A generalized Weierstrass elliptic function expansion method for solving some nonlinear partial differential equations
The present paper deals with families of non-trivial solutions of the equation ( d d ξ w ) 2 = P w 4 ( ξ ) + Q w 2 ( ξ ) + R . On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equation...
Uložené v:
| Vydané v: | Computers & mathematics with applications (1987) Ročník 58; číslo 9; s. 1725 - 1735 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2009
|
| Predmet: | |
| ISSN: | 0898-1221, 1873-7668 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The present paper deals with families of non-trivial solutions of the equation
(
d
d
ξ
w
)
2
=
P
w
4
(
ξ
)
+
Q
w
2
(
ξ
)
+
R
. On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equations (NLPDEs). Subsequently, many new and more general exact solutions in terms of the Weierstrass elliptic function
℘
(
ξ
;
g
2
,
g
3
)
are obtained. The method can be applied to other NLPDEs in mathematical physics. |
|---|---|
| AbstractList | The present paper deals with families of non-trivial solutions of the equation (ddxw)(2)=Pw(4)(x)+Qw(2)(x)+R. On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equations (NLPDEs). Subsequently, many new and more general exact solutions in terms of the Weierstrass elliptic function ?(x;g(2),g(3)) are obtained. The method can be applied to other NLPDEs in mathematical physics. The present paper deals with families of non-trivial solutions of the equation ( d d ξ w ) 2 = P w 4 ( ξ ) + Q w 2 ( ξ ) + R . On the basis of these solutions, a direct and generalized algebraic algorithm is described for constructing the new solutions of some nonlinear partial differential equations (NLPDEs). Subsequently, many new and more general exact solutions in terms of the Weierstrass elliptic function ℘ ( ξ ; g 2 , g 3 ) are obtained. The method can be applied to other NLPDEs in mathematical physics. |
| Author | Ghonamy, Marwa I. Saied, E.A. Abd El-Rahman, Reda G. |
| Author_xml | – sequence: 1 givenname: E.A. surname: Saied fullname: Saied, E.A. – sequence: 2 givenname: Reda G. surname: Abd El-Rahman fullname: Abd El-Rahman, Reda G. – sequence: 3 givenname: Marwa I. surname: Ghonamy fullname: Ghonamy, Marwa I. email: marwamath@yahoo.com |
| BookMark | eNqFkE1P3DAQhi1EpS7b_oJefOotqe0kdnLoASE-KiFxAfVoOc4YvErsYHuXj1-Ps8uJA5xmRppnNO9zgo6dd4DQL0pKSij_sym1mp5UyQjpStKUhDVHaEVbURWC8_YYrUjbtQVljH5HJzFuCCF1xcgK7U7xPTgIarSvMOD_YCHEFFSMGMbRzslqbLZOJ-sdhudZubh0E6QHP2DjA45-3Fl3n-sEOP81Wgcq4FmFZNWIB2sMBHD7AR63arkUf6BvRo0Rfr7XNbq7OL89uyquby7_nZ1eF7qq6lQw0N0gGBFtflfVVAvgqm0GzkXV1WAM6Xum2wYarqkSghvR97zRfUdy1o5Va_T7cHcO_nELMcnJRp2TKQd-G2VVt6JZXKxRdVjUwccYwMg52EmFF0mJXBzLjdw7lotjSRqZHWeq-0Bpm_YJs0I7fsH-PbCQ8--ydhm1BadhsAF0koO3n_Jv5n-eUw |
| CitedBy_id | crossref_primary_10_1007_s11071_023_09023_3 crossref_primary_10_1007_s11082_023_04847_0 crossref_primary_10_1038_s41598_025_06806_z crossref_primary_10_1007_s11082_023_05985_1 crossref_primary_10_1007_s11071_024_09555_2 crossref_primary_10_1134_S0965542523080067 crossref_primary_10_1140_epjp_s13360_023_04105_y crossref_primary_10_3390_math13071029 crossref_primary_10_1155_2021_5564162 |
| Cites_doi | 10.1143/PTP.114.533 10.1088/1009-1963/12/12/001 10.1016/j.chaos.2006.09.030 10.1016/S0375-9601(97)00618-X 10.1016/S0375-9601(01)00161-X 10.1016/j.physleta.2006.08.068 10.1016/j.chaos.2005.01.039 10.1016/j.chaos.2004.11.028 10.1016/0167-2789(89)90040-7 10.1016/0375-9601(96)00103-X 10.1143/JPSJ.57.2936 10.1103/PhysRevE.55.962 10.1016/0010-4655(96)00104-X 10.1016/j.physd.2004.10.011 10.1016/j.cnsns.2004.07.001 10.1016/S0096-3003(00)00076-X 10.1016/j.physleta.2004.01.056 10.1016/S0375-9601(97)00193-X 10.1016/j.chaos.2004.11.026 10.1016/S0375-9601(02)00669-2 10.1016/j.chaos.2003.10.028 10.1016/j.chaos.2005.08.189 10.1016/j.chaos.2005.10.072 10.1016/j.jmaa.2005.11.073 10.1016/S0375-9601(00)00010-4 10.1016/j.chaos.2005.08.071 10.1016/j.chaos.2006.11.025 10.1016/j.chaos.2004.02.001 10.1098/rspa.1974.0076 10.1016/j.mcm.2003.12.010 10.1016/S0375-9601(02)01775-9 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Ltd |
| Copyright_xml | – notice: 2009 Elsevier Ltd |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.camwa.2009.05.025 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-7668 |
| EndPage | 1735 |
| ExternalDocumentID | 10_1016_j_camwa_2009_05_025 S0898122109005768 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 WUQ XFK XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-2ec9d72078043a41c7e6a85d667394eff0bb2c85e56c1a776f7bb65cb90122923 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271376600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0898-1221 |
| IngestDate | Sun Nov 23 09:49:55 EST 2025 Sat Nov 29 05:42:17 EST 2025 Tue Nov 18 22:25:28 EST 2025 Fri Feb 23 02:23:09 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Weierstrass elliptic function solutions First-kind elliptic equation KP equation mKdV equation Periodic solutions |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-2ec9d72078043a41c7e6a85d667394eff0bb2c85e56c1a776f7bb65cb90122923 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.camwa.2009.05.025 |
| PQID | 34875004 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_34875004 crossref_primary_10_1016_j_camwa_2009_05_025 crossref_citationtrail_10_1016_j_camwa_2009_05_025 elsevier_sciencedirect_doi_10_1016_j_camwa_2009_05_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-11-01 |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Computers & mathematics with applications (1987) |
| PublicationYear | 2009 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fan (b8) 2001; 282 Matsukawa, Watanabe (b28) 1988; 57 Senthilvenlan (b26) 2001; 123 Yomba (b7) 2004; 22 Wang, Wang, Zhang (b15) 2003; 12 Davey, Stewarson (b31) 1974; 338 Hone (b33) 2005; 205 Chen, Yan (b34) 2006; 29 Darzin, Johnson (b1) 1989 Wazwaz (b12) 2007; 360 Elwakil, El-Labany (b29) 2002; 299 Malomed, Anderson (b32) 1997; 55 Parkes, Duffy (b5) 1996; 98 Cornejo-Perez, Rosu (b13) 2005; 114 Wazwaz (b10) 2004; 40 Zhou, Wang, Miao (b30) 2004; 323 Fan (b4) 2000; 265 Yomba (b17) 2004; 21 Li, Dong (b16) 2008; 37 Wang (b3) 1996; 213 Cariello, Tabor (b2) 1989; 39 Wang, Li, Wang (b21) 2008; 38 Zhou, Wang, Wang (b14) 2003; 308 Wang, Zhang (b18) 2005; 25 Ma, Wu (b25) 2006; 324 Wazwaz (b11) 2006; 11 Parkes, Duffy (b6) 1997; 229 Li, Yang, Wang (b20) 2005; 25 Lawden (b23) 1989 Wang, Chen, Zhang (b19) 2005; 25 Allen, Rowlands (b27) 1997; 235 Huber (b22) 2006; 28 Whittaker, Watson (b24) 1950 Elwakil, Abdou (b9) 2007; 31 Lawden (10.1016/j.camwa.2009.05.025_b23) 1989 Yomba (10.1016/j.camwa.2009.05.025_b17) 2004; 21 Wazwaz (10.1016/j.camwa.2009.05.025_b12) 2007; 360 Whittaker (10.1016/j.camwa.2009.05.025_b24) 1950 Parkes (10.1016/j.camwa.2009.05.025_b5) 1996; 98 Wazwaz (10.1016/j.camwa.2009.05.025_b11) 2006; 11 Malomed (10.1016/j.camwa.2009.05.025_b32) 1997; 55 Darzin (10.1016/j.camwa.2009.05.025_b1) 1989 Wang (10.1016/j.camwa.2009.05.025_b19) 2005; 25 Cornejo-Perez (10.1016/j.camwa.2009.05.025_b13) 2005; 114 Davey (10.1016/j.camwa.2009.05.025_b31) 1974; 338 Wang (10.1016/j.camwa.2009.05.025_b15) 2003; 12 Li (10.1016/j.camwa.2009.05.025_b20) 2005; 25 Wang (10.1016/j.camwa.2009.05.025_b21) 2008; 38 Chen (10.1016/j.camwa.2009.05.025_b34) 2006; 29 Ma (10.1016/j.camwa.2009.05.025_b25) 2006; 324 Senthilvenlan (10.1016/j.camwa.2009.05.025_b26) 2001; 123 Elwakil (10.1016/j.camwa.2009.05.025_b9) 2007; 31 Hone (10.1016/j.camwa.2009.05.025_b33) 2005; 205 Zhou (10.1016/j.camwa.2009.05.025_b30) 2004; 323 Wazwaz (10.1016/j.camwa.2009.05.025_b10) 2004; 40 Huber (10.1016/j.camwa.2009.05.025_b22) 2006; 28 Elwakil (10.1016/j.camwa.2009.05.025_b29) 2002; 299 Fan (10.1016/j.camwa.2009.05.025_b4) 2000; 265 Wang (10.1016/j.camwa.2009.05.025_b3) 1996; 213 Parkes (10.1016/j.camwa.2009.05.025_b6) 1997; 229 Yomba (10.1016/j.camwa.2009.05.025_b7) 2004; 22 Matsukawa (10.1016/j.camwa.2009.05.025_b28) 1988; 57 Wang (10.1016/j.camwa.2009.05.025_b18) 2005; 25 Allen (10.1016/j.camwa.2009.05.025_b27) 1997; 235 Fan (10.1016/j.camwa.2009.05.025_b8) 2001; 282 Cariello (10.1016/j.camwa.2009.05.025_b2) 1989; 39 Zhou (10.1016/j.camwa.2009.05.025_b14) 2003; 308 Li (10.1016/j.camwa.2009.05.025_b16) 2008; 37 |
| References_xml | – volume: 360 start-page: 588 year: 2007 ident: b12 publication-title: Phys. Lett. A – volume: 324 start-page: 134 year: 2006 ident: b25 publication-title: J. Math. Anal. Appl. – volume: 205 start-page: 292 year: 2005 ident: b33 publication-title: Physica D – volume: 21 start-page: 209 year: 2004 ident: b17 publication-title: Chaos Solitons Fractals – volume: 338 start-page: 101 year: 1974 ident: b31 publication-title: Proc. R. Soc. London A – volume: 265 start-page: 353 year: 2000 ident: b4 publication-title: Phys. Lett. A – volume: 308 start-page: 31 year: 2003 ident: b14 publication-title: Phys. Lett. A – volume: 38 start-page: 374 year: 2008 ident: b21 publication-title: Chaos Solitons Fractals – volume: 229 start-page: 217 year: 1997 ident: b6 publication-title: Phys. Lett. A – volume: 282 start-page: 18 year: 2001 ident: b8 publication-title: Phys. Lett. A – volume: 28 start-page: 972 year: 2006 ident: b22 publication-title: Chaos Solitons Fractals – year: 1989 ident: b1 article-title: Solitons: An Introduction – volume: 57 start-page: 2936 year: 1988 ident: b28 publication-title: J. Phys. Soc. Japan – volume: 25 start-page: 629 year: 2005 ident: b20 publication-title: Chaos Solitons Fractals – volume: 22 start-page: 321 year: 2004 ident: b7 publication-title: Chaos Solitons Fractals – volume: 12 start-page: 1341 year: 2003 ident: b15 publication-title: Chin. Phys. – volume: 37 start-page: 547 year: 2008 ident: b16 publication-title: Chaos Solitons Fractals – volume: 29 start-page: 948 year: 2006 ident: b34 publication-title: Chaos Solitons Fractals – volume: 11 start-page: 148 year: 2006 ident: b11 publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 25 start-page: 601 year: 2005 ident: b18 publication-title: Chaos Solitons Fractals – volume: 40 start-page: 499 year: 2004 ident: b10 publication-title: Math. Comput. Modelling – volume: 123 start-page: 381 year: 2001 ident: b26 publication-title: Appl. Math. Comput. – volume: 323 start-page: 77 year: 2004 ident: b30 publication-title: Phys. Lett. A – volume: 299 start-page: 179 year: 2002 ident: b29 publication-title: Phys. Lett. A – volume: 31 start-page: 1256 year: 2007 ident: b9 publication-title: Chaos Solitons Fractals – volume: 235 start-page: 145 year: 1997 ident: b27 publication-title: Phys. Lett. A – volume: 114 start-page: 533 year: 2005 ident: b13 publication-title: Progr. Theoret. Phys. – volume: 55 start-page: 962 year: 1997 ident: b32 publication-title: Phys. Rev. E – volume: 25 start-page: 1019 year: 2005 ident: b19 publication-title: Chaos Solitons Fractals – year: 1989 ident: b23 article-title: Elliptic Functions and Applications – volume: 39 start-page: 77 year: 1989 ident: b2 publication-title: Physica D – year: 1950 ident: b24 article-title: A Course of Modern Analysis – volume: 213 start-page: 279 year: 1996 ident: b3 publication-title: Phys. Lett. A – volume: 98 start-page: 288 year: 1996 ident: b5 publication-title: Comput. Phys. Comm. – volume: 114 start-page: 533 year: 2005 ident: 10.1016/j.camwa.2009.05.025_b13 publication-title: Progr. Theoret. Phys. doi: 10.1143/PTP.114.533 – volume: 12 start-page: 1341 year: 2003 ident: 10.1016/j.camwa.2009.05.025_b15 publication-title: Chin. Phys. doi: 10.1088/1009-1963/12/12/001 – volume: 37 start-page: 547 year: 2008 ident: 10.1016/j.camwa.2009.05.025_b16 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.09.030 – volume: 235 start-page: 145 year: 1997 ident: 10.1016/j.camwa.2009.05.025_b27 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(97)00618-X – volume: 282 start-page: 18 year: 2001 ident: 10.1016/j.camwa.2009.05.025_b8 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00161-X – volume: 360 start-page: 588 year: 2007 ident: 10.1016/j.camwa.2009.05.025_b12 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2006.08.068 – volume: 25 start-page: 1019 year: 2005 ident: 10.1016/j.camwa.2009.05.025_b19 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.01.039 – volume: 25 start-page: 629 year: 2005 ident: 10.1016/j.camwa.2009.05.025_b20 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.11.028 – volume: 39 start-page: 77 year: 1989 ident: 10.1016/j.camwa.2009.05.025_b2 publication-title: Physica D doi: 10.1016/0167-2789(89)90040-7 – volume: 213 start-page: 279 year: 1996 ident: 10.1016/j.camwa.2009.05.025_b3 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(96)00103-X – volume: 57 start-page: 2936 year: 1988 ident: 10.1016/j.camwa.2009.05.025_b28 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.57.2936 – volume: 55 start-page: 962 year: 1997 ident: 10.1016/j.camwa.2009.05.025_b32 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.55.962 – volume: 98 start-page: 288 year: 1996 ident: 10.1016/j.camwa.2009.05.025_b5 publication-title: Comput. Phys. Comm. doi: 10.1016/0010-4655(96)00104-X – year: 1989 ident: 10.1016/j.camwa.2009.05.025_b23 – volume: 205 start-page: 292 year: 2005 ident: 10.1016/j.camwa.2009.05.025_b33 publication-title: Physica D doi: 10.1016/j.physd.2004.10.011 – volume: 11 start-page: 148 year: 2006 ident: 10.1016/j.camwa.2009.05.025_b11 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2004.07.001 – volume: 123 start-page: 381 year: 2001 ident: 10.1016/j.camwa.2009.05.025_b26 publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(00)00076-X – volume: 323 start-page: 77 year: 2004 ident: 10.1016/j.camwa.2009.05.025_b30 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.01.056 – volume: 229 start-page: 217 year: 1997 ident: 10.1016/j.camwa.2009.05.025_b6 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(97)00193-X – volume: 25 start-page: 601 year: 2005 ident: 10.1016/j.camwa.2009.05.025_b18 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.11.026 – year: 1950 ident: 10.1016/j.camwa.2009.05.025_b24 – volume: 299 start-page: 179 year: 2002 ident: 10.1016/j.camwa.2009.05.025_b29 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)00669-2 – volume: 21 start-page: 209 year: 2004 ident: 10.1016/j.camwa.2009.05.025_b17 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2003.10.028 – volume: 28 start-page: 972 year: 2006 ident: 10.1016/j.camwa.2009.05.025_b22 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.08.189 – volume: 31 start-page: 1256 year: 2007 ident: 10.1016/j.camwa.2009.05.025_b9 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.10.072 – volume: 324 start-page: 134 year: 2006 ident: 10.1016/j.camwa.2009.05.025_b25 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.11.073 – year: 1989 ident: 10.1016/j.camwa.2009.05.025_b1 – volume: 265 start-page: 353 year: 2000 ident: 10.1016/j.camwa.2009.05.025_b4 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(00)00010-4 – volume: 29 start-page: 948 year: 2006 ident: 10.1016/j.camwa.2009.05.025_b34 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.08.071 – volume: 38 start-page: 374 year: 2008 ident: 10.1016/j.camwa.2009.05.025_b21 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.11.025 – volume: 22 start-page: 321 year: 2004 ident: 10.1016/j.camwa.2009.05.025_b7 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.02.001 – volume: 338 start-page: 101 year: 1974 ident: 10.1016/j.camwa.2009.05.025_b31 publication-title: Proc. R. Soc. London A doi: 10.1098/rspa.1974.0076 – volume: 40 start-page: 499 year: 2004 ident: 10.1016/j.camwa.2009.05.025_b10 publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2003.12.010 – volume: 308 start-page: 31 year: 2003 ident: 10.1016/j.camwa.2009.05.025_b14 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)01775-9 |
| SSID | ssj0004320 |
| Score | 1.9627517 |
| Snippet | The present paper deals with families of non-trivial solutions of the equation
(
d
d
ξ
w
)
2
=
P
w
4
(
ξ
)
+
Q
w
2
(
ξ
)
+
R
. On the basis of these solutions,... The present paper deals with families of non-trivial solutions of the equation (ddxw)(2)=Pw(4)(x)+Qw(2)(x)+R. On the basis of these solutions, a direct and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1725 |
| SubjectTerms | First-kind elliptic equation KP equation mKdV equation Periodic solutions Weierstrass elliptic function solutions |
| Title | A generalized Weierstrass elliptic function expansion method for solving some nonlinear partial differential equations |
| URI | https://dx.doi.org/10.1016/j.camwa.2009.05.025 https://www.proquest.com/docview/34875004 |
| Volume | 58 |
| WOSCitedRecordID | wos000271376600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7668 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0004320 issn: 0898-1221 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHL0wf2VFLlUcfxsYKWh5aClq7ozUocV9tV2-32RcX_4X8y40caWLHAgUvURnGTdr6OZz57viHkxUiJIh1xEUS6CJGtGgWClWnAM0hZylxpoUPTbIL3-9lwKD41Gt99LcxmwmezbLsV8_9qajgHxsbS2X8wd_WhcAJeg9HhCGaH418ZvoNdkZFpGn-DYPKLxl7XqwXEyE3U3pyjQCtOZsbuegvOAPky10nabDqEx7Msw_lUN2dWSgMFsfFeZknHtlQxb_TFukb5ecUD1yliaXA1rYRhfSVdbc3c6ET9TEh8zseWgO3ueNZOUTa7k-A4P3WE7XHrTavaOnQK2cTUgOWDI4E9jSFcPV_N2wlIZ2NbLu1dM8tqEBQ1PwthF6vN2RG3mieX5gNLTZxBrj_9mjt1UtYK_eC6-nb_o-ydHB3JQXc4OEx684sAW5PhEv5h8trC5BrZjzkT4P_3O--6w_e7AtzE6n_67-DlrcxGwkv3_l0I9EswYCKcwW1y06UmtGMhdYc09OwuueWNSd0scI9sOrSGMFpDGPUIox5htEIYtQijgDDqEEYRYbRCGHUIo3WE0Qph98lJrzt49TZw7TsClSTtVRBrJUoehyhxleTtSHGd5hk4gpQnoq1Ho7AoYpUxzVIV5ZyDyyiKlKlC4HIvJB4PyB48gn5IaMbaJQsTlpco0Balog1ZcliqMFMs5UofkNj_olI5bXtssTKRfhPjmTRmwK6rQoZMghkOyMtq0NxKu1x9eepNJV10aqNOCWC7euBzb1gJvhsX5PKZPl8vZYJsAaDn0R-veExu7P40T8jearHWT8l1tVmNl4tnDo4_AGXtvs0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+Weierstrass+elliptic+function+expansion+method+for+solving+some+nonlinear+partial+differential+equations&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Saied%2C+E+A&rft.au=Abd+El-Rahman%2C+R.G.&rft.au=Ghonamy%2C+M+I&rft.date=2009-11-01&rft.issn=0898-1221&rft.volume=58&rft.issue=9&rft.spage=1725&rft.epage=1735&rft_id=info:doi/10.1016%2Fj.camwa.2009.05.025&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon |