Multi-type relational clustering for enterprise cyber-security networks

•Propose fast novel hard clustering algorithm for multi-type relational data.•Extend the popular NNDSVD method initialisation of our algorithm.•Propose internal performance clustering measure for assessing cluster similarity. Several cyber-security data sources are collected in enterprise networks p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 149; s. 172 - 178
Hlavní autoři: Riddle-Workman, Elizabeth, Evangelou, Marina, Adams, Niall M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.09.2021
Elsevier Science Ltd
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Propose fast novel hard clustering algorithm for multi-type relational data.•Extend the popular NNDSVD method initialisation of our algorithm.•Propose internal performance clustering measure for assessing cluster similarity. Several cyber-security data sources are collected in enterprise networks providing relational information between different types of nodes in the network, namely computers, users and ports. This relational data can be expressed as adjacency matrices detailing inter-type relationships corresponding to relations between nodes of different types and intra-type relationships showing relationships between nodes of the same type. In this paper, we propose an extension of Non-Negative Matrix Tri-Factorisation (NMTF) to simultaneously cluster nodes based on their intra and inter-type relationships. Existing NMTF based clustering methods suffer from long computational times due to large matrix multiplications. In our approach, we enforce stricter cluster indicator constraints on the factor matrices to circumvent these issues. Additionally, to make our proposed approach less susceptible to variation in results due to random initialisation, we propose a novel initialisation procedure based on Non-Negative Double Singular Value Decomposition for multi-type relational clustering. Finally, a new performance measure suitable for assessing clustering performance on unlabelled multi-type relational data sets is presented. Our algorithm is assessed on both a simulated and real computer network against standard approaches showing its strong performance.
AbstractList •Propose fast novel hard clustering algorithm for multi-type relational data.•Extend the popular NNDSVD method initialisation of our algorithm.•Propose internal performance clustering measure for assessing cluster similarity. Several cyber-security data sources are collected in enterprise networks providing relational information between different types of nodes in the network, namely computers, users and ports. This relational data can be expressed as adjacency matrices detailing inter-type relationships corresponding to relations between nodes of different types and intra-type relationships showing relationships between nodes of the same type. In this paper, we propose an extension of Non-Negative Matrix Tri-Factorisation (NMTF) to simultaneously cluster nodes based on their intra and inter-type relationships. Existing NMTF based clustering methods suffer from long computational times due to large matrix multiplications. In our approach, we enforce stricter cluster indicator constraints on the factor matrices to circumvent these issues. Additionally, to make our proposed approach less susceptible to variation in results due to random initialisation, we propose a novel initialisation procedure based on Non-Negative Double Singular Value Decomposition for multi-type relational clustering. Finally, a new performance measure suitable for assessing clustering performance on unlabelled multi-type relational data sets is presented. Our algorithm is assessed on both a simulated and real computer network against standard approaches showing its strong performance.
Several cyber-security data sources are collected in enterprise networks providing relational information between different types of nodes in the network, namely computers, users and ports. This relational data can be expressed as adjacency matrices detailing inter-type relationships corresponding to relations between nodes of different types and intra-type relationships showing relationships between nodes of the same type. In this paper, we propose an extension of Non-Negative Matrix Tri-Factorisation (NMTF) to simultaneously cluster nodes based on their intra and inter-type relationships. Existing NMTF based clustering methods suffer from long computational times due to large matrix multiplications. In our approach, we enforce stricter cluster indicator constraints on the factor matrices to circumvent these issues. Additionally, to make our proposed approach less susceptible to variation in results due to random initialisation, we propose a novel initialisation procedure based on Non-Negative Double Singular Value Decomposition for multi-type relational clustering. Finally, a new performance measure suitable for assessing clustering performance on unlabelled multi-type relational data sets is presented. Our algorithm is assessed on both a simulated and real computer network against standard approaches showing its strong performance.
Author Riddle-Workman, Elizabeth
Evangelou, Marina
Adams, Niall M.
Author_xml – sequence: 1
  givenname: Elizabeth
  surname: Riddle-Workman
  fullname: Riddle-Workman, Elizabeth
  email: elizabeth.riddle-workman13@imperial.ac.uk
  organization: Department of Mathematics, Imperial College London, London SW7 2AZ, UK
– sequence: 2
  givenname: Marina
  surname: Evangelou
  fullname: Evangelou, Marina
  organization: Department of Mathematics, Imperial College London, London SW7 2AZ, UK
– sequence: 3
  givenname: Niall M.
  surname: Adams
  fullname: Adams, Niall M.
  organization: Department of Mathematics, Imperial College London, London SW7 2AZ, UK
BookMark eNqFkE9LxDAUxIMouLv6DTwUPLfmT9OmHgRZdBVWvOg5ZNNXSa1NTVKl396s9eRBT8OD3wzzZokOe9sDQmcEZwST4qLNBhUc6IxiSjLMsygHaEFESdOS5fkhWkSsTEXB-TFaet9ijAtWiQXaPIxdMGmYBkgcdCoY26su0d3oAzjTvySNdQn08Ric8ZDoaQcu9aBHZ8KU9BA-rXv1J-ioUZ2H0x9doefbm6f1Xbp93Nyvr7epZiwPKalz2vAKcN0UuaBM0VqQQlQ814yXNW92WvGSE0qwKJq6YpWqFNVNySmDSLMVOp9zB2ffR_BBtnZ0sbKXlBeCEUJFHql8prSz3jtoZCz_ptwkCZb7yWQr58nkfjKJuYwSbZe_bNqE70mCU6b7z3w1myG-_2HASa8N9BpqE9Ega2v-DvgCJeOMaw
CitedBy_id crossref_primary_10_1016_j_patcog_2025_111654
crossref_primary_10_1007_s11540_025_09891_9
crossref_primary_10_1016_j_patcog_2025_112454
crossref_primary_10_1049_ntw2_12043
Cites_doi 10.1145/1077464.1077466
10.1016/0378-8733(83)90021-7
10.1007/BF02288367
10.1016/j.patrec.2019.01.016
10.1109/TII.2014.2308433
10.1016/j.patrec.2019.02.018
10.1080/01969727408546059
10.1371/journal.pone.0217994
10.1007/BF01908075
10.1016/j.patcog.2007.09.010
10.1016/j.patrec.2015.05.019
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 2021
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2021.05.021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 178
ExternalDocumentID 10_1016_j_patrec_2021_05_021
S0167865521002051
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-1d42f59e0df64823a2d8168954c357d5fbca575121086fd939a9a2cf7523e3a23
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680052800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Sun Nov 09 07:11:41 EST 2025
Tue Nov 18 22:11:32 EST 2025
Sat Nov 29 07:20:58 EST 2025
Fri Feb 23 02:35:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-type relational clustering
Cyber-security
Network clustering
Non-negative matrix factorization
41A10
65D05
65D17
41A05
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-1d42f59e0df64823a2d8168954c357d5fbca575121086fd939a9a2cf7523e3a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2568311284
PQPubID 2047552
PageCount 7
ParticipantIDs proquest_journals_2568311284
crossref_primary_10_1016_j_patrec_2021_05_021
crossref_citationtrail_10_1016_j_patrec_2021_05_021
elsevier_sciencedirect_doi_10_1016_j_patrec_2021_05_021
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Banerjee, Basu, Merugu (bib0002) 2007
Atif, Qazi, Gillis (bib0001) 2019; 122
Long, Zhang, Yu (bib0017) 2007
Wang, Nie, Huang, Ding (bib0024) 2011
Boutsidis, Gallopoulos (bib0003) 2008; 41
Jain, Dubes (bib0011) 1988
Lee, Seung (bib0014) 2001
Strehl, Ghosh (bib0022) 2003; 3
Ding, He, Simon (bib0005) 2005
Liu, Wang, Gao, Han (bib0015) 2013
Luo, Zhou, Xia, Zhu (bib0027) 2014; 10
Yan, Wang, Zeng, Hong (bib0028) 2020; 130
Qiao (bib0021) 2015; 63
Čopar, Zupan, Zitnik (bib0004) 2019; 14
Wang, Yu, Domeniconi, Wang, Zhang, Guo (bib0026) 2019
Zha, He, Ding, Simon, Gu (bib0030) 2001
Kumar, Rai, Daumé III (bib0012) 2011
Turcotte, Kent, Hash (bib0023) 2017
Holland, Laskey, Leinhardt (bib0009) 1983; 5
Hubert, Arabic (bib0010) 1985; 2
Dunn (bib0007) 1974; 4
Eckart, Young (bib0008) 1936; 1
Pei, Chakraborty, Sycara (bib0020) 2015
Long, Zhang, Yu (bib0016) 2005
Lang (bib0013) 1995
Ni, Tong, Fan, Zhang (bib0018) 2015
Wang, Nie, Huang, Makedon (bib0025) 2011
Ding, Li, Peng, Park (bib0006) 2006
Pauca, Shahnaz, Berry, Plemmons (bib0019) 2004
Yuster, Zwick (bib0029) 2005; 1
Long (10.1016/j.patrec.2021.05.021_bib0016) 2005
Pauca (10.1016/j.patrec.2021.05.021_bib0019) 2004
Wang (10.1016/j.patrec.2021.05.021_bib0025) 2011
Ding (10.1016/j.patrec.2021.05.021_bib0006) 2006
Liu (10.1016/j.patrec.2021.05.021_bib0015) 2013
Yuster (10.1016/j.patrec.2021.05.021_bib0029) 2005; 1
Jain (10.1016/j.patrec.2021.05.021_bib0011) 1988
Holland (10.1016/j.patrec.2021.05.021_bib0009) 1983; 5
Čopar (10.1016/j.patrec.2021.05.021_bib0004) 2019; 14
Pei (10.1016/j.patrec.2021.05.021_bib0020) 2015
Yan (10.1016/j.patrec.2021.05.021_bib0028) 2020; 130
Boutsidis (10.1016/j.patrec.2021.05.021_bib0003) 2008; 41
Luo (10.1016/j.patrec.2021.05.021_bib0027) 2014; 10
Qiao (10.1016/j.patrec.2021.05.021_bib0021) 2015; 63
Turcotte (10.1016/j.patrec.2021.05.021_bib0023) 2017
Banerjee (10.1016/j.patrec.2021.05.021_bib0002) 2007
Hubert (10.1016/j.patrec.2021.05.021_bib0010) 1985; 2
Wang (10.1016/j.patrec.2021.05.021_bib0026) 2019
Lee (10.1016/j.patrec.2021.05.021_bib0014) 2001
Dunn (10.1016/j.patrec.2021.05.021_bib0007) 1974; 4
Ding (10.1016/j.patrec.2021.05.021_bib0005) 2005
Long (10.1016/j.patrec.2021.05.021_bib0017) 2007
Zha (10.1016/j.patrec.2021.05.021_bib0030) 2001
Lang (10.1016/j.patrec.2021.05.021_bib0013) 1995
Strehl (10.1016/j.patrec.2021.05.021_bib0022) 2003; 3
Atif (10.1016/j.patrec.2021.05.021_bib0001) 2019; 122
Wang (10.1016/j.patrec.2021.05.021_bib0024) 2011
Eckart (10.1016/j.patrec.2021.05.021_bib0008) 1936; 1
Kumar (10.1016/j.patrec.2021.05.021_bib0012) 2011
Ni (10.1016/j.patrec.2021.05.021_bib0018) 2015
References_xml – start-page: 313
  year: 2019
  end-page: 329
  ident: bib0026
  article-title: Selective matrix factorization for multi-relational data fusion
  publication-title: Database Systems for Advanced Applications
– volume: 5
  start-page: 109
  year: 1983
  end-page: 137
  ident: bib0009
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
– start-page: 556
  year: 2001
  end-page: 562
  ident: bib0014
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 1
  start-page: 211
  year: 1936
  end-page: 218
  ident: bib0008
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
– volume: 130
  start-page: 299
  year: 2020
  end-page: 305
  ident: bib0028
  article-title: Adaptive multi-view subspace clustering for high-dimensional data
  publication-title: Pattern Recognit. Lett.
– volume: 3
  start-page: 583
  year: 2003
  end-page: 617
  ident: bib0022
  article-title: Cluster ensembles — a knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: bib0023
  article-title: Unified host and network data set
  publication-title: Technical Report, arXiv:1708.07518
– volume: 14
  year: 2019
  ident: bib0004
  article-title: Fast optimization of non-negative matrix tri-factorization
  publication-title: PLOS ONE
– start-page: 470
  year: 2007
  end-page: 479
  ident: bib0017
  article-title: A probabilistic framework for relational clustering
  publication-title: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’07
– start-page: 126
  year: 2006
  ident: bib0006
  article-title: Orthogonal nonnegative matrix tri-factorizations for clustering
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’06
– volume: 122
  start-page: 53
  year: 2019
  end-page: 59
  ident: bib0001
  article-title: Improved SVD-based initialization for nonnegative matrix factorization using low-rank correction
  publication-title: Pattern Recognit. Lett.
– start-page: 2083
  year: 2015
  end-page: 2089
  ident: bib0020
  article-title: Nonnegative matrix tri-factorization with graph regularization for community detection in social networks
  publication-title: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  ident: bib0007
  article-title: Well-separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
– start-page: 835
  year: 2015
  end-page: 844
  ident: bib0018
  article-title: Flexible and robust multi-network clustering
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’15
– start-page: 145
  year: 2007
  end-page: 156
  ident: bib0002
  article-title: Multi-way clustering on relation graphs
  publication-title: Proceedings of the SIAM International Conference on Data Mining
– start-page: 252
  year: 2013
  end-page: 260
  ident: bib0015
  article-title: Multi-view clustering via joint nonnegative matrix factorization
  publication-title: Proceedings of the 2013 SIAM International Conference on Data Mining
– start-page: 635
  year: 2005
  end-page: 640
  ident: bib0016
  article-title: Co-clustering by block value decomposition
  publication-title: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining - KDD ’05
– start-page: 331
  year: 1995
  end-page: 339
  ident: bib0013
  article-title: NewsWeeder: learning to filter netnews
  publication-title: Proceedings of the Machine Learning
– start-page: 774
  year: 2011
  end-page: 783
  ident: bib0024
  article-title: Nonnegative matrix tri-factorization based high-order co-clustering and its fast implementation
  publication-title: Proceedings of the IEEE International Conference on Data Mining, ICDM
– start-page: 606
  year: 2005
  end-page: 610
  ident: bib0005
  article-title: On the equivalence of nonnegative matrix factorization and spectral clustering
  publication-title: Proceedings of the 2005 SIAM International Conference on Data Mining
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: bib0010
  article-title: Comparing partitions
  publication-title: J. Classif.
– start-page: 452
  year: 2004
  end-page: 456
  ident: bib0019
  article-title: Text mining using non-negative matrix factorizations
  publication-title: Proceedings of the SIAM International Conference on Data Mining
– volume: 10
  start-page: 1273
  year: 2014
  end-page: 1284
  ident: bib0027
  article-title: An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 1413
  year: 2011
  end-page: 1421
  ident: bib0012
  article-title: Co-regularized multi-view spectral clustering
  publication-title: NIPS’11 Proceedings of the 24th International Conference on Neural Information Processing Systems
– volume: 63
  start-page: 71
  year: 2015
  end-page: 77
  ident: bib0021
  article-title: New SVD based initialization strategy for non-negative matrix factorization
  publication-title: Pattern Recognit. Lett.
– start-page: 1553
  year: 2011
  end-page: 1558
  ident: bib0025
  article-title: Fast nonnegative matrix tri-factorization for large-scale data co-clustering
  publication-title: Proceedings of the IJCAI International Joint Conference on Artificial Intelligence
– start-page: 1057
  year: 2001
  end-page: 1064
  ident: bib0030
  article-title: Spectral relaxation for k-means clustering
  publication-title: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic
– year: 1988
  ident: bib0011
  article-title: Algorithms for Clustering Data
– volume: 41
  start-page: 1350
  year: 2008
  end-page: 1362
  ident: bib0003
  article-title: SVD based initialization: a head start for nonnegative matrix factorization
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 2
  year: 2005
  end-page: 13
  ident: bib0029
  article-title: Fast sparse matrix multiplication
  publication-title: ACM Trans. Algorithms
– start-page: 145
  year: 2007
  ident: 10.1016/j.patrec.2021.05.021_bib0002
  article-title: Multi-way clustering on relation graphs
– start-page: 1057
  year: 2001
  ident: 10.1016/j.patrec.2021.05.021_bib0030
  article-title: Spectral relaxation for k-means clustering
– volume: 1
  start-page: 2
  issue: 1
  year: 2005
  ident: 10.1016/j.patrec.2021.05.021_bib0029
  article-title: Fast sparse matrix multiplication
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1077464.1077466
– volume: 5
  start-page: 109
  issue: 2
  year: 1983
  ident: 10.1016/j.patrec.2021.05.021_bib0009
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(83)90021-7
– volume: 1
  start-page: 211
  issue: 3
  year: 1936
  ident: 10.1016/j.patrec.2021.05.021_bib0008
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– start-page: 331
  year: 1995
  ident: 10.1016/j.patrec.2021.05.021_bib0013
  article-title: NewsWeeder: learning to filter netnews
– start-page: 606
  year: 2005
  ident: 10.1016/j.patrec.2021.05.021_bib0005
  article-title: On the equivalence of nonnegative matrix factorization and spectral clustering
– volume: 130
  start-page: 299
  year: 2020
  ident: 10.1016/j.patrec.2021.05.021_bib0028
  article-title: Adaptive multi-view subspace clustering for high-dimensional data
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.01.016
– start-page: 835
  year: 2015
  ident: 10.1016/j.patrec.2021.05.021_bib0018
  article-title: Flexible and robust multi-network clustering
– start-page: 252
  year: 2013
  ident: 10.1016/j.patrec.2021.05.021_bib0015
  article-title: Multi-view clustering via joint nonnegative matrix factorization
– start-page: 774
  year: 2011
  ident: 10.1016/j.patrec.2021.05.021_bib0024
  article-title: Nonnegative matrix tri-factorization based high-order co-clustering and its fast implementation
– start-page: 635
  year: 2005
  ident: 10.1016/j.patrec.2021.05.021_bib0016
  article-title: Co-clustering by block value decomposition
– start-page: 470
  year: 2007
  ident: 10.1016/j.patrec.2021.05.021_bib0017
  article-title: A probabilistic framework for relational clustering
– volume: 10
  start-page: 1273
  issue: 2
  year: 2014
  ident: 10.1016/j.patrec.2021.05.021_bib0027
  article-title: An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2308433
– volume: 122
  start-page: 53
  year: 2019
  ident: 10.1016/j.patrec.2021.05.021_bib0001
  article-title: Improved SVD-based initialization for nonnegative matrix factorization using low-rank correction
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.018
– start-page: 556
  year: 2001
  ident: 10.1016/j.patrec.2021.05.021_bib0014
  article-title: Algorithms for non-negative matrix factorization
– year: 2017
  ident: 10.1016/j.patrec.2021.05.021_bib0023
  article-title: Unified host and network data set
– start-page: 2083
  year: 2015
  ident: 10.1016/j.patrec.2021.05.021_bib0020
  article-title: Nonnegative matrix tri-factorization with graph regularization for community detection in social networks
– year: 1988
  ident: 10.1016/j.patrec.2021.05.021_bib0011
– start-page: 1413
  year: 2011
  ident: 10.1016/j.patrec.2021.05.021_bib0012
  article-title: Co-regularized multi-view spectral clustering
– volume: 3
  start-page: 583
  year: 2003
  ident: 10.1016/j.patrec.2021.05.021_bib0022
  article-title: Cluster ensembles — a knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– start-page: 452
  year: 2004
  ident: 10.1016/j.patrec.2021.05.021_bib0019
  article-title: Text mining using non-negative matrix factorizations
– volume: 4
  start-page: 95
  issue: 1
  year: 1974
  ident: 10.1016/j.patrec.2021.05.021_bib0007
  article-title: Well-separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
  doi: 10.1080/01969727408546059
– volume: 14
  issue: 6
  year: 2019
  ident: 10.1016/j.patrec.2021.05.021_bib0004
  article-title: Fast optimization of non-negative matrix tri-factorization
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0217994
– start-page: 126
  year: 2006
  ident: 10.1016/j.patrec.2021.05.021_bib0006
  article-title: Orthogonal nonnegative matrix tri-factorizations for clustering
– start-page: 313
  year: 2019
  ident: 10.1016/j.patrec.2021.05.021_bib0026
  article-title: Selective matrix factorization for multi-relational data fusion
– volume: 2
  start-page: 193
  year: 1985
  ident: 10.1016/j.patrec.2021.05.021_bib0010
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 41
  start-page: 1350
  year: 2008
  ident: 10.1016/j.patrec.2021.05.021_bib0003
  article-title: SVD based initialization: a head start for nonnegative matrix factorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.09.010
– start-page: 1553
  year: 2011
  ident: 10.1016/j.patrec.2021.05.021_bib0025
  article-title: Fast nonnegative matrix tri-factorization for large-scale data co-clustering
– volume: 63
  start-page: 71
  year: 2015
  ident: 10.1016/j.patrec.2021.05.021_bib0021
  article-title: New SVD based initialization strategy for non-negative matrix factorization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.05.019
SSID ssj0006398
Score 2.3694038
Snippet •Propose fast novel hard clustering algorithm for multi-type relational data.•Extend the popular NNDSVD method initialisation of our algorithm.•Propose...
Several cyber-security data sources are collected in enterprise networks providing relational information between different types of nodes in the network,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 172
SubjectTerms Algorithms
Clustering
Computer applications
Computer networks
Computers
Cyber-security
Cybersecurity
Multi-type relational clustering
Network clustering
Nodes
Non-negative matrix factorization
Singular value decomposition
Title Multi-type relational clustering for enterprise cyber-security networks
URI https://dx.doi.org/10.1016/j.patrec.2021.05.021
https://www.proquest.com/docview/2568311284
Volume 149
WOSCitedRecordID wos000680052800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5woFBAFArKgRtyldjO2j5WqA-QWFWiSHuz8rDRVlFa7aOUf89MbCdLV6iAxCW7imIn8nyxJ-NvviHknWSF1alw1FpnqZgUOS2YrWlaS1WqSmglfLEJOZ2q2Uyfj0bfYy7MTSPbVt3e6uv_amo4B8bG1Nm_MHffKZyA_2B0OILZ4fhHhu9SamkXWl0EphtqgDRrlESIvEnruYZzJKv_KO2CLkMdu_et54UvN73W806EExNfAtsIINN0eUADU74LdFCMvYeY6iZhrHfav9nmah1yhELhbs8WCCGf6Ry3yj8fbgYjWNazrUKEbCtLxgctYTLGBFi_5viJVknw7LnXfuxnYq9eGubSzNf0Ccty5iv9bM34PvhweYhbBxY1KVnWSbH6vOs7Wtpf8FHwSRgqz6aYer_DZK7VmOwcfTyefeoXcXDcVJSFxwYx67KjBm7f63dezZ31vXNaLp6Qx-FrIznyKHlKRrbdI7uxkkcSJvY98mhDlvIZOR0glAwQSgYIJQChZIBQ8iuEkgih5-TryfHFhzMaCm7QinOxolktmMu1TWs3EYrxgtVYlkXnouK5rHNXVgXu0zEsz-VqzXWhC1Y5mTNu4Wr-gozbq9a-JIkQaWnBtU8L7kSmnapSBt1hQKGYpKzcJzwOmKmCGj0WRWlMpB1eGj_MBofZpLmBn31C-1bXXo3lnutltIUJHqX3FA3A556WB9F0JrzcSwOfB4pn6NG9-ueOX5OHw4tzQMarxdq-IQ-qm9V8uXgbYPgT1Q2o8Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-type+relational+clustering+for+enterprise+cyber-security+networks&rft.jtitle=Pattern+recognition+letters&rft.au=Riddle-Workman%2C+Elizabeth&rft.au=Evangelou%2C+Marina&rft.au=Adams%2C+Niall+M.&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=149&rft.spage=172&rft.epage=178&rft_id=info:doi/10.1016%2Fj.patrec.2021.05.021&rft.externalDocID=S0167865521002051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon