient production scheduling through machine on/off control during preventive maintenance
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104359
– volume: 42
  start-page: 267
  issue: 2
  year: 2004
  ident: 10.1016/j.knosys.2022.108315_b49
  article-title: A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/0020754032000123579
– volume: 48
  start-page: 4683
  issue: 16
  year: 2010
  ident: 10.1016/j.knosys.2022.108315_b50
  article-title: Scheduling of machines and automated guided vehicles in FMS using differential evolution
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540903049407
– volume: 22
  start-page: 355
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2022.108315_b22
  article-title: A two-stage genetic algorithm for multi-objective job shop scheduling problems
  publication-title: J. Int. Manuf.
  doi: 10.1007/s10845-009-0294-6
– year: 1985
  ident: 10.1016/j.knosys.2022.108315_b57
  article-title: Alleles, loci, and the traveling salesman
– year: 2008
  ident: 10.1016/j.knosys.2022.108315_b67
– volume: 1
  start-page: 105
  issue: 2
  year: 2008
  ident: 10.1016/j.knosys.2022.108315_b8
  article-title: A framework to minimise total energy consumption and total tardiness on a single machine
  publication-title: Int. J. Sustain. Eng.
  doi: 10.1080/19397030802257236
– volume: 85
  start-page: 172
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b9
  article-title: Energy-efficient bi-objective single-machine scheduling with power-down mechanism
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2017.04.004
– volume: 18
  start-page: 1473
  year: 2011
  ident: 10.1016/j.knosys.2022.108315_b45
  article-title: Simultaneous scheduling of machines and automated guided vehicles in flexible manufacturing systems using genetic algorithms
  publication-title: J. Cent. South Univ. Technol.
  doi: 10.1007/s11771-011-0863-7
– volume: 62
  start-page: 164
  issue: C
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b64
  article-title: An enhanced scatter search with combined opposition-based learning for parameter estimation in large-scale kinetic models of biochemical systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.04.004
– volume: 23
  start-page: 1615
  issue: 5
  year: 2019
  ident: 10.1016/j.knosys.2022.108315_b59
  article-title: Differential evolution with Gaussian mutation and dynamic parameter adjustment
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2885-z
– volume: 12
  start-page: 151
  year: 2013
  ident: 10.1016/j.knosys.2022.108315_b23
  article-title: An efficient PSO algorithm for finding pareto-frontier in multi-objective job shop scheduling problems
  publication-title: Ind. Eng. Manage. Syst.
– ident: 10.1016/j.knosys.2022.108315_b56
– year: 2005
  ident: 10.1016/j.knosys.2022.108315_b62
  article-title: Opposition-based learning: a new scheme for machine intelligence
– volume: 112
  start-page: 3361
  year: 2016
  ident: 10.1016/j.knosys.2022.108315_b7
  article-title: Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.09.097
– volume: 56
  start-page: 2941
  issue: 8
  year: 2018
  ident: 10.1016/j.knosys.2022.108315_b11
  article-title: Industry 4.0: state of the art and future trends
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1444806
– volume: 170
  start-page: 677
  year: 2006
  ident: 10.1016/j.knosys.2022.108315_b14
  article-title: Survey of research in the design and control of automated guided vehicle systems
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2004.09.020
– volume: 143
  start-page: 24
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2022.108315_b20
  article-title: Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2010.07.012
– volume: 199
  start-page: 706
  issue: 3
  year: 2009
  ident: 10.1016/j.knosys.2022.108315_b47
  article-title: An MILP for scheduling problems in an FMS with one vehicle
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2008.03.051
– volume: 18
  start-page: 600
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2022.108315_b25
  article-title: Multiobjective optimization of energy-efficient job-shop scheduling with dynamic reference point-based fuzzy relative entropy
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3056425
– volume: 141
  year: 2020
  ident: 10.1016/j.knosys.2022.108315_b68
  article-title: Energy-efficient flexible flow shop scheduling with worker flexibility
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112902
– volume: 12
  start-page: 167
  issue: 2
  year: 2005
  ident: 10.1016/j.knosys.2022.108315_b31
  article-title: A bi-objective model for job-shop scheduling problem to minimise both energy consumption and makespan
  publication-title: J. Cent. South Univ. Technol.
  doi: 10.1007/s11771-005-0033-x
– year: 2015
  ident: 10.1016/j.knosys.2022.108315_b2
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.knosys.2022.108315_b70
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 61
  start-page: 621
  year: 2012
  ident: 10.1016/j.knosys.2022.108315_b52
  article-title: Integrated scheduling of flexible manufacturing system using evolutionary algorithms
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3727-2
– volume: 146
  start-page: 423
  issue: 2
  year: 2013
  ident: 10.1016/j.knosys.2022.108315_b42
  article-title: Hybrid flow shop scheduling considering machine electricity consumption cost
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2013.01.028
– volume: 298
  start-page: 198
  year: 2015
  ident: 10.1016/j.knosys.2022.108315_b28
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.11.036
– volume: 15
  start-page: 284
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2022.108315_b58
  article-title: Multi-objective differential evolution algorithm based on the non-uniform mutation
  publication-title: Int. J. Model. Identif. Control
  doi: 10.1504/IJMIC.2012.046407
– volume: 17
  start-page: 465
  issue: 4
  year: 2006
  ident: 10.1016/j.knosys.2022.108315_b18
  article-title: Network model and effective evolutionary approach for AGV dispatching in manufacturing system
  publication-title: J. Int. Manuf.
  doi: 10.1007/s10845-005-0019-4
– volume: 67
  start-page: 197
  year: 2014
  ident: 10.1016/j.knosys.2022.108315_b10
  article-title: Optimizing the production scheduling of a single machine to minimise total energy consumption costs
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.12.024
– volume: 183
  start-page: 925
  year: 2018
  ident: 10.1016/j.knosys.2022.108315_b43
  article-title: Multi-object optimization of flexible flow shop scheduling with batch process-consideration total electricity consumption and material wastage
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.02.224
– volume: 157
  year: 2020
  ident: 10.1016/j.knosys.2022.108315_b30
  article-title: A multi-population, multi-objective memetic algorithm for energy-efficient job-shop scheduling with deteriorating machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113348
– volume: 182
  year: 2019
  ident: 10.1016/j.knosys.2022.108315_b1
  article-title: An effective memetic algorithm for multi-objective job-shop scheduling
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.07.011
– volume: 52
  start-page: 5748
  issue: 19
  year: 2014
  ident: 10.1016/j.knosys.2022.108315_b48
  article-title: A tabu search algorithm for simultaneous machine/AGV scheduling problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.910628
– volume: 29
  start-page: 418
  issue: 5
  year: 2013
  ident: 10.1016/j.knosys.2022.108315_b5
  article-title: Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2013.04.001
– year: 2022
  ident: 10.1016/j.knosys.2022.108315_b24
  article-title: Many-objective evolutionary algorithm with reference point-based fuzzy correlation entropy for energy-efficient job shop scheduling with limited workers
  publication-title: IEEE Trans. Cybern.
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2022.108315_b39
  article-title: Energy-efficient job shop scheduling problem with variable spindle speed using a novel multi-objective algorithm
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814017695959
– volume: 172
  start-page: 3249
  year: 2018
  ident: 10.1016/j.knosys.2022.108315_b34
  article-title: A green scheduling algorithm for flexible job shop with energy-saving measures
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.10.342
– volume: 13
  start-page: 1440
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2022.108315_b29
  article-title: Hybrid evolutionary algorithm for job scheduling under machine maintenance
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.04.032
– volume: 29
  start-page: 451
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2022.108315_b21
  article-title: Parallel bat algorithm for optimizing makespan in job shop scheduling problems
  publication-title: J. Int. Manuf.
  doi: 10.1007/s10845-015-1121-x
– volume: 246
  start-page: 345
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2022.108315_b54
  article-title: The third comprehensive survey on scheduling problems with setup times/costs
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.04.004
– ident: 10.1016/j.knosys.2022.108315_b69
– volume: 31
  start-page: 602
  year: 2006
  ident: 10.1016/j.knosys.2022.108315_b51
  article-title: A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0223-6
SSID ssj0002218
Score 2.5183904
Snippet Increasing energy shortages and environmental pollution have made energy efficiency an urgent concern in manufacturing plants. Most studies looking into...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108315
SubjectTerms Algorithms
Automated guided vehicles
Automation
Decoding
Encoding
Encoding-Decoding
Energy consumption
Energy efficiency
Evolutionary algorithms
Experiments
Exploitation
Genetic algorithms
Idling
Job shops
Job-shop scheduling
Learning strategies
Machinery
Manufacturing
Multiobjective optimization
Opposition-based learning
Pollution
Process engineering
Production
Production scheduling
Sequences
Shortages
Transportation
Work environment
Title A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles
URI https://dx.doi.org/10.1016/j.knosys.2022.108315
https://www.proquest.com/docview/2655164398
Volume 243
WOSCitedRecordID wos000788139700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohCQXvgVrlydv08RlVRAalCtIjcrN31unGa2lVqR-WH9Hf0LzL78NpthApIXOxoY3uTnS8zs5NvZhD6wAPGw4IRTxaCegEvQA9GRHq5gk8I-rAgTDebiI-Oktks_Toa3XS5MOtlXFXJ1VV68V9FDWMgbJU6-xfidg-FAXgNQocjiB2OfyT4qSEJ1nxhdNmuXNv5FEGOLU_rVdnMzw19UsxLqUMK0uQASl1RQqdjlpq8lZvqsrcT4lyNCUtdd6xE1jb1uR4_bcscTms517y7oQ_8pQvjecqE5raYtPPtD03r53LROtzuz0vLHP7GfsJC5o5GpLkIP2RVSGuBdWZGrjsV2_ybsr3cPYa1YcMAB-yNVW3UPsCxmXljw5e-F_u2WK00yjuJYbcQ-OlQuxNTBWrDUpigxWLvrKrha-6piRXfkprk0js1uI_VdGo2oiho4BM-QFskDtNkjLamnw5mn53xJ0SHlN3H67I1NaVwc67feUN3_ALt7Jw8RY_tLgVPDbqeoZGsnqMnXQcQbA3CC3Q9xbfBhodgww5sGMCGHdiwARvuwYbLCvdgw0Ow4R5sWIENd2DDDmzYgA13YHuJvn88ONk_9GyjD09QGjQeLaIwL2iSi5CzkOdBFIFq8VPGWZz7TPAJDyUYo5hJSgURoGAEON5hyiYiFumEvkLjqq7ka4TB31etZHgRiCRgMmAkDQtf8iBhExon_jai3YJnwlbBV81YlllHd1xkRkyZElNmxLSNPHfXhakCc8_1cSfLzHqyxkPNAH733LnTiT6zSgXej9Tf2bB1SN7884Pfokf9j2sHjZtVK9-hh2LdlJer9xbGvwCXNdun
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiobjective+evolutionary+algorithm+for+achieving+energy+efficiency+in+production+environments+integrated+with+multiple+automated+guided+vehicles&rft.jtitle=Knowledge-based+systems&rft.au=He%2C+Lijun&rft.au=Chiong%2C+Raymond&rft.au=Li%2C+Wenfeng&rft.au=Budhi%2C+Gregorius+Satia&rft.date=2022-05-11&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=243&rft_id=info:doi/10.1016%2Fj.knosys.2022.108315&rft.externalDocID=S0950705122001125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon