Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology

Hazards potentially affect the safety of people on construction sites include falls from heights (FFH), trench and scaffold collapse, electric shock and arc flash/arc blast, and failure to use proper personal protective equipment. Such hazards are significant contributors to accidents and fatalities...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automation in construction Ročník 119; s. 103310
Hlavní autoři: Fang, Weili, Ma, Ling, Love, Peter E.D., Luo, Hanbin, Ding, Lieyun, Zhou, Ao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.11.2020
Elsevier BV
Témata:
ISSN:0926-5805, 1872-7891
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hazards potentially affect the safety of people on construction sites include falls from heights (FFH), trench and scaffold collapse, electric shock and arc flash/arc blast, and failure to use proper personal protective equipment. Such hazards are significant contributors to accidents and fatalities. Computer vision has been used to automatically detect safety hazards to assist with the mitigation of accidents and fatalities. However, as safety regulations are subject to change and become more stringent prevailing computer vision approaches will become obsolete as they are unable to accommodate the adjustments that are made to practice. This paper integrates computer vision algorithms with ontology models to develop a knowledge graph that can automatically and accurately recognise hazards while adhering to safety regulations, even when they are subjected to change. Our developed knowledge graph consists of: (1) an ontological model for hazards: (2) knowledge extraction; and (3) knowledge inference for hazard identification. We focus on the detection of hazards associated with FFH as an example to illustrate our proposed approach. We also demonstrate that our approach can successfully detect FFH hazards in varying contexts from images. •A knowledge graph is developed to automatically identify hazards.•Computer vision algorithms and ontology are used to develop knowledge graph.•Examples are used to illustrate the feasibility of the proposed approach.
AbstractList Hazards potentially affect the safety of people on construction sites include falls from heights (FFH), trench and scaffold collapse, electric shock and arc flash/arc blast, and failure to use proper personal protective equipment. Such hazards are significant contributors to accidents and fatalities. Computer vision has been used to automatically detect safety hazards to assist with the mitigation of accidents and fatalities. However, as safety regulations are subject to change and become more stringent prevailing computer vision approaches will become obsolete as they are unable to accommodate the adjustments that are made to practice. This paper integrates computer vision algorithms with ontology models to develop a knowledge graph that can automatically and accurately recognise hazards while adhering to safety regulations, even when they are subjected to change. Our developed knowledge graph consists of: (1) an ontological model for hazards: (2) knowledge extraction; and (3) knowledge inference for hazard identification. We focus on the detection of hazards associated with FFH as an example to illustrate our proposed approach. We also demonstrate that our approach can successfully detect FFH hazards in varying contexts from images.
Hazards potentially affect the safety of people on construction sites include falls from heights (FFH), trench and scaffold collapse, electric shock and arc flash/arc blast, and failure to use proper personal protective equipment. Such hazards are significant contributors to accidents and fatalities. Computer vision has been used to automatically detect safety hazards to assist with the mitigation of accidents and fatalities. However, as safety regulations are subject to change and become more stringent prevailing computer vision approaches will become obsolete as they are unable to accommodate the adjustments that are made to practice. This paper integrates computer vision algorithms with ontology models to develop a knowledge graph that can automatically and accurately recognise hazards while adhering to safety regulations, even when they are subjected to change. Our developed knowledge graph consists of: (1) an ontological model for hazards: (2) knowledge extraction; and (3) knowledge inference for hazard identification. We focus on the detection of hazards associated with FFH as an example to illustrate our proposed approach. We also demonstrate that our approach can successfully detect FFH hazards in varying contexts from images. •A knowledge graph is developed to automatically identify hazards.•Computer vision algorithms and ontology are used to develop knowledge graph.•Examples are used to illustrate the feasibility of the proposed approach.
ArticleNumber 103310
Author Luo, Hanbin
Ding, Lieyun
Fang, Weili
Love, Peter E.D.
Ma, Ling
Zhou, Ao
Author_xml – sequence: 1
  givenname: Weili
  surname: Fang
  fullname: Fang, Weili
  email: weili.fang@curtin.edu.au
  organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 430074, Hubei, China
– sequence: 2
  givenname: Ling
  surname: Ma
  fullname: Ma, Ling
  email: l.ma@ucl.ac.uk
  organization: The Bartlett School of Construction and Project Management, University College London, London WC1E 6BT, United Kingdom
– sequence: 3
  givenname: Peter E.D.
  surname: Love
  fullname: Love, Peter E.D.
  email: p.love@curtin.edu.au
  organization: Dept. of Civil and Mechanical Engineering, Curtin University, Perth, WA 6845, Australia
– sequence: 4
  givenname: Hanbin
  surname: Luo
  fullname: Luo, Hanbin
  email: luohbcem@hust.edu.cn
  organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 430074, Hubei, China
– sequence: 5
  givenname: Lieyun
  surname: Ding
  fullname: Ding, Lieyun
  email: dly@hust.edu.cn
  organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 430074, Hubei, China
– sequence: 6
  givenname: Ao
  surname: Zhou
  fullname: Zhou, Ao
  organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 430074, Hubei, China
BookMark eNqFkE1LAzEQhoMoWD_-gYcFz1vzsU02HgQpfqHgRc8hzs62KTWpSbZSf727rCcPehpmeJ8Z5jki-z54JOSM0SmjTF6sprbLEPyUUz6MhGB0j0xYrXipas32yYRqLstZTWeH5CilFaVUUaknZPnow-camwUWi2g3y6INsXAN-uzanfOLYmm_bGxSEXzRX0g5dpBd3ySXMV0WDz5jD-YhCuF902WMxdalIfLp8rLncliHxe6EHLR2nfD0px6T19ubl_l9-fR89zC_fipBiCqXzL7V7UyCoFLZSgNvUDcUEEG34g205kIJy2hbSaiqCiwoRmtpLedCwkyLY3I-7t3E8NFhymYVuuj7k4ZXkqpaKTmkqjEFMaQUsTWb6N5t3BlGzeDUrMzo1AxOzei0xy5_YeCyHXzkaN36P_hqhLF_f-swmgQOPWDjIkI2TXB_L_gG37GZKA
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3253807
crossref_primary_10_1016_j_autcon_2025_106117
crossref_primary_10_1016_j_jsasus_2025_05_004
crossref_primary_10_1016_j_autcon_2022_104696
crossref_primary_10_1016_j_jlp_2024_105525
crossref_primary_10_1016_j_oceaneng_2025_120536
crossref_primary_10_3390_app14010057
crossref_primary_10_1016_j_aei_2025_103454
crossref_primary_10_1111_mice_12632
crossref_primary_10_1016_j_autcon_2025_106476
crossref_primary_10_1007_s12583_022_1641_1
crossref_primary_10_1016_j_jobe_2021_103036
crossref_primary_10_1016_j_rcim_2022_102489
crossref_primary_10_1016_j_autcon_2024_105938
crossref_primary_10_1016_j_autcon_2024_105539
crossref_primary_10_1007_s11831_021_09576_9
crossref_primary_10_1016_j_aei_2023_102194
crossref_primary_10_1016_j_jobe_2024_108609
crossref_primary_10_3390_app11178130
crossref_primary_10_3390_info15070390
crossref_primary_10_1108_ECAM_12_2024_1751
crossref_primary_10_1155_2022_4183059
crossref_primary_10_3390_buildings13082093
crossref_primary_10_1016_j_autcon_2022_104580
crossref_primary_10_1016_j_ssci_2022_106043
crossref_primary_10_3390_su15064812
crossref_primary_10_1109_ACCESS_2024_3375879
crossref_primary_10_1016_j_autcon_2023_104961
crossref_primary_10_3390_buildings13112812
crossref_primary_10_3390_buildings11090409
crossref_primary_10_1016_j_aei_2025_103869
crossref_primary_10_1016_j_ssci_2025_106813
crossref_primary_10_1016_j_autcon_2025_106181
crossref_primary_10_1007_s12583_022_1724_z
crossref_primary_10_1061__ASCE_CP_1943_5487_0001064
crossref_primary_10_1108_ECAM_03_2023_0255
crossref_primary_10_1155_2023_6047489
crossref_primary_10_1016_j_measurement_2024_114960
crossref_primary_10_1088_1755_1315_861_5_052098
crossref_primary_10_1016_j_asoc_2025_113374
crossref_primary_10_3390_smartcities7040086
crossref_primary_10_1016_j_dibe_2025_100645
crossref_primary_10_1016_j_compind_2021_103448
crossref_primary_10_1016_j_aei_2023_102215
crossref_primary_10_1016_j_aej_2025_07_037
crossref_primary_10_1038_s44359_025_00047_z
crossref_primary_10_1016_j_aei_2022_101688
crossref_primary_10_1016_j_autcon_2024_105686
crossref_primary_10_1111_tgis_12911
crossref_primary_10_1016_j_autcon_2021_103617
crossref_primary_10_1371_journal_pone_0294130
crossref_primary_10_1109_TITS_2023_3240104
crossref_primary_10_1007_s13349_025_00977_z
crossref_primary_10_1016_j_autcon_2024_105451
crossref_primary_10_1016_j_autcon_2025_106206
crossref_primary_10_3390_su142013618
crossref_primary_10_3390_app13084666
crossref_primary_10_1016_j_autcon_2022_104443
crossref_primary_10_1145_3655599
crossref_primary_10_1016_j_aei_2024_102507
crossref_primary_10_1016_j_psep_2023_01_060
crossref_primary_10_1016_j_aei_2022_101699
crossref_primary_10_1016_j_autcon_2023_105158
crossref_primary_10_1061_JCEMD4_COENG_15493
crossref_primary_10_1016_j_pacfin_2025_102924
crossref_primary_10_1061_JCEMD4_COENG_14436
crossref_primary_10_1061_JCEMD4_COENG_14839
crossref_primary_10_3390_buildings13102419
crossref_primary_10_1016_j_autcon_2022_104252
crossref_primary_10_1016_j_jobe_2023_107049
crossref_primary_10_1109_TEM_2021_3093166
crossref_primary_10_3389_fbuil_2020_575738
crossref_primary_10_1016_j_autcon_2023_105227
crossref_primary_10_1016_j_autcon_2022_104530
crossref_primary_10_3390_rs17152679
crossref_primary_10_1109_EMR_2023_3342200
crossref_primary_10_1016_j_aei_2025_103655
crossref_primary_10_1016_j_autcon_2022_104535
crossref_primary_10_1080_10447318_2024_2387421
crossref_primary_10_3390_math11061499
crossref_primary_10_1016_j_autcon_2023_105224
crossref_primary_10_3390_su14106126
crossref_primary_10_1016_j_autcon_2024_105739
crossref_primary_10_3390_buildings14113403
crossref_primary_10_1016_j_autcon_2025_106302
crossref_primary_10_1016_j_engappai_2022_105742
crossref_primary_10_1016_j_autcon_2025_106305
crossref_primary_10_1145_3522586
crossref_primary_10_3390_buildings12060857
crossref_primary_10_1016_j_autcon_2022_104302
crossref_primary_10_1016_j_autcon_2025_106301
crossref_primary_10_1016_j_compind_2022_103610
crossref_primary_10_1016_j_aei_2024_102446
crossref_primary_10_3390_app15042218
crossref_primary_10_1016_j_compgeo_2024_106431
crossref_primary_10_1108_ECAM_05_2024_0622
crossref_primary_10_1177_15705838241312424
crossref_primary_10_1051_e3sconf_202340904002
crossref_primary_10_1038_s41598_023_34342_1
crossref_primary_10_1016_j_autcon_2022_104191
crossref_primary_10_1016_j_knosys_2022_110115
crossref_primary_10_1016_j_aei_2024_103075
crossref_primary_10_1016_j_autcon_2025_106419
crossref_primary_10_1108_ECAM_02_2025_0298
crossref_primary_10_3390_buildings13020377
crossref_primary_10_3390_su132413579
crossref_primary_10_1016_j_autcon_2024_105800
crossref_primary_10_3390_buildings14092879
crossref_primary_10_1109_ACCESS_2024_3423697
crossref_primary_10_1007_s40747_020_00208_6
crossref_primary_10_1061_JCEMD4_COENG_15310
crossref_primary_10_3390_app122110822
crossref_primary_10_1016_j_aei_2024_102650
crossref_primary_10_1016_j_jii_2023_100519
crossref_primary_10_1016_j_aei_2020_101164
crossref_primary_10_3390_buildings13071853
crossref_primary_10_1016_j_procs_2023_10_626
crossref_primary_10_1016_j_autcon_2025_106127
crossref_primary_10_1111_mice_13078
crossref_primary_10_1016_j_autcon_2021_103892
crossref_primary_10_1016_j_jenvman_2022_115685
crossref_primary_10_1016_j_aei_2025_103246
crossref_primary_10_3390_app12178574
crossref_primary_10_4018_IJKSS_325794
crossref_primary_10_1061_JMENEA_MEENG_5445
crossref_primary_10_1080_10803548_2025_2463224
crossref_primary_10_1080_09613218_2023_2238851
crossref_primary_10_1061__ASCE_CO_1943_7862_0002297
crossref_primary_10_1108_ECAM_08_2024_1066
crossref_primary_10_1016_j_engstruct_2023_116132
crossref_primary_10_3390_ijerph18137040
crossref_primary_10_1051_matecconf_202541103002
Cites_doi 10.1016/j.apergo.2018.01.007
10.1016/j.autcon.2013.10.020
10.1061/(ASCE)CP.1943-5487.0000094
10.1016/j.ssci.2016.04.008
10.1080/00140139.2019.1644379
10.1016/j.autcon.2012.06.001
10.1016/j.autcon.2018.02.018
10.1016/j.autcon.2017.02.009
10.1006/knac.1993.1008
10.1016/j.aei.2018.12.005
10.1016/j.autcon.2017.06.014
10.1007/978-3-030-01228-1_26
10.1016/j.aei.2018.05.003
10.1061/(ASCE)CP.1943-5487.0000125
10.1111/j.1467-8667.2010.00690.x
10.1016/j.aei.2015.03.009
10.1016/j.autcon.2012.03.003
10.1061/(ASCE)CO.1943-7862.0001767
10.1061/(ASCE)CP.1943-5487.0000027
10.1061/(ASCE)CP.1943-5487.0000594
10.1016/j.aei.2019.100980
10.1016/j.aei.2014.05.001
10.1016/S0926-5805(01)00061-9
10.1016/j.ssci.2017.08.015
10.1061/41020(339)47
10.3390/ijerph13070638
10.1023/B:VISI.0000029664.99615.94
10.1016/j.autcon.2019.103013
10.1108/14714170810888976
10.1016/j.patcog.2017.05.025
10.3390/s17081841
10.1061/(ASCE)CP.1943-5487.0000562
10.1061/(ASCE)CP.1943-5487.0000179
10.1016/j.autcon.2017.10.004
10.1109/TPAMI.2012.59
10.1016/j.autcon.2017.12.034
10.1016/j.autcon.2018.12.014
10.1038/nature14539
10.1016/j.autcon.2015.05.002
10.1016/j.autcon.2015.02.007
10.1080/01446193.2013.816435
10.1016/j.autcon.2017.05.002
10.1016/j.autcon.2017.11.002
10.1061/(ASCE)CO.1943-7862.0000116
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2020.103310
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2020_103310
S0926580519309082
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSZ
T5K
WUQ
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-1ab8f56c3067a49c2de9d0ceec9f3bc992373a10f46c444cac71086aa2236c593
ISICitedReferencesCount 150
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579045500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Sun Nov 09 06:02:26 EST 2025
Sat Nov 29 07:17:19 EST 2025
Tue Nov 18 22:39:58 EST 2025
Sun Apr 06 06:54:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Hazards
Safety
Ontology
Knowledge graph database
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-1ab8f56c3067a49c2de9d0ceec9f3bc992373a10f46c444cac71086aa2236c593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2460787769
PQPubID 2045277
ParticipantIDs proquest_journals_2460787769
crossref_primary_10_1016_j_autcon_2020_103310
crossref_citationtrail_10_1016_j_autcon_2020_103310
elsevier_sciencedirect_doi_10_1016_j_autcon_2020_103310
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Lee, Kim, Yu (bb0200) 2014; 41
Zhou, Goh, Shen (bb0315) 2016; 30
Ji, Xu, Yang, Yu (bb0165) 2013; 35
Wang, Boukamp, Elghamrawy (bb0290) 2011; 25
Ding, Fang, Luo, Love, Zhong, Ouyang (bb0050) 2018; 86
Johnpaul, Mathew (bb0170) 2017
Zhong, Li, Luo, Zhou, Fang, Xing (bb0140) 2020; 146
Gong, Caldas (bb0130) 2009; 24
Lingard (bb0220) 2013; 31
Xiao, Liu, Zhou, Jiang, Sun (bb0300) 2018
Zhang, Cao, Zhao (bb0310) 2017; 17
Jia, Issa (bb0160) 2015; 29
Fang, Ding, Luo, Love (bb0100) 2018; 91
Guo, Goh (bb0070) 2017; 82
Azar, McCabe (bb0010) 2012; 24
Anumba, Issa, Pan, Mutis (bb0005) 2008; 8
T. Elghamrawy, F. Boukamp, H.S. Kim, Ontology-based, semi-automatic framework for storing and retrieving on-site construction problem information — An RFID-based case study, in: Construction Research Congress, Seattle, Washington, United States, 2009, April5–7, pp. 457–466. doi
He, Gkioxari, Dollar, Girshick, R (bb0150) 2017
Deng, Dong, Socher, Li, Li (bb0045) 2009
Wang, Schmid (bb0285) 2013
Love, Smith, Teo (bb0205) 2018; 69
Fang, Love, Luo, Ding (bb0120) 2020; 43
Hadikusumo, Rowlinson (bb0135) 2002; 11
html2014 (January 17, 2015).
Kim, Kim, Kim (bb0185) 2016; 30
Nanni, Ghidoni, Brahnam (bb0260) 2017; 71
.
Martinez-Aires, Lopez-Alonso, Martinez-Rojas (bb0250) 2018; 101
Wang, Boukamp (bb0295) 2011; 25
Ding, Zhong, Wu, Luo (bb0055) 2016; 87
Goh, Chua (bb0060) 2010; 136
Kim, Kim (bb0175) 2018; 88
Kim, Kim, Kim (bb0180) 2017; 83
Guia, Soares, Bernardina (bb0065) 2017
Fang, Ding, Love, Luo, Li, Peña-Mora, Zhong, Zhou (bb0115) 2020; 110
Han, Golparvar-Fard (bb0145) 2015; 53
Dalal, Triggs (bb0040) 2005
Kim, Liu, Lee, Kamat (bb0190) 2019; 99
Azar, McCabe (bb0015) 2012; 26
Chi, Lin, Hsieh (bb0025) 2014; 28
El-Diraby (bb0085) 2014; 19
Fang, Zhong, Zhao, Love, Luo, Xue, Xu (bb0110) 2019; 39
Chi, Caldas (bb0030) 2011; 26
Nadhim, Hon, Xia, Stewart (bb0230) 2016; 13
K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos. Part of Advances in Neural Information Processing Systems (NIPS 2014).
Hippolyte, Rezgui, Li, Jayan, Howell (bb0155) 2018; 86
Gruber (bb0075) 1993; 5
Edwards (bb0080) 2017
Fang, Ding, Zhong, Love, Luo (bb0105) 2018; 37
LeCun, Bengio, Hinton (bb0195) 2015; 521
Yu, Guo, Ding, Li, Skitmore (bb0305) 2017; 82
Love, Teo, Smith, Ackermann, Zhou (bb0210) 2019; 62
Corry, Pauwels, Hu, Keane, O’Donnell (bb0035) 2015; 57
Park, Brilakis (bb0275) 2012; 28
Lowe (bb0225) 2004; 60
OSHA, Commonly used statistics
Nanni (10.1016/j.autcon.2020.103310_bb0260) 2017; 71
Zhang (10.1016/j.autcon.2020.103310_bb0310) 2017; 17
Lingard (10.1016/j.autcon.2020.103310_bb0220) 2013; 31
Ji (10.1016/j.autcon.2020.103310_bb0165) 2013; 35
Kim (10.1016/j.autcon.2020.103310_bb0180) 2017; 83
Nadhim (10.1016/j.autcon.2020.103310_bb0230) 2016; 13
Guia (10.1016/j.autcon.2020.103310_bb0065) 2017
Xiao (10.1016/j.autcon.2020.103310_bb0300) 2018
Fang (10.1016/j.autcon.2020.103310_bb0105) 2018; 37
Love (10.1016/j.autcon.2020.103310_bb0210) 2019; 62
10.1016/j.autcon.2020.103310_bb0280
Fang (10.1016/j.autcon.2020.103310_bb0100) 2018; 91
He (10.1016/j.autcon.2020.103310_bb0150) 2017
Han (10.1016/j.autcon.2020.103310_bb0145) 2015; 53
Edwards (10.1016/j.autcon.2020.103310_bb0080)
Ding (10.1016/j.autcon.2020.103310_bb0050) 2018; 86
Azar (10.1016/j.autcon.2020.103310_bb0015) 2012; 26
Jia (10.1016/j.autcon.2020.103310_bb0160) 2015; 29
Corry (10.1016/j.autcon.2020.103310_bb0035) 2015; 57
Wang (10.1016/j.autcon.2020.103310_bb0290) 2011; 25
Fang (10.1016/j.autcon.2020.103310_bb0120) 2020; 43
10.1016/j.autcon.2020.103310_bb0090
Goh (10.1016/j.autcon.2020.103310_bb0060) 2010; 136
Fang (10.1016/j.autcon.2020.103310_bb0110) 2019; 39
Wang (10.1016/j.autcon.2020.103310_bb0285) 2013
Azar (10.1016/j.autcon.2020.103310_bb0010) 2012; 24
Lee (10.1016/j.autcon.2020.103310_bb0200) 2014; 41
Gruber (10.1016/j.autcon.2020.103310_bb0075) 1993; 5
Kim (10.1016/j.autcon.2020.103310_bb0190) 2019; 99
Gong (10.1016/j.autcon.2020.103310_bb0130) 2009; 24
Kim (10.1016/j.autcon.2020.103310_bb0185) 2016; 30
LeCun (10.1016/j.autcon.2020.103310_bb0195) 2015; 521
Zhou (10.1016/j.autcon.2020.103310_bb0315) 2016; 30
Park (10.1016/j.autcon.2020.103310_bb0275) 2012; 28
Ding (10.1016/j.autcon.2020.103310_bb0055) 2016; 87
Dalal (10.1016/j.autcon.2020.103310_bb0040) 2005
Hadikusumo (10.1016/j.autcon.2020.103310_bb0135) 2002; 11
10.1016/j.autcon.2020.103310_bb0265
El-Diraby (10.1016/j.autcon.2020.103310_bb0085) 2014; 19
Johnpaul (10.1016/j.autcon.2020.103310_bb0170) 2017
Zhong (10.1016/j.autcon.2020.103310_bb0140) 2020; 146
Kim (10.1016/j.autcon.2020.103310_bb0175) 2018; 88
Chi (10.1016/j.autcon.2020.103310_bb0025) 2014; 28
Hippolyte (10.1016/j.autcon.2020.103310_bb0155) 2018; 86
Deng (10.1016/j.autcon.2020.103310_bb0045) 2009
Wang (10.1016/j.autcon.2020.103310_bb0295) 2011; 25
Anumba (10.1016/j.autcon.2020.103310_bb0005) 2008; 8
Lowe (10.1016/j.autcon.2020.103310_bb0225) 2004; 60
Martinez-Aires (10.1016/j.autcon.2020.103310_bb0250) 2018; 101
Chi (10.1016/j.autcon.2020.103310_bb0030) 2011; 26
Guo (10.1016/j.autcon.2020.103310_bb0070) 2017; 82
Yu (10.1016/j.autcon.2020.103310_bb0305) 2017; 82
Love (10.1016/j.autcon.2020.103310_bb0205) 2018; 69
Fang (10.1016/j.autcon.2020.103310_bb0115) 2020; 110
References_xml – volume: 86
  start-page: 210
  year: 2018
  end-page: 225
  ident: bb0155
  article-title: Ontology-driven development of web services to support district energy applications
  publication-title: Autom. Constr.
– volume: 28
  start-page: 381
  year: 2014
  end-page: 394
  ident: bb0025
  article-title: Using ontology-based text classification to assist job Hazard analysis
  publication-title: Adv. Eng. Inform.
– volume: 136
  start-page: 170
  year: 2010
  end-page: 178
  ident: bb0060
  article-title: Case-based reasoning approach to construction safety Hazard identification: adaptation and utilization
  publication-title: ASCE Journal of Construction Engineering and Management
– volume: 26
  start-page: 368
  year: 2011
  end-page: 380
  ident: bb0030
  article-title: Automated object identification using optical video cameras on construction sites
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 86
  start-page: 118
  year: 2018
  end-page: 124
  ident: bb0050
  article-title: X, a deep hybrid learning model to detect unsafe behavior: integrating convolution neural networks and long short-term memory
  publication-title: Autom. Constr.
– volume: 41
  start-page: 94
  year: 2014
  end-page: 105
  ident: bb0200
  article-title: BIM and ontology-based approach for building cost estimation
  publication-title: Autom. Constr.
– volume: 62
  start-page: 1273
  year: 2019
  end-page: 1288
  ident: bb0210
  article-title: The nature and severity of workplace injuries in construction: engendering operational benchmarking
  publication-title: Ergonomics
– volume: 25
  start-page: 442
  year: 2011
  end-page: 456
  ident: bb0295
  article-title: Ontology-based representation and reasoning framework for supporting job Hazard analysis
  publication-title: J. Comput. Civ. Eng.
– volume: 88
  start-page: 23
  year: 2018
  end-page: 30
  ident: bb0175
  article-title: 3D reconstruction of a concrete mixer truck for training object detectors
  publication-title: Autom. Constr.
– volume: 35
  start-page: 221
  year: 2013
  end-page: 231
  ident: bb0165
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3551
  year: 2013
  end-page: 3558
  ident: bb0285
  article-title: C, action recognition with improved trajectories
  publication-title: IEEE International Conference on Computer Vision
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bb0195
  article-title: Deep learning
  publication-title: Nature
– volume: 30
  year: 2016
  ident: bb0185
  article-title: Vision-based object-centric safety assessment using fuzzy inference: monitoring struck-by accidents with moving objects
  publication-title: J. Comput. Civ. Eng.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bb0225
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 11
  start-page: 501
  year: 2002
  end-page: 509
  ident: bb0135
  article-title: Integration of virtually real construction model and design-for-safety-process database
  publication-title: Autom. Constr.
– volume: 146
  year: 2020
  ident: bb0140
  article-title: Ontology-Based Semantic Modeling of Knowledge in Construction: Classification and Identification of Hazards Implied in Images
  publication-title: J. Constr. Eng. Manage.
– volume: 87
  start-page: 202
  year: 2016
  end-page: 213
  ident: bb0055
  article-title: Construction risk knowledge management in BIM using ontology and semantic web technology
  publication-title: Saf. Sci.
– start-page: 22
  year: 2017
  end-page: 29
  ident: bb0150
  article-title: Mask R-CNN
  publication-title: IEEE International Conference on Computer Vision
– year: 2017
  ident: bb0170
  article-title: A cypher query based NoSQL data mining on protein databases using Neo4j graph database
  publication-title: 4th International Conference on Advanced Computing and Communication Systems. Coimbatore, India
– volume: 101
  start-page: 11
  year: 2018
  end-page: 18
  ident: bb0250
  article-title: Building information modeling and safety management: a systematic review
  publication-title: Saf. Sci.
– volume: 25
  start-page: 331
  year: 2011
  end-page: 346
  ident: bb0290
  article-title: Ontology-based approach to context representation and reasoning for managing context-sensitive construction information
  publication-title: J. Comput. Civ. Eng.
– volume: 28
  start-page: 15
  year: 2012
  end-page: 25
  ident: bb0275
  article-title: Construction worker detection in video frames for initializing vision trackers
  publication-title: Autom. Constr.
– volume: 82
  start-page: 138
  year: 2017
  end-page: 153
  ident: bb0070
  article-title: Ontology for the design of active fall protection systems
  publication-title: Autom. Constr.
– volume: 31
  start-page: 505
  year: 2013
  end-page: 514
  ident: bb0220
  article-title: Occupational health and safety in the construction industry
  publication-title: Constr. Manag. Econ.
– volume: 53
  start-page: 44
  year: 2015
  end-page: 57
  ident: bb0145
  article-title: Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs
  publication-title: Autom. Constr.
– volume: 5
  start-page: 199
  year: 1993
  end-page: 220
  ident: bb0075
  article-title: A translation approach to portable ontologies
  publication-title: Knowl. Acquis.
– volume: 39
  start-page: 170
  year: 2019
  end-page: 177
  ident: bb0110
  article-title: A deep learning-based approach for mitigating falls from a height with computer vision: convolutional neural network
  publication-title: Adv. Eng. Inform.
– start-page: 432
  year: 2018
  end-page: 448
  ident: bb0300
  article-title: Unified perceptual parsing for scene understanding
  publication-title: Lect. Notes Comput. Sci
– volume: 99
  start-page: 168
  year: 2019
  end-page: 182
  ident: bb0190
  article-title: Remote proximity monitoring between mobile construction resources using camera-mounted UAVs
  publication-title: Autom. Constr.
– reference: OSHA, Commonly used statistics,
– volume: 71
  start-page: 158
  year: 2017
  end-page: 172
  ident: bb0260
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recogn.
– start-page: 886
  year: 2005
  end-page: 893
  ident: bb0040
  article-title: Histograms of oriented gradients for human detection
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 19
  start-page: 474
  year: 2014
  end-page: 493
  ident: bb0085
  article-title: Validating ontologies in informatics systems: approaches and lessons learned for AEC
  publication-title: Journal of Information Technology in Construction
– reference: T. Elghamrawy, F. Boukamp, H.S. Kim, Ontology-based, semi-automatic framework for storing and retrieving on-site construction problem information — An RFID-based case study, in: Construction Research Congress, Seattle, Washington, United States, 2009, April5–7, pp. 457–466. doi:
– volume: 69
  start-page: 104
  year: 2018
  end-page: 114
  ident: bb0205
  article-title: Putting into practice error management theory: unlearning and learning to manage action errors in construction
  publication-title: Appl. Ergon.
– volume: 57
  start-page: 249
  year: 2015
  end-page: 259
  ident: bb0035
  article-title: A performance assessment ontology for the environmental and energy management of buildings
  publication-title: Autom. Constr.
– volume: 91
  start-page: 53
  year: 2018
  end-page: 61
  ident: bb0100
  article-title: Falls from heights: a computer vision-based approach for safety harness detection
  publication-title: Autom. Constr.
– volume: 29
  start-page: 472
  year: 2015
  end-page: 482
  ident: bb0160
  article-title: Developing taxonomy for the domain ontology of construction contractual semantics: a case study on the AIA A201 document
  publication-title: Adv. Eng. Inform.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bb0045
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– reference: . html2014 (January 17, 2015).
– start-page: 351
  year: 2017
  end-page: 356
  ident: bb0065
  article-title: Graph database: Neo4j analysis
  publication-title: Proc. of the 19
– reference: K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos. Part of Advances in Neural Information Processing Systems (NIPS 2014).
– volume: 17
  start-page: 1481
  year: 2017
  ident: bb0310
  article-title: Applying sensor-based technology to improve construction safety management
  publication-title: Sensors
– volume: 13
  start-page: 638
  year: 2016
  ident: bb0230
  article-title: Falls from height in the construction industry: a critical review of the scientific literature
  publication-title: Int. J. Environ. Res. Public Health
– volume: 24
  start-page: 252
  year: 2009
  end-page: 263
  ident: bb0130
  article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations
  publication-title: ASCE Journal of Computing in Civil Engineering
– volume: 82
  start-page: 193
  year: 2017
  end-page: 206
  ident: bb0305
  article-title: An experimental study of real-time identification of construction workers’ unsafe behaviors
  publication-title: Autom. Constr.
– volume: 30
  year: 2016
  ident: bb0315
  article-title: Overview and analysis of ontology studies supporting development of the construction industry
  publication-title: J. Comput. Civ. Eng.
– volume: 8
  start-page: 218
  year: 2008
  end-page: 239
  ident: bb0005
  article-title: Ontology-based information and knowledge management in construction
  publication-title: Constr. Innov.
– volume: 83
  start-page: 390
  year: 2017
  end-page: 403
  ident: bb0180
  article-title: Image-based construction hazard avoidance system using augmented reality in a wearable device
  publication-title: Autom. Constr.
– reference: .
– volume: 37
  start-page: 139
  year: 2018
  end-page: 149
  ident: bb0105
  article-title: Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach
  publication-title: Adv. Eng. Inform.
– volume: 24
  start-page: 194
  year: 2012
  end-page: 202
  ident: bb0010
  article-title: Part based model and spatial-temporal reasoning to recognize hydraulic excavators in construction images and videos
  publication-title: Autom. Constr.
– volume: 43
  year: 2020
  ident: bb0120
  article-title: Computer vision for behavior-based safety in construction: a review and future directions
  publication-title: Adv. Eng. Inform.
– volume: 110
  year: 2020
  ident: bb0115
  article-title: Computer vision applications in construction safety assurance
  publication-title: Autom. Constr.
– year: 2017
  ident: bb0080
  article-title: Fatal injuries arising from accidents at work in Great Britain 2017 to 2018
– volume: 26
  start-page: 769
  year: 2012
  end-page: 781
  ident: bb0015
  article-title: Automated visual recognition of dump trucks in construction videos
  publication-title: ASCE Journal of Computing in Civil Engineering
– volume: 69
  start-page: 104
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0205
  article-title: Putting into practice error management theory: unlearning and learning to manage action errors in construction
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2018.01.007
– volume: 41
  start-page: 94
  year: 2014
  ident: 10.1016/j.autcon.2020.103310_bb0200
  article-title: BIM and ontology-based approach for building cost estimation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.10.020
– volume: 25
  start-page: 331
  year: 2011
  ident: 10.1016/j.autcon.2020.103310_bb0290
  article-title: Ontology-based approach to context representation and reasoning for managing context-sensitive construction information
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000094
– volume: 87
  start-page: 202
  year: 2016
  ident: 10.1016/j.autcon.2020.103310_bb0055
  article-title: Construction risk knowledge management in BIM using ontology and semantic web technology
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2016.04.008
– volume: 62
  start-page: 1273
  issue: 10
  year: 2019
  ident: 10.1016/j.autcon.2020.103310_bb0210
  article-title: The nature and severity of workplace injuries in construction: engendering operational benchmarking
  publication-title: Ergonomics
  doi: 10.1080/00140139.2019.1644379
– start-page: 886
  year: 2005
  ident: 10.1016/j.autcon.2020.103310_bb0040
  article-title: Histograms of oriented gradients for human detection
– volume: 28
  start-page: 15
  year: 2012
  ident: 10.1016/j.autcon.2020.103310_bb0275
  article-title: Construction worker detection in video frames for initializing vision trackers
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2012.06.001
– volume: 91
  start-page: 53
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0100
  article-title: Falls from heights: a computer vision-based approach for safety harness detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.02.018
– volume: 82
  start-page: 138
  year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0070
  article-title: Ontology for the design of active fall protection systems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.02.009
– volume: 5
  start-page: 199
  issue: 2
  year: 1993
  ident: 10.1016/j.autcon.2020.103310_bb0075
  article-title: A translation approach to portable ontologies
  publication-title: Knowl. Acquis.
  doi: 10.1006/knac.1993.1008
– start-page: 351
  year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0065
  article-title: Graph database: Neo4j analysis
– volume: 39
  start-page: 170
  year: 2019
  ident: 10.1016/j.autcon.2020.103310_bb0110
  article-title: A deep learning-based approach for mitigating falls from a height with computer vision: convolutional neural network
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.12.005
– volume: 83
  start-page: 390
  year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0180
  article-title: Image-based construction hazard avoidance system using augmented reality in a wearable device
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.06.014
– start-page: 432
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0300
  article-title: Unified perceptual parsing for scene understanding
  publication-title: Lect. Notes Comput. Sci
  doi: 10.1007/978-3-030-01228-1_26
– start-page: 248
  year: 2009
  ident: 10.1016/j.autcon.2020.103310_bb0045
  article-title: ImageNet: A large-scale hierarchical image database
– volume: 37
  start-page: 139
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0105
  article-title: Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.05.003
– start-page: 3551
  year: 2013
  ident: 10.1016/j.autcon.2020.103310_bb0285
  article-title: C, action recognition with improved trajectories
– volume: 25
  start-page: 442
  year: 2011
  ident: 10.1016/j.autcon.2020.103310_bb0295
  article-title: Ontology-based representation and reasoning framework for supporting job Hazard analysis
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000125
– volume: 19
  start-page: 474
  year: 2014
  ident: 10.1016/j.autcon.2020.103310_bb0085
  article-title: Validating ontologies in informatics systems: approaches and lessons learned for AEC
  publication-title: Journal of Information Technology in Construction
– ident: 10.1016/j.autcon.2020.103310_bb0280
– volume: 26
  start-page: 368
  year: 2011
  ident: 10.1016/j.autcon.2020.103310_bb0030
  article-title: Automated object identification using optical video cameras on construction sites
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2010.00690.x
– volume: 29
  start-page: 472
  year: 2015
  ident: 10.1016/j.autcon.2020.103310_bb0160
  article-title: Developing taxonomy for the domain ontology of construction contractual semantics: a case study on the AIA A201 document
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2015.03.009
– start-page: 22
  year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0150
  article-title: Mask R-CNN
– volume: 24
  start-page: 194
  year: 2012
  ident: 10.1016/j.autcon.2020.103310_bb0010
  article-title: Part based model and spatial-temporal reasoning to recognize hydraulic excavators in construction images and videos
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2012.03.003
– volume: 146
  year: 2020
  ident: 10.1016/j.autcon.2020.103310_bb0140
  article-title: Ontology-Based Semantic Modeling of Knowledge in Construction: Classification and Identification of Hazards Implied in Images
  publication-title: J. Constr. Eng. Manage.
  doi: 10.1061/(ASCE)CO.1943-7862.0001767
– volume: 24
  start-page: 252
  year: 2009
  ident: 10.1016/j.autcon.2020.103310_bb0130
  article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations
  publication-title: ASCE Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000027
– volume: 30
  issue: 6
  year: 2016
  ident: 10.1016/j.autcon.2020.103310_bb0315
  article-title: Overview and analysis of ontology studies supporting development of the construction industry
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000594
– volume: 43
  year: 2020
  ident: 10.1016/j.autcon.2020.103310_bb0120
  article-title: Computer vision for behavior-based safety in construction: a review and future directions
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.100980
– ident: 10.1016/j.autcon.2020.103310_bb0080
– volume: 28
  start-page: 381
  year: 2014
  ident: 10.1016/j.autcon.2020.103310_bb0025
  article-title: Using ontology-based text classification to assist job Hazard analysis
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2014.05.001
– volume: 11
  start-page: 501
  issue: 5
  year: 2002
  ident: 10.1016/j.autcon.2020.103310_bb0135
  article-title: Integration of virtually real construction model and design-for-safety-process database
  publication-title: Autom. Constr.
  doi: 10.1016/S0926-5805(01)00061-9
– volume: 101
  start-page: 11
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0250
  article-title: Building information modeling and safety management: a systematic review
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2017.08.015
– ident: 10.1016/j.autcon.2020.103310_bb0090
  doi: 10.1061/41020(339)47
– volume: 13
  start-page: 638
  issue: 7
  year: 2016
  ident: 10.1016/j.autcon.2020.103310_bb0230
  article-title: Falls from height in the construction industry: a critical review of the scientific literature
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph13070638
– ident: 10.1016/j.autcon.2020.103310_bb0265
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.autcon.2020.103310_bb0225
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 110
  year: 2020
  ident: 10.1016/j.autcon.2020.103310_bb0115
  article-title: Computer vision applications in construction safety assurance
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.103013
– volume: 8
  start-page: 218
  year: 2008
  ident: 10.1016/j.autcon.2020.103310_bb0005
  article-title: Ontology-based information and knowledge management in construction
  publication-title: Constr. Innov.
  doi: 10.1108/14714170810888976
– volume: 71
  start-page: 158
  year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0260
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.05.025
– volume: 17
  start-page: 1481
  issue: 8
  year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0310
  article-title: Applying sensor-based technology to improve construction safety management
  publication-title: Sensors
  doi: 10.3390/s17081841
– volume: 30
  year: 2016
  ident: 10.1016/j.autcon.2020.103310_bb0185
  article-title: Vision-based object-centric safety assessment using fuzzy inference: monitoring struck-by accidents with moving objects
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000562
– volume: 26
  start-page: 769
  year: 2012
  ident: 10.1016/j.autcon.2020.103310_bb0015
  article-title: Automated visual recognition of dump trucks in construction videos
  publication-title: ASCE Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000179
– volume: 86
  start-page: 210
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0155
  article-title: Ontology-driven development of web services to support district energy applications
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.10.004
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 10.1016/j.autcon.2020.103310_bb0165
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– volume: 88
  start-page: 23
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0175
  article-title: 3D reconstruction of a concrete mixer truck for training object detectors
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.12.034
– volume: 99
  start-page: 168
  year: 2019
  ident: 10.1016/j.autcon.2020.103310_bb0190
  article-title: Remote proximity monitoring between mobile construction resources using camera-mounted UAVs
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.12.014
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.autcon.2020.103310_bb0195
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 57
  start-page: 249
  year: 2015
  ident: 10.1016/j.autcon.2020.103310_bb0035
  article-title: A performance assessment ontology for the environmental and energy management of buildings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.05.002
– volume: 53
  start-page: 44
  year: 2015
  ident: 10.1016/j.autcon.2020.103310_bb0145
  article-title: Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.02.007
– volume: 31
  start-page: 505
  year: 2013
  ident: 10.1016/j.autcon.2020.103310_bb0220
  article-title: Occupational health and safety in the construction industry
  publication-title: Constr. Manag. Econ.
  doi: 10.1080/01446193.2013.816435
– year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0170
  article-title: A cypher query based NoSQL data mining on protein databases using Neo4j graph database
– volume: 82
  start-page: 193
  year: 2017
  ident: 10.1016/j.autcon.2020.103310_bb0305
  article-title: An experimental study of real-time identification of construction workers’ unsafe behaviors
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.05.002
– volume: 86
  start-page: 118
  year: 2018
  ident: 10.1016/j.autcon.2020.103310_bb0050
  article-title: X, a deep hybrid learning model to detect unsafe behavior: integrating convolution neural networks and long short-term memory
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.11.002
– volume: 136
  start-page: 170
  issue: 2
  year: 2010
  ident: 10.1016/j.autcon.2020.103310_bb0060
  article-title: Case-based reasoning approach to construction safety Hazard identification: adaptation and utilization
  publication-title: ASCE Journal of Construction Engineering and Management
  doi: 10.1061/(ASCE)CO.1943-7862.0000116
SSID ssj0007069
Score 2.639112
Snippet Hazards potentially affect the safety of people on construction sites include falls from heights (FFH), trench and scaffold collapse, electric shock and arc...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103310
SubjectTerms Accidents
Algorithms
Computer vision
Construction sites
Fatalities
Flashover
Hazard identification
Hazard mitigation
Hazards
Knowledge bases (artificial intelligence)
Knowledge graph database
Ontology
Regulations
Safety
Title Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology
URI https://dx.doi.org/10.1016/j.autcon.2020.103310
https://www.proquest.com/docview/2460787769
Volume 119
WOSCitedRecordID wos000579045500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007069
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWgQwIeEAwQg4H8wFvkKYkdO-ZtgqIN0ITEgL5FjpOwTFMy0W6a-PVcf7alQgMkXqIqbeyo59i5Prn3GKGXTa6bmsqMUCYawnjaEKkUI5rrQjPa0dxWpX35II6OytlMfvSC_txuJyCGoby6kuf_FWo4B2Cb0tm_gDs2CifgM4AOR4Adjn8E_PugkiXWjNrmEfa2HNeVNJ2oH6bQyrwl0OPSPzYxr5Ftftyhd5Dw5bh204fE1aA72dZYHkQxPjjYXixGVwWZ9OsNR4Z4Zfpr25_1SyHcCwPfYmbQeNnGxOFkuvdmL35zYWXdAzXU3i7cqxWwNM3W1IrNMhqnReacFGVarE3LbirdmOKd2nBqEnyMYmA6Mc4B1GfHrptnfzJNm5YhTk3N7u430VYuCllO0Nb-4XT2Lj61RcqdL6O_lVBmaXMBN_v6XRjzywPdRinH99E9v7zA-44WD9CNdthGt0P1-Xwb3V0xoHyITiJZsCULBrLgFbJgTxY8DngVU2zJ8gqvUAUHqmBHFWyoggNVHqHPb6fHrw-I33uDaErZgmSqLruCa7OiVEzqvGllk0JEpWVHay1hXSCoytKOcc0Y00oLs2eXUhBuwjCX9DGaDOPQPkGYtTDiO16oOjPLcS0hhNSlYtBPwyWXO4iGv7LS3pje7I9yVoUMxNPKAVAZACoHwA4i8apzZ8xyze9FQKnywaULGisg1jVX7gZQKz_O51UO0xo86wSXT_-54WfoznKI7KIJYNg-R7f05aKff3_hCfoTkxGt-g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+graph+for+identifying+hazards+on+construction+sites%3A+Integrating+computer+vision+with+ontology&rft.jtitle=Automation+in+construction&rft.au=Fang%2C+Weili&rft.au=Ma%2C+Ling&rft.au=Love%2C+Peter+E.D.&rft.au=Luo%2C+Hanbin&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.volume=119&rft_id=info:doi/10.1016%2Fj.autcon.2020.103310&rft.externalDocID=S0926580519309082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon