A generalized Weierstrass elliptic function expansion method for solving some nonlinear partial differential equations
The present paper deals with families of non-trivial solutions of the equation ( d d ξ w ) 2 = P w 4 ( ξ ) + Q w 2 ( ξ ) + R . On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equation...
Uloženo v:
| Vydáno v: | Computers & mathematics with applications (1987) Ročník 58; číslo 9; s. 1725 - 1735 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2009
|
| Témata: | |
| ISSN: | 0898-1221, 1873-7668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The present paper deals with families of non-trivial solutions of the equation
(
d
d
ξ
w
)
2
=
P
w
4
(
ξ
)
+
Q
w
2
(
ξ
)
+
R
. On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equations (NLPDEs). Subsequently, many new and more general exact solutions in terms of the Weierstrass elliptic function
℘
(
ξ
;
g
2
,
g
3
)
are obtained. The method can be applied to other NLPDEs in mathematical physics. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/j.camwa.2009.05.025 |