A generalized Weierstrass elliptic function expansion method for solving some nonlinear partial differential equations

The present paper deals with families of non-trivial solutions of the equation ( d d ξ w ) 2 = P w 4 ( ξ ) + Q w 2 ( ξ ) + R . On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equation...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & mathematics with applications (1987) Ročník 58; číslo 9; s. 1725 - 1735
Hlavní autori: Saied, E.A., Abd El-Rahman, Reda G., Ghonamy, Marwa I.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2009
Predmet:
ISSN:0898-1221, 1873-7668
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The present paper deals with families of non-trivial solutions of the equation ( d d ξ w ) 2 = P w 4 ( ξ ) + Q w 2 ( ξ ) + R . On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equations (NLPDEs). Subsequently, many new and more general exact solutions in terms of the Weierstrass elliptic function ℘ ( ξ ; g 2 , g 3 ) are obtained. The method can be applied to other NLPDEs in mathematical physics.
AbstractList The present paper deals with families of non-trivial solutions of the equation (ddxw)(2)=Pw(4)(x)+Qw(2)(x)+R. On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equations (NLPDEs). Subsequently, many new and more general exact solutions in terms of the Weierstrass elliptic function ?(x;g(2),g(3)) are obtained. The method can be applied to other NLPDEs in mathematical physics.
The present paper deals with families of non-trivial solutions of the equation ( d d ξ w ) 2 = P w 4 ( ξ ) + Q w 2 ( ξ ) + R . On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equations (NLPDEs). Subsequently, many new and more general exact solutions in terms of the Weierstrass elliptic function ℘ ( ξ ; g 2 , g 3 ) are obtained. The method can be applied to other NLPDEs in mathematical physics.
Author Ghonamy, Marwa I.
Saied, E.A.
Abd El-Rahman, Reda G.
Author_xml – sequence: 1
  givenname: E.A.
  surname: Saied
  fullname: Saied, E.A.
– sequence: 2
  givenname: Reda G.
  surname: Abd El-Rahman
  fullname: Abd El-Rahman, Reda G.
– sequence: 3
  givenname: Marwa I.
  surname: Ghonamy
  fullname: Ghonamy, Marwa I.
  email: marwamath@yahoo.com
BookMark eNqFkE1P3DAQhi1EpS7b_oJefOotqe0kdnLoASE-KiFxAfVoOc4YvErsYHuXj1-Ps8uJA5xmRppnNO9zgo6dd4DQL0pKSij_sym1mp5UyQjpStKUhDVHaEVbURWC8_YYrUjbtQVljH5HJzFuCCF1xcgK7U7xPTgIarSvMOD_YCHEFFSMGMbRzslqbLZOJ-sdhudZubh0E6QHP2DjA45-3Fl3n-sEOP81Wgcq4FmFZNWIB2sMBHD7AR63arkUf6BvRo0Rfr7XNbq7OL89uyquby7_nZ1eF7qq6lQw0N0gGBFtflfVVAvgqm0GzkXV1WAM6Xum2wYarqkSghvR97zRfUdy1o5Va_T7cHcO_nELMcnJRp2TKQd-G2VVt6JZXKxRdVjUwccYwMg52EmFF0mJXBzLjdw7lotjSRqZHWeq-0Bpm_YJs0I7fsH-PbCQ8--ydhm1BadhsAF0koO3n_Jv5n-eUw
CitedBy_id crossref_primary_10_1007_s11071_023_09023_3
crossref_primary_10_1007_s11082_023_04847_0
crossref_primary_10_1038_s41598_025_06806_z
crossref_primary_10_1007_s11082_023_05985_1
crossref_primary_10_1007_s11071_024_09555_2
crossref_primary_10_1134_S0965542523080067
crossref_primary_10_1140_epjp_s13360_023_04105_y
crossref_primary_10_3390_math13071029
crossref_primary_10_1155_2021_5564162
Cites_doi 10.1143/PTP.114.533
10.1088/1009-1963/12/12/001
10.1016/j.chaos.2006.09.030
10.1016/S0375-9601(97)00618-X
10.1016/S0375-9601(01)00161-X
10.1016/j.physleta.2006.08.068
10.1016/j.chaos.2005.01.039
10.1016/j.chaos.2004.11.028
10.1016/0167-2789(89)90040-7
10.1016/0375-9601(96)00103-X
10.1143/JPSJ.57.2936
10.1103/PhysRevE.55.962
10.1016/0010-4655(96)00104-X
10.1016/j.physd.2004.10.011
10.1016/j.cnsns.2004.07.001
10.1016/S0096-3003(00)00076-X
10.1016/j.physleta.2004.01.056
10.1016/S0375-9601(97)00193-X
10.1016/j.chaos.2004.11.026
10.1016/S0375-9601(02)00669-2
10.1016/j.chaos.2003.10.028
10.1016/j.chaos.2005.08.189
10.1016/j.chaos.2005.10.072
10.1016/j.jmaa.2005.11.073
10.1016/S0375-9601(00)00010-4
10.1016/j.chaos.2005.08.071
10.1016/j.chaos.2006.11.025
10.1016/j.chaos.2004.02.001
10.1098/rspa.1974.0076
10.1016/j.mcm.2003.12.010
10.1016/S0375-9601(02)01775-9
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.camwa.2009.05.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 1735
ExternalDocumentID 10_1016_j_camwa_2009_05_025
S0898122109005768
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-2ec9d72078043a41c7e6a85d667394eff0bb2c85e56c1a776f7bb65cb90122923
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271376600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0898-1221
IngestDate Sun Nov 23 09:49:55 EST 2025
Sat Nov 29 05:42:17 EST 2025
Tue Nov 18 22:25:28 EST 2025
Fri Feb 23 02:23:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Weierstrass elliptic function solutions
First-kind elliptic equation
KP equation
mKdV equation
Periodic solutions
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-2ec9d72078043a41c7e6a85d667394eff0bb2c85e56c1a776f7bb65cb90122923
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.camwa.2009.05.025
PQID 34875004
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_34875004
crossref_primary_10_1016_j_camwa_2009_05_025
crossref_citationtrail_10_1016_j_camwa_2009_05_025
elsevier_sciencedirect_doi_10_1016_j_camwa_2009_05_025
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fan (b8) 2001; 282
Matsukawa, Watanabe (b28) 1988; 57
Senthilvenlan (b26) 2001; 123
Yomba (b7) 2004; 22
Wang, Wang, Zhang (b15) 2003; 12
Davey, Stewarson (b31) 1974; 338
Hone (b33) 2005; 205
Chen, Yan (b34) 2006; 29
Darzin, Johnson (b1) 1989
Wazwaz (b12) 2007; 360
Elwakil, El-Labany (b29) 2002; 299
Malomed, Anderson (b32) 1997; 55
Parkes, Duffy (b5) 1996; 98
Cornejo-Perez, Rosu (b13) 2005; 114
Wazwaz (b10) 2004; 40
Zhou, Wang, Miao (b30) 2004; 323
Fan (b4) 2000; 265
Yomba (b17) 2004; 21
Li, Dong (b16) 2008; 37
Wang (b3) 1996; 213
Cariello, Tabor (b2) 1989; 39
Wang, Li, Wang (b21) 2008; 38
Zhou, Wang, Wang (b14) 2003; 308
Wang, Zhang (b18) 2005; 25
Ma, Wu (b25) 2006; 324
Wazwaz (b11) 2006; 11
Parkes, Duffy (b6) 1997; 229
Li, Yang, Wang (b20) 2005; 25
Lawden (b23) 1989
Wang, Chen, Zhang (b19) 2005; 25
Allen, Rowlands (b27) 1997; 235
Huber (b22) 2006; 28
Whittaker, Watson (b24) 1950
Elwakil, Abdou (b9) 2007; 31
Lawden (10.1016/j.camwa.2009.05.025_b23) 1989
Yomba (10.1016/j.camwa.2009.05.025_b17) 2004; 21
Wazwaz (10.1016/j.camwa.2009.05.025_b12) 2007; 360
Whittaker (10.1016/j.camwa.2009.05.025_b24) 1950
Parkes (10.1016/j.camwa.2009.05.025_b5) 1996; 98
Wazwaz (10.1016/j.camwa.2009.05.025_b11) 2006; 11
Malomed (10.1016/j.camwa.2009.05.025_b32) 1997; 55
Darzin (10.1016/j.camwa.2009.05.025_b1) 1989
Wang (10.1016/j.camwa.2009.05.025_b19) 2005; 25
Cornejo-Perez (10.1016/j.camwa.2009.05.025_b13) 2005; 114
Davey (10.1016/j.camwa.2009.05.025_b31) 1974; 338
Wang (10.1016/j.camwa.2009.05.025_b15) 2003; 12
Li (10.1016/j.camwa.2009.05.025_b20) 2005; 25
Wang (10.1016/j.camwa.2009.05.025_b21) 2008; 38
Chen (10.1016/j.camwa.2009.05.025_b34) 2006; 29
Ma (10.1016/j.camwa.2009.05.025_b25) 2006; 324
Senthilvenlan (10.1016/j.camwa.2009.05.025_b26) 2001; 123
Elwakil (10.1016/j.camwa.2009.05.025_b9) 2007; 31
Hone (10.1016/j.camwa.2009.05.025_b33) 2005; 205
Zhou (10.1016/j.camwa.2009.05.025_b30) 2004; 323
Wazwaz (10.1016/j.camwa.2009.05.025_b10) 2004; 40
Huber (10.1016/j.camwa.2009.05.025_b22) 2006; 28
Elwakil (10.1016/j.camwa.2009.05.025_b29) 2002; 299
Fan (10.1016/j.camwa.2009.05.025_b4) 2000; 265
Wang (10.1016/j.camwa.2009.05.025_b3) 1996; 213
Parkes (10.1016/j.camwa.2009.05.025_b6) 1997; 229
Yomba (10.1016/j.camwa.2009.05.025_b7) 2004; 22
Matsukawa (10.1016/j.camwa.2009.05.025_b28) 1988; 57
Wang (10.1016/j.camwa.2009.05.025_b18) 2005; 25
Allen (10.1016/j.camwa.2009.05.025_b27) 1997; 235
Fan (10.1016/j.camwa.2009.05.025_b8) 2001; 282
Cariello (10.1016/j.camwa.2009.05.025_b2) 1989; 39
Zhou (10.1016/j.camwa.2009.05.025_b14) 2003; 308
Li (10.1016/j.camwa.2009.05.025_b16) 2008; 37
References_xml – volume: 360
  start-page: 588
  year: 2007
  ident: b12
  publication-title: Phys. Lett. A
– volume: 324
  start-page: 134
  year: 2006
  ident: b25
  publication-title: J. Math. Anal. Appl.
– volume: 205
  start-page: 292
  year: 2005
  ident: b33
  publication-title: Physica D
– volume: 21
  start-page: 209
  year: 2004
  ident: b17
  publication-title: Chaos Solitons Fractals
– volume: 338
  start-page: 101
  year: 1974
  ident: b31
  publication-title: Proc. R. Soc. London A
– volume: 265
  start-page: 353
  year: 2000
  ident: b4
  publication-title: Phys. Lett. A
– volume: 308
  start-page: 31
  year: 2003
  ident: b14
  publication-title: Phys. Lett. A
– volume: 38
  start-page: 374
  year: 2008
  ident: b21
  publication-title: Chaos Solitons Fractals
– volume: 229
  start-page: 217
  year: 1997
  ident: b6
  publication-title: Phys. Lett. A
– volume: 282
  start-page: 18
  year: 2001
  ident: b8
  publication-title: Phys. Lett. A
– volume: 28
  start-page: 972
  year: 2006
  ident: b22
  publication-title: Chaos Solitons Fractals
– year: 1989
  ident: b1
  article-title: Solitons: An Introduction
– volume: 57
  start-page: 2936
  year: 1988
  ident: b28
  publication-title: J. Phys. Soc. Japan
– volume: 25
  start-page: 629
  year: 2005
  ident: b20
  publication-title: Chaos Solitons Fractals
– volume: 22
  start-page: 321
  year: 2004
  ident: b7
  publication-title: Chaos Solitons Fractals
– volume: 12
  start-page: 1341
  year: 2003
  ident: b15
  publication-title: Chin. Phys.
– volume: 37
  start-page: 547
  year: 2008
  ident: b16
  publication-title: Chaos Solitons Fractals
– volume: 29
  start-page: 948
  year: 2006
  ident: b34
  publication-title: Chaos Solitons Fractals
– volume: 11
  start-page: 148
  year: 2006
  ident: b11
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 25
  start-page: 601
  year: 2005
  ident: b18
  publication-title: Chaos Solitons Fractals
– volume: 40
  start-page: 499
  year: 2004
  ident: b10
  publication-title: Math. Comput. Modelling
– volume: 123
  start-page: 381
  year: 2001
  ident: b26
  publication-title: Appl. Math. Comput.
– volume: 323
  start-page: 77
  year: 2004
  ident: b30
  publication-title: Phys. Lett. A
– volume: 299
  start-page: 179
  year: 2002
  ident: b29
  publication-title: Phys. Lett. A
– volume: 31
  start-page: 1256
  year: 2007
  ident: b9
  publication-title: Chaos Solitons Fractals
– volume: 235
  start-page: 145
  year: 1997
  ident: b27
  publication-title: Phys. Lett. A
– volume: 114
  start-page: 533
  year: 2005
  ident: b13
  publication-title: Progr. Theoret. Phys.
– volume: 55
  start-page: 962
  year: 1997
  ident: b32
  publication-title: Phys. Rev. E
– volume: 25
  start-page: 1019
  year: 2005
  ident: b19
  publication-title: Chaos Solitons Fractals
– year: 1989
  ident: b23
  article-title: Elliptic Functions and Applications
– volume: 39
  start-page: 77
  year: 1989
  ident: b2
  publication-title: Physica D
– year: 1950
  ident: b24
  article-title: A Course of Modern Analysis
– volume: 213
  start-page: 279
  year: 1996
  ident: b3
  publication-title: Phys. Lett. A
– volume: 98
  start-page: 288
  year: 1996
  ident: b5
  publication-title: Comput. Phys. Comm.
– volume: 114
  start-page: 533
  year: 2005
  ident: 10.1016/j.camwa.2009.05.025_b13
  publication-title: Progr. Theoret. Phys.
  doi: 10.1143/PTP.114.533
– volume: 12
  start-page: 1341
  year: 2003
  ident: 10.1016/j.camwa.2009.05.025_b15
  publication-title: Chin. Phys.
  doi: 10.1088/1009-1963/12/12/001
– volume: 37
  start-page: 547
  year: 2008
  ident: 10.1016/j.camwa.2009.05.025_b16
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.09.030
– volume: 235
  start-page: 145
  year: 1997
  ident: 10.1016/j.camwa.2009.05.025_b27
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(97)00618-X
– volume: 282
  start-page: 18
  year: 2001
  ident: 10.1016/j.camwa.2009.05.025_b8
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00161-X
– volume: 360
  start-page: 588
  year: 2007
  ident: 10.1016/j.camwa.2009.05.025_b12
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.08.068
– volume: 25
  start-page: 1019
  year: 2005
  ident: 10.1016/j.camwa.2009.05.025_b19
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.01.039
– volume: 25
  start-page: 629
  year: 2005
  ident: 10.1016/j.camwa.2009.05.025_b20
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.11.028
– volume: 39
  start-page: 77
  year: 1989
  ident: 10.1016/j.camwa.2009.05.025_b2
  publication-title: Physica D
  doi: 10.1016/0167-2789(89)90040-7
– volume: 213
  start-page: 279
  year: 1996
  ident: 10.1016/j.camwa.2009.05.025_b3
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00103-X
– volume: 57
  start-page: 2936
  year: 1988
  ident: 10.1016/j.camwa.2009.05.025_b28
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.57.2936
– volume: 55
  start-page: 962
  year: 1997
  ident: 10.1016/j.camwa.2009.05.025_b32
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.55.962
– volume: 98
  start-page: 288
  year: 1996
  ident: 10.1016/j.camwa.2009.05.025_b5
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(96)00104-X
– year: 1989
  ident: 10.1016/j.camwa.2009.05.025_b23
– volume: 205
  start-page: 292
  year: 2005
  ident: 10.1016/j.camwa.2009.05.025_b33
  publication-title: Physica D
  doi: 10.1016/j.physd.2004.10.011
– volume: 11
  start-page: 148
  year: 2006
  ident: 10.1016/j.camwa.2009.05.025_b11
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2004.07.001
– volume: 123
  start-page: 381
  year: 2001
  ident: 10.1016/j.camwa.2009.05.025_b26
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(00)00076-X
– volume: 323
  start-page: 77
  year: 2004
  ident: 10.1016/j.camwa.2009.05.025_b30
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.01.056
– volume: 229
  start-page: 217
  year: 1997
  ident: 10.1016/j.camwa.2009.05.025_b6
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(97)00193-X
– volume: 25
  start-page: 601
  year: 2005
  ident: 10.1016/j.camwa.2009.05.025_b18
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.11.026
– year: 1950
  ident: 10.1016/j.camwa.2009.05.025_b24
– volume: 299
  start-page: 179
  year: 2002
  ident: 10.1016/j.camwa.2009.05.025_b29
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00669-2
– volume: 21
  start-page: 209
  year: 2004
  ident: 10.1016/j.camwa.2009.05.025_b17
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2003.10.028
– volume: 28
  start-page: 972
  year: 2006
  ident: 10.1016/j.camwa.2009.05.025_b22
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.189
– volume: 31
  start-page: 1256
  year: 2007
  ident: 10.1016/j.camwa.2009.05.025_b9
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.10.072
– volume: 324
  start-page: 134
  year: 2006
  ident: 10.1016/j.camwa.2009.05.025_b25
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.11.073
– year: 1989
  ident: 10.1016/j.camwa.2009.05.025_b1
– volume: 265
  start-page: 353
  year: 2000
  ident: 10.1016/j.camwa.2009.05.025_b4
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00010-4
– volume: 29
  start-page: 948
  year: 2006
  ident: 10.1016/j.camwa.2009.05.025_b34
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.071
– volume: 38
  start-page: 374
  year: 2008
  ident: 10.1016/j.camwa.2009.05.025_b21
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.11.025
– volume: 22
  start-page: 321
  year: 2004
  ident: 10.1016/j.camwa.2009.05.025_b7
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.02.001
– volume: 338
  start-page: 101
  year: 1974
  ident: 10.1016/j.camwa.2009.05.025_b31
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.1974.0076
– volume: 40
  start-page: 499
  year: 2004
  ident: 10.1016/j.camwa.2009.05.025_b10
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2003.12.010
– volume: 308
  start-page: 31
  year: 2003
  ident: 10.1016/j.camwa.2009.05.025_b14
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01775-9
SSID ssj0004320
Score 1.9627517
Snippet The present paper deals with families of non-trivial solutions of the equation ( d d ξ w ) 2 = P w 4 ( ξ ) + Q w 2 ( ξ ) + R . On the basis of these solutions,...
The present paper deals with families of non-trivial solutions of the equation (ddxw)(2)=Pw(4)(x)+Qw(2)(x)+R. On the basis of these solutions, a direct and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1725
SubjectTerms First-kind elliptic equation
KP equation
mKdV equation
Periodic solutions
Weierstrass elliptic function solutions
Title A generalized Weierstrass elliptic function expansion method for solving some nonlinear partial differential equations
URI https://dx.doi.org/10.1016/j.camwa.2009.05.025
https://www.proquest.com/docview/34875004
Volume 58
WOSCitedRecordID wos000271376600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHL0wf2VFLlUcfxsYKWh5aClq7ozUocV9tV2-32RcX_4X8y40caWLHAgUvURnGTdr6OZz57viHkxUiJIh1xEUS6CJGtGgWClWnAM0hZylxpoUPTbIL3-9lwKD41Gt99LcxmwmezbLsV8_9qajgHxsbS2X8wd_WhcAJeg9HhCGaH418ZvoNdkZFpGn-DYPKLxl7XqwXEyE3U3pyjQCtOZsbuegvOAPky10nabDqEx7Msw_lUN2dWSgMFsfFeZknHtlQxb_TFukb5ecUD1yliaXA1rYRhfSVdbc3c6ET9TEh8zseWgO3ueNZOUTa7k-A4P3WE7XHrTavaOnQK2cTUgOWDI4E9jSFcPV_N2wlIZ2NbLu1dM8tqEBQ1PwthF6vN2RG3mieX5gNLTZxBrj_9mjt1UtYK_eC6-nb_o-ydHB3JQXc4OEx684sAW5PhEv5h8trC5BrZjzkT4P_3O--6w_e7AtzE6n_67-DlrcxGwkv3_l0I9EswYCKcwW1y06UmtGMhdYc09OwuueWNSd0scI9sOrSGMFpDGPUIox5htEIYtQijgDDqEEYRYbRCGHUIo3WE0Qph98lJrzt49TZw7TsClSTtVRBrJUoehyhxleTtSHGd5hk4gpQnoq1Ho7AoYpUxzVIV5ZyDyyiKlKlC4HIvJB4PyB48gn5IaMbaJQsTlpco0Balog1ZcliqMFMs5UofkNj_olI5bXtssTKRfhPjmTRmwK6rQoZMghkOyMtq0NxKu1x9eepNJV10aqNOCWC7euBzb1gJvhsX5PKZPl8vZYJsAaDn0R-veExu7P40T8jearHWT8l1tVmNl4tnDo4_AGXtvs0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+Weierstrass+elliptic+function+expansion+method+for+solving+some+nonlinear+partial+differential+equations&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Saied%2C+E+A&rft.au=Abd+El-Rahman%2C+R.G.&rft.au=Ghonamy%2C+M+I&rft.date=2009-11-01&rft.issn=0898-1221&rft.volume=58&rft.issue=9&rft.spage=1725&rft.epage=1735&rft_id=info:doi/10.1016%2Fj.camwa.2009.05.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon