A distributed algorithm for graph semi-supervised learning

•A distributed algorithm is proposed to solve graph semi-supervised learning problem by leveraging the graph topology.•The convergence of the distributed algorithm is explicitly proved.•Numerical results verify the good performance and low cost of the distributed algorithm. Graph semi-supervised lea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 151; s. 48 - 54
Hlavní autoři: Huang, Daxin, Jiang, Junzheng, Zhou, Fang, Ouyang, Shan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.11.2021
Elsevier Science Ltd
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A distributed algorithm is proposed to solve graph semi-supervised learning problem by leveraging the graph topology.•The convergence of the distributed algorithm is explicitly proved.•Numerical results verify the good performance and low cost of the distributed algorithm. Graph semi-supervised learning (GSSL) plays an important role in data classification by leveraging the similarity across the graph topology and convex optimization with Laplacian-based regularization. However, the current algorithm to solve the problem is centralized approach calling for heavy computational cost, particularly when the data is of large volume. In this paper, an innovate distributed algorithm is proposed to solve the problem, which is based on the decomposition of the similar graph. Contrary to the centralized approach, the distributed algorithm only requires the neighboring information for solving the optimization. It is proved that difference between the solutions of the distributed algorithm and centralized counterpart is upper bounded. We apply the proposed algorithm to both the synthetic and real-world datasets. The numerical results verify the effectiveness of the proposed distributed algorithm.
AbstractList •A distributed algorithm is proposed to solve graph semi-supervised learning problem by leveraging the graph topology.•The convergence of the distributed algorithm is explicitly proved.•Numerical results verify the good performance and low cost of the distributed algorithm. Graph semi-supervised learning (GSSL) plays an important role in data classification by leveraging the similarity across the graph topology and convex optimization with Laplacian-based regularization. However, the current algorithm to solve the problem is centralized approach calling for heavy computational cost, particularly when the data is of large volume. In this paper, an innovate distributed algorithm is proposed to solve the problem, which is based on the decomposition of the similar graph. Contrary to the centralized approach, the distributed algorithm only requires the neighboring information for solving the optimization. It is proved that difference between the solutions of the distributed algorithm and centralized counterpart is upper bounded. We apply the proposed algorithm to both the synthetic and real-world datasets. The numerical results verify the effectiveness of the proposed distributed algorithm.
Graph semi-supervised learning (GSSL) plays an important role in data classification by leveraging the similarity across the graph topology and convex optimization with Laplacian-based regularization. However, the current algorithm to solve the problem is centralized approach calling for heavy computational cost, particularly when the data is of large volume. In this paper, an innovate distributed algorithm is proposed to solve the problem, which is based on the decomposition of the similar graph. Contrary to the centralized approach, the distributed algorithm only requires the neighboring information for solving the optimization. It is proved that difference between the solutions of the distributed algorithm and centralized counterpart is upper bounded. We apply the proposed algorithm to both the synthetic and real-world datasets. The numerical results verify the effectiveness of the proposed distributed algorithm.
Author Jiang, Junzheng
Ouyang, Shan
Huang, Daxin
Zhou, Fang
Author_xml – sequence: 1
  givenname: Daxin
  surname: Huang
  fullname: Huang, Daxin
  organization: School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 2
  givenname: Junzheng
  surname: Jiang
  fullname: Jiang, Junzheng
  organization: School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 3
  givenname: Fang
  surname: Zhou
  fullname: Zhou, Fang
  email: zhoufang1026@guet.edu.cn
  organization: School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 4
  givenname: Shan
  surname: Ouyang
  fullname: Ouyang, Shan
  organization: School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
BookMark eNqFkD1rwzAQhkVJoUnaf9DB0NmuvmzZGQoh9AsCXdpZyNI5kUlsV5ID_fdVcKcO7fQO9zx33LtAs67vAKFbgjOCSXHfZoMKDnRGMSUZFlmMCzQnpaCpYJzP0DxiIi2LPL9CC-9bjHHBqnKOVuvEWB-crccAJlGHXe9s2B-TpnfJzqlhn3g42tSPA7iT9ZE5gHKd7XbX6LJRBw83P7lEH0-P75uXdPv2_LpZb1PNGA8prXVZECIELmuqsGG4wFUtQLOm4Ewz0lACOYi6MRUzJg4U10znPNfcaJOzJbqb9g6u_xzBB9n2o-viSUnzijIuRHWmVhOlXe-9g0ZqG1SwfRecsgdJsDx3JVs5dSXPXUksZIwo81_y4OxRua__tIdJg_j-yYKTXlvoNBgb0SBNb_9e8A3gwYfP
CitedBy_id crossref_primary_10_1007_s00170_024_13874_4
crossref_primary_10_1016_j_dsp_2025_105165
Cites_doi 10.1017/S026988891200001X
10.1109/TNN.2010.2099237
10.1109/TKDE.2018.2810286
10.1023/B:MACH.0000033120.25363.1e
10.1109/TCYB.2017.2703610
10.1162/089976600300014980
10.1145/1883612.1883617
10.1016/j.jclepro.2018.07.164
10.1109/TIP.2017.2717191
10.1007/978-3-319-49787-7_4
10.1109/TSP.2012.2188718
10.1007/s10115-009-0209-z
10.1145/2089125.2089129
10.1109/5.18626
10.1111/j.1469-1809.1936.tb02137.x
10.1109/TSP.2019.2922160
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 2021
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2021.07.021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 54
ExternalDocumentID 10_1016_j_patrec_2021_07_021
S0167865521002713
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-2bc86117708b2a0d30609b7ec3f643c31f21e5e7bfd93dd7eca4c3c545c4dcd53
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700283100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Sun Nov 30 03:55:48 EST 2025
Sat Nov 29 07:27:11 EST 2025
Tue Nov 18 21:44:04 EST 2025
Fri Feb 23 02:42:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph semi-supervised learning (GSSL)
Distributed algorithm
41A10
65D05
65D17
Graph signal processing
41A05
Laplacian
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-2bc86117708b2a0d30609b7ec3f643c31f21e5e7bfd93dd7eca4c3c545c4dcd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2592347795
PQPubID 2047552
PageCount 7
ParticipantIDs proquest_journals_2592347795
crossref_citationtrail_10_1016_j_patrec_2021_07_021
crossref_primary_10_1016_j_patrec_2021_07_021
elsevier_sciencedirect_doi_10_1016_j_patrec_2021_07_021
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Celorrio, de la Rosa, Fernández, Fernández-Rebollo, Borrajo (bib0003) 2012; 27
Yang, Deng, Dang, Wei, Yan (bib0030) 2021
Caruana, Li (bib0001) 2012; 44
Silva, Zhao (bib0025) 2016
Zhou, Bousquet, Lal, Weston, Schölkopf (bib0039) 2004
Fan, Zhang, Du, Chen, Tao (bib0035) 2018; 48
Ghahramani (bib0010) 2003
Fisher (bib0019) 1936; 7
Kipf, Welling (bib0023) 2017
Narang, Ortega (bib0043) 2012; 60
Rabiner (bib0018) 1989; 77
Belkin, Niyogi (bib0038) 2004; 56
Lee, Simchowitz, Jordan, Recht (bib0041) 2016
Yang, Deng, Liu, Tao (bib0031) 2020
Zendehboudi, Baseer, Saidur (bib0005) 2018; 199
Iscen, Tolias, Avrithis, Chum (bib0014) 2019
Zhou, Schölkopf (bib0040) 2004; 15
E. Culurciello, J. Bates, A. Dundar, J. Carrasco, C. Farabet, Clustering learning for robotic vision, arXiv preprint arXiv:1301.2820(2013).
Zhu (bib0011) 2007
Chapelle, Schölkopf, Zien (bib0004) 2006
Baudat, Anouar (bib0020) 2000; 12
Shuman, Vandergheynst, Kressner, Frossard (bib0026) 2018; 4
Thrun, Saul, Schölkopf (bib0016) 2004
Balcan, Blum, Choi, Lafferty, Pantano, Rwebangira, Zhu (bib0029) 2005
Cheng, Jiang, Sun (bib0033) 2017
Borkar, Mathkar (bib0028) 2014
Liu (bib0022) 2012; 5
K. Avrachenkov, V. Borkar, K. Saboo, Parallel and distributed approaches for graph based semi-supervised learning, arXiv preprint arXiv:1509.01349(2015).
Zhou, Li (bib0036) 2010; 24
Q. Li, S. An, L. Li, W. Liu, Semi-supervised learning on graph with an alternating diffusion process, arXiv preprint arXiv:1902.06105(2019).
Zhu, Ghahramani, Lafferty (bib0037) 2003
Jiang, Cheng, Sun (bib0032) 2019; 67
Jensen (bib0017) 1996
Parsons, Rodríguez-Aguilar, Klein (bib0002) 2011; 43
Hastie, Tibshirani, Friedman (bib0008) 2009
Kearns (bib0021) 1999
Hou, Nie, Wang, Zhang, Wu (bib0012) 2011; 22
A. Mokhtari, A. Ribeiro, Adaptive newton method for empirical risk minimization to statistical accuracy, arXiv preprint arXiv:1605.07659(2016).
Luo, Hou, Nie, Tao, Yi (bib0015) 2018; 30
Srivastava, Mansimov, Salakhudinov (bib0006) 2015
G.-J. Qi, J. Luo, Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods, arXiv preprint arXiv:1903.11260(2019).
Tao, Hou, Nie, Zhu, Yi (bib0013) 2017; 26
A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature vectors and structured data, arXiv preprint arXiv:1306.6709(2013).
Chapelle (10.1016/j.patrec.2021.07.021_sbref0004) 2006
Rabiner (10.1016/j.patrec.2021.07.021_bib0018) 1989; 77
10.1016/j.patrec.2021.07.021_bib0034
Zhu (10.1016/j.patrec.2021.07.021_bib0037) 2003
Jiang (10.1016/j.patrec.2021.07.021_bib0032) 2019; 67
Tao (10.1016/j.patrec.2021.07.021_bib0013) 2017; 26
Luo (10.1016/j.patrec.2021.07.021_bib0015) 2018; 30
Yang (10.1016/j.patrec.2021.07.021_bib0031) 2020
Cheng (10.1016/j.patrec.2021.07.021_bib0033) 2017
Yang (10.1016/j.patrec.2021.07.021_bib0030) 2021
Kipf (10.1016/j.patrec.2021.07.021_sbref0023) 2017
Zhou (10.1016/j.patrec.2021.07.021_bib0040) 2004; 15
Zendehboudi (10.1016/j.patrec.2021.07.021_bib0005) 2018; 199
Fan (10.1016/j.patrec.2021.07.021_bib0035) 2018; 48
Shuman (10.1016/j.patrec.2021.07.021_bib0026) 2018; 4
Kearns (10.1016/j.patrec.2021.07.021_bib0021) 1999
Fisher (10.1016/j.patrec.2021.07.021_bib0019) 1936; 7
Baudat (10.1016/j.patrec.2021.07.021_bib0020) 2000; 12
Narang (10.1016/j.patrec.2021.07.021_bib0043) 2012; 60
Caruana (10.1016/j.patrec.2021.07.021_bib0001) 2012; 44
Silva (10.1016/j.patrec.2021.07.021_bib0025) 2016
10.1016/j.patrec.2021.07.021_bib0024
Jensen (10.1016/j.patrec.2021.07.021_bib0017) 1996
Srivastava (10.1016/j.patrec.2021.07.021_bib0006) 2015
Liu (10.1016/j.patrec.2021.07.021_bib0022) 2012; 5
Lee (10.1016/j.patrec.2021.07.021_bib0041) 2016
Balcan (10.1016/j.patrec.2021.07.021_bib0029) 2005
10.1016/j.patrec.2021.07.021_bib0042
10.1016/j.patrec.2021.07.021_bib0009
Ghahramani (10.1016/j.patrec.2021.07.021_bib0010) 2003
Zhu (10.1016/j.patrec.2021.07.021_bib0011) 2007
Belkin (10.1016/j.patrec.2021.07.021_bib0038) 2004; 56
Borkar (10.1016/j.patrec.2021.07.021_bib0028) 2014
10.1016/j.patrec.2021.07.021_bib0027
Hastie (10.1016/j.patrec.2021.07.021_bib0008) 2009
Zhou (10.1016/j.patrec.2021.07.021_bib0036) 2010; 24
10.1016/j.patrec.2021.07.021_bib0007
Iscen (10.1016/j.patrec.2021.07.021_bib0014) 2019
Parsons (10.1016/j.patrec.2021.07.021_bib0002) 2011; 43
Hou (10.1016/j.patrec.2021.07.021_bib0012) 2011; 22
Zhou (10.1016/j.patrec.2021.07.021_bib0039) 2004
Celorrio (10.1016/j.patrec.2021.07.021_bib0003) 2012; 27
Thrun (10.1016/j.patrec.2021.07.021_bib0016) 2004
References_xml – volume: 15
  start-page: 67
  year: 2004
  end-page: 68
  ident: bib0040
  article-title: A regularization framework for learning from graph data
  publication-title: Proceedings of the ICML Workshop on Statistical Relational Learning and its Connections to Other Fields
– year: 2016
  ident: bib0025
  article-title: Machine Learning in Complex Networks, Volume 2016
– start-page: 16775
  year: 2021
  end-page: 16784
  ident: bib0030
  article-title: SelfSAGCN: self-supervised semantic alignment for graph convolution network
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 27
  start-page: 433
  year: 2012
  end-page: 467
  ident: bib0003
  article-title: A review of machine learning for automated planning
  publication-title: Knowl. Eng. Rev.
– volume: 48
  start-page: 1486
  year: 2018
  end-page: 1499
  ident: bib0035
  article-title: Semi-supervised learning through label propagation on geodesics
  publication-title: IEEE Trans. Cybern.
– start-page: 843
  year: 2015
  end-page: 852
  ident: bib0006
  article-title: Unsupervised learning of video representations using LSTMs
  publication-title: Proceedings of the International Conference on Machine Learning
– year: 2020
  ident: bib0031
  article-title: Heterogeneous graph attention network for unsupervised multiple-target domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 5
  start-page: 1
  year: 2012
  end-page: 167
  ident: bib0022
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 44
  start-page: 9
  year: 2012
  ident: bib0001
  article-title: A survey of emerging approaches to spam filtering
  publication-title: ACM Comput. Surv. (CSUR)
– year: 1996
  ident: bib0017
  article-title: An Introduction to Bayesian Networks, Volume 210
– reference: E. Culurciello, J. Bates, A. Dundar, J. Carrasco, C. Farabet, Clustering learning for robotic vision, arXiv preprint arXiv:1301.2820(2013).
– volume: 12
  start-page: 2385
  year: 2000
  end-page: 2404
  ident: bib0020
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput.
– volume: 4
  start-page: 736
  year: 2018
  end-page: 751
  ident: bib0026
  article-title: Distributed signal processing via Chebyshev polynomial approximation
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– volume: 24
  start-page: 415
  year: 2010
  end-page: 439
  ident: bib0036
  article-title: Semi-supervised learning by disagreement
  publication-title: Knowl. Inf. Syst.
– reference: Q. Li, S. An, L. Li, W. Liu, Semi-supervised learning on graph with an alternating diffusion process, arXiv preprint arXiv:1902.06105(2019).
– volume: 67
  start-page: 3938
  year: 2019
  end-page: 3953
  ident: bib0032
  article-title: Nonsubsampled graph filter banks: theory and distributed algorithms
  publication-title: IEEE Trans. Signal Process.
– year: 1999
  ident: bib0021
  article-title: Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference, Volume 11
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib0019
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– start-page: 912
  year: 2003
  end-page: 919
  ident: bib0037
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proceedings of the 20th International Conference on Machine Learning (ICML-03)
– volume: 56
  start-page: 209
  year: 2004
  end-page: 239
  ident: bib0038
  article-title: Semi-supervised learning on Riemannian manifolds
  publication-title: Mach. Learn.
– volume: 60
  start-page: 2786
  year: 2012
  end-page: 2799
  ident: bib0043
  article-title: Perfect reconstruction two-channel wavelet filter banks for graph structured data
  publication-title: IEEE Trans. Signal Process.
– volume: 43
  start-page: 10:1
  year: 2011
  end-page: 10:59
  ident: bib0002
  article-title: Auctions and bidding: a guide for computer scientists
  publication-title: ACM Comput. Surv.
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0018
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
– reference: G.-J. Qi, J. Luo, Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods, arXiv preprint arXiv:1903.11260(2019).
– reference: A. Mokhtari, A. Ribeiro, Adaptive newton method for empirical risk minimization to statistical accuracy, arXiv preprint arXiv:1605.07659(2016).
– year: 2017
  ident: bib0023
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings
– start-page: 72
  year: 2003
  end-page: 112
  ident: bib0010
  article-title: Unsupervised learning
  publication-title: Proceedings of the Summer School on Machine Learning
– volume: 30
  start-page: 1943
  year: 2018
  end-page: 1956
  ident: bib0015
  article-title: Semi-supervised feature selection via insensitive sparse regression with application to video semantic recognition
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1246
  year: 2016
  end-page: 1257
  ident: bib0041
  article-title: Gradient descent only converges to minimizers
  publication-title: Proceedings of the Conference on Learning Theory
– reference: K. Avrachenkov, V. Borkar, K. Saboo, Parallel and distributed approaches for graph based semi-supervised learning, arXiv preprint arXiv:1509.01349(2015).
– start-page: 6
  year: 2005
  ident: bib0029
  article-title: Person identification in webcam images: an application of semi-supervised learning
  publication-title: Proceedings of the ICML 2005 Workshop on Learning with Partially Classified Training Data, volume 2
– year: 2009
  ident: bib0008
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– start-page: 1
  year: 2007
  end-page: 135
  ident: bib0011
  article-title: Semi-supervised learning tutorial
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 26
  start-page: 4283
  year: 2017
  end-page: 4296
  ident: bib0013
  article-title: Scalable multi-view semi-supervised classification via adaptive regression
  publication-title: IEEE Trans. Image Process.
– start-page: 5070
  year: 2019
  end-page: 5079
  ident: bib0014
  article-title: Label Propagation for Deep Semi-supervised Learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2006
  end-page: 12
  ident: bib0004
  article-title: Introduction to Semi-Supervised Learning
– year: 2004
  ident: bib0016
  article-title: Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference, Volume 16
– start-page: 321
  year: 2004
  end-page: 328
  ident: bib0039
  article-title: Learning with local and global consistency
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– reference: A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature vectors and structured data, arXiv preprint arXiv:1306.6709(2013).
– volume: 22
  start-page: 420
  year: 2011
  end-page: 432
  ident: bib0012
  article-title: Semisupervised learning using negative labels
  publication-title: IEEE Trans. Neural Netw.
– start-page: 14
  year: 2014
  end-page: 24
  ident: bib0028
  article-title: Reinforcement learning for matrix computations: Pagerank as an example
  publication-title: Proceedings of the International Conference on Distributed Computing and Internet Technology
– year: 2017
  ident: bib0033
  article-title: Spatially distributed sampling and reconstruction
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: bib0005
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review
  publication-title: J. Clean. Prod.
– year: 2009
  ident: 10.1016/j.patrec.2021.07.021_bib0008
– start-page: 72
  year: 2003
  ident: 10.1016/j.patrec.2021.07.021_bib0010
  article-title: Unsupervised learning
– volume: 4
  start-page: 736
  issue: 4
  year: 2018
  ident: 10.1016/j.patrec.2021.07.021_bib0026
  article-title: Distributed signal processing via Chebyshev polynomial approximation
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– year: 1996
  ident: 10.1016/j.patrec.2021.07.021_bib0017
– year: 2017
  ident: 10.1016/j.patrec.2021.07.021_sbref0023
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 27
  start-page: 433
  issue: 4
  year: 2012
  ident: 10.1016/j.patrec.2021.07.021_bib0003
  article-title: A review of machine learning for automated planning
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988891200001X
– year: 2004
  ident: 10.1016/j.patrec.2021.07.021_bib0016
– ident: 10.1016/j.patrec.2021.07.021_bib0034
– volume: 22
  start-page: 420
  issue: 3
  year: 2011
  ident: 10.1016/j.patrec.2021.07.021_bib0012
  article-title: Semisupervised learning using negative labels
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2099237
– volume: 30
  start-page: 1943
  issue: 10
  year: 2018
  ident: 10.1016/j.patrec.2021.07.021_bib0015
  article-title: Semi-supervised feature selection via insensitive sparse regression with application to video semantic recognition
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2810286
– volume: 56
  start-page: 209
  issue: 1–3
  year: 2004
  ident: 10.1016/j.patrec.2021.07.021_bib0038
  article-title: Semi-supervised learning on Riemannian manifolds
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000033120.25363.1e
– volume: 15
  start-page: 67
  year: 2004
  ident: 10.1016/j.patrec.2021.07.021_bib0040
  article-title: A regularization framework for learning from graph data
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.patrec.2021.07.021_bib0022
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth. Lect. Hum. Lang. Technol.
– ident: 10.1016/j.patrec.2021.07.021_bib0024
– volume: 48
  start-page: 1486
  issue: 5
  year: 2018
  ident: 10.1016/j.patrec.2021.07.021_bib0035
  article-title: Semi-supervised learning through label propagation on geodesics
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2703610
– start-page: 912
  year: 2003
  ident: 10.1016/j.patrec.2021.07.021_bib0037
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
– volume: 12
  start-page: 2385
  issue: 10
  year: 2000
  ident: 10.1016/j.patrec.2021.07.021_bib0020
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput.
  doi: 10.1162/089976600300014980
– volume: 43
  start-page: 10:1
  issue: 2
  year: 2011
  ident: 10.1016/j.patrec.2021.07.021_bib0002
  article-title: Auctions and bidding: a guide for computer scientists
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1883612.1883617
– volume: 199
  start-page: 272
  year: 2018
  ident: 10.1016/j.patrec.2021.07.021_bib0005
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.164
– ident: 10.1016/j.patrec.2021.07.021_bib0007
– volume: 26
  start-page: 4283
  issue: 9
  year: 2017
  ident: 10.1016/j.patrec.2021.07.021_bib0013
  article-title: Scalable multi-view semi-supervised classification via adaptive regression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2717191
– start-page: 321
  year: 2004
  ident: 10.1016/j.patrec.2021.07.021_bib0039
  article-title: Learning with local and global consistency
– ident: 10.1016/j.patrec.2021.07.021_bib0009
– start-page: 5070
  year: 2019
  ident: 10.1016/j.patrec.2021.07.021_bib0014
  article-title: Label Propagation for Deep Semi-supervised Learning
– ident: 10.1016/j.patrec.2021.07.021_bib0027
  doi: 10.1007/978-3-319-49787-7_4
– volume: 60
  start-page: 2786
  issue: 6
  year: 2012
  ident: 10.1016/j.patrec.2021.07.021_bib0043
  article-title: Perfect reconstruction two-channel wavelet filter banks for graph structured data
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2188718
– start-page: 1246
  year: 2016
  ident: 10.1016/j.patrec.2021.07.021_bib0041
  article-title: Gradient descent only converges to minimizers
– start-page: 14
  year: 2014
  ident: 10.1016/j.patrec.2021.07.021_bib0028
  article-title: Reinforcement learning for matrix computations: Pagerank as an example
– start-page: 6
  year: 2005
  ident: 10.1016/j.patrec.2021.07.021_bib0029
  article-title: Person identification in webcam images: an application of semi-supervised learning
– volume: 24
  start-page: 415
  issue: 3
  year: 2010
  ident: 10.1016/j.patrec.2021.07.021_bib0036
  article-title: Semi-supervised learning by disagreement
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0209-z
– volume: 44
  start-page: 9
  issue: 2
  year: 2012
  ident: 10.1016/j.patrec.2021.07.021_bib0001
  article-title: A survey of emerging approaches to spam filtering
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2089125.2089129
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.patrec.2021.07.021_bib0018
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– start-page: 1
  year: 2007
  ident: 10.1016/j.patrec.2021.07.021_bib0011
  article-title: Semi-supervised learning tutorial
– start-page: 1
  year: 2006
  ident: 10.1016/j.patrec.2021.07.021_sbref0004
– start-page: 16775
  year: 2021
  ident: 10.1016/j.patrec.2021.07.021_bib0030
  article-title: SelfSAGCN: self-supervised semantic alignment for graph convolution network
– year: 2020
  ident: 10.1016/j.patrec.2021.07.021_bib0031
  article-title: Heterogeneous graph attention network for unsupervised multiple-target domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 10.1016/j.patrec.2021.07.021_bib0019
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– year: 1999
  ident: 10.1016/j.patrec.2021.07.021_bib0021
– year: 2017
  ident: 10.1016/j.patrec.2021.07.021_bib0033
  article-title: Spatially distributed sampling and reconstruction
  publication-title: Appl. Comput. Harmon. Anal.
– year: 2016
  ident: 10.1016/j.patrec.2021.07.021_bib0025
– ident: 10.1016/j.patrec.2021.07.021_bib0042
– volume: 67
  start-page: 3938
  issue: 15
  year: 2019
  ident: 10.1016/j.patrec.2021.07.021_bib0032
  article-title: Nonsubsampled graph filter banks: theory and distributed algorithms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2922160
– start-page: 843
  year: 2015
  ident: 10.1016/j.patrec.2021.07.021_bib0006
  article-title: Unsupervised learning of video representations using LSTMs
SSID ssj0006398
Score 2.3748147
Snippet •A distributed algorithm is proposed to solve graph semi-supervised learning problem by leveraging the graph topology.•The convergence of the distributed...
Graph semi-supervised learning (GSSL) plays an important role in data classification by leveraging the similarity across the graph topology and convex...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 48
SubjectTerms Algorithms
Computational geometry
Computer applications
Convexity
Distributed algorithm
Graph semi-supervised learning (GSSL)
Graph signal processing
Laplacian
Machine learning
Regularization
Semi-supervised learning
Topology optimization
Title A distributed algorithm for graph semi-supervised learning
URI https://dx.doi.org/10.1016/j.patrec.2021.07.021
https://www.proquest.com/docview/2592347795
Volume 151
WOSCitedRecordID wos000700283100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZQxwEOAwaIwUA5cENGie3ghFsFQ1sPYxJD6s1ybGft1KXV0kyFv57nX2nVCg2QuKSVm7iR35fnzy9-30PorQKSr2ulsWUfmGWmxFVREaw1o6piUta6dsUm-NlZMR6X52FLUOvKCfCmKVarcvFfTQ1tYGybOvsX5u47hQb4DkaHI5gdjn9k-KF96eLrWAGZlLPLOaz_J9duP6GTp37XmuspbruFdRMtnBMqR1xuEtVzp7tpc13CBiNAycyl_rRrJIRY82e5mvYYG01D66hrfk5M6NWFpuedo8py3fa1-xHj1ZMA0xCBIFlIxevDYjupMT5SCR7YZr36icZ714IDnade8LF3v0Fw1jtQL7sZpmIvL73j5H284eq9fVtgrAwlyZwAq0-13pLP_mZvxN4HsWKz3BY43iM8L4sB2hueHo9H_bwNXK2ISvD2gpho6XYD7v7X74jM1pTueMrFY7QfFhjJ0APjCbpnmgP0KBbvSIIvP0APN5Qon6KPw2QDNUmPmgRQkzjUJFuoSSJqnqHvX44vPp3gUFYDK0rZEpNKFR_su_oUHkqZalg0pmXFjaI10FNFs5pkJje8qnVJtYYfJFNUAdVWTCud0-do0Mwb8wIlVrOr5ppUQDRZqblkJtW5NpIbWmhDDhGNYyRU0Jy3pU9mIm4uvBJ-ZIUdWZFyAR-HCPdXLbzmyh3n8zj8IvBGzwcFIOaOK4-itUR4hFtBclj0MM7L_OU_d_wKPVg_KUdosLzpzGt0X90up-3Nm4C8X_kSn5s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+algorithm+for+graph+semi-supervised+learning&rft.jtitle=Pattern+recognition+letters&rft.au=Huang%2C+Daxin&rft.au=Jiang%2C+Junzheng&rft.au=Zhou%2C+Fang&rft.au=Ouyang%2C+Shan&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=151&rft.spage=48&rft.epage=54&rft_id=info:doi/10.1016%2Fj.patrec.2021.07.021&rft.externalDocID=S0167865521002713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon