On Onboard LiDAR-Based Flying Object Detection

A new robust and accurate approach for the detection and localization of flying objects with the purpose of highly dynamic aerial interception and agile multirobot interaction is presented in this article. The approach is proposed for use on board of autonomous aerial vehicles equipped with a 3-D Li...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on robotics Ročník 41; s. 593 - 611
Hlavní autoři: Vrba, Matous, Walter, Viktor, Pritzl, Vaclav, Pliska, Michal, Baca, Tomas, Spurny, Vojtech, Hert, Daniel, Saska, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2025
Témata:
ISSN:1552-3098, 1941-0468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A new robust and accurate approach for the detection and localization of flying objects with the purpose of highly dynamic aerial interception and agile multirobot interaction is presented in this article. The approach is proposed for use on board of autonomous aerial vehicles equipped with a 3-D LiDAR sensor. It relies on a novel 3-D occupancy voxel mapping method for the target detection that provides high localization accuracy and robustness with respect to varying environments and appearance changes of the target. In combination with a proposed cluster-based multitarget tracker, sporadic false positives are suppressed, state estimation of the target is provided, and the detection latency is negligible. This makes the system suitable for tasks of agile multirobot interaction, such as autonomous aerial interception or formation control where fast, precise, and robust relative localization of other robots is crucial. We evaluate the viability and performance of the system in simulated and real-world experiments which demonstrate that at a range of <inline-formula><tex-math notation="LaTeX">\text{20} \,\text{m}</tex-math></inline-formula>, our system is capable of reliably detecting a microscale UAV with an almost <inline-formula><tex-math notation="LaTeX">\text{100} \%</tex-math></inline-formula> recall, <inline-formula><tex-math notation="LaTeX">\text{0.2} \,\text{m}</tex-math></inline-formula> accuracy, and <inline-formula><tex-math notation="LaTeX">\text{20} \,\text{ms}</tex-math></inline-formula> delay.
AbstractList A new robust and accurate approach for the detection and localization of flying objects with the purpose of highly dynamic aerial interception and agile multirobot interaction is presented in this article. The approach is proposed for use on board of autonomous aerial vehicles equipped with a 3-D LiDAR sensor. It relies on a novel 3-D occupancy voxel mapping method for the target detection that provides high localization accuracy and robustness with respect to varying environments and appearance changes of the target. In combination with a proposed cluster-based multitarget tracker, sporadic false positives are suppressed, state estimation of the target is provided, and the detection latency is negligible. This makes the system suitable for tasks of agile multirobot interaction, such as autonomous aerial interception or formation control where fast, precise, and robust relative localization of other robots is crucial. We evaluate the viability and performance of the system in simulated and real-world experiments which demonstrate that at a range of <inline-formula><tex-math notation="LaTeX">\text{20} \,\text{m}</tex-math></inline-formula>, our system is capable of reliably detecting a microscale UAV with an almost <inline-formula><tex-math notation="LaTeX">\text{100} \%</tex-math></inline-formula> recall, <inline-formula><tex-math notation="LaTeX">\text{0.2} \,\text{m}</tex-math></inline-formula> accuracy, and <inline-formula><tex-math notation="LaTeX">\text{20} \,\text{ms}</tex-math></inline-formula> delay.
Author Baca, Tomas
Vrba, Matous
Walter, Viktor
Hert, Daniel
Spurny, Vojtech
Pritzl, Vaclav
Pliska, Michal
Saska, Martin
Author_xml – sequence: 1
  givenname: Matous
  orcidid: 0000-0002-4823-8291
  surname: Vrba
  fullname: Vrba, Matous
  email: matous.vrba@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
– sequence: 2
  givenname: Viktor
  orcidid: 0000-0001-8693-6261
  surname: Walter
  fullname: Walter, Viktor
  email: viktor.walter@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
– sequence: 3
  givenname: Vaclav
  orcidid: 0000-0002-7248-6666
  surname: Pritzl
  fullname: Pritzl, Vaclav
  email: vaclav.pritzl@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
– sequence: 4
  givenname: Michal
  orcidid: 0009-0006-7205-0455
  surname: Pliska
  fullname: Pliska, Michal
  email: michal.pliska@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
– sequence: 5
  givenname: Tomas
  orcidid: 0000-0001-9649-8277
  surname: Baca
  fullname: Baca, Tomas
  email: tomas.baca@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
– sequence: 6
  givenname: Vojtech
  orcidid: 0000-0002-9019-1634
  surname: Spurny
  fullname: Spurny, Vojtech
  email: vojtech.spurny@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
– sequence: 7
  givenname: Daniel
  orcidid: 0000-0003-1637-6806
  surname: Hert
  fullname: Hert, Daniel
  email: daniel.hert@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
– sequence: 8
  givenname: Martin
  orcidid: 0000-0001-7106-3816
  surname: Saska
  fullname: Saska, Martin
  email: martin.saska@fel.cvut.cz
  organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
BookMark eNp9jz1PwzAQhi1UJNrCzsCQP5Bg-_yVsbQUkCJFqsps2c4FuSoJSrL035OoHSoGlntveJ_TPQsya9oGCXlkNGOM5s_7XZlxykUGcpy5uCFzlguWUqHMbNyl5CnQ3NyRRd8f6NShMCdZ2SRl41vXVUkRN6td-uJ6rJLt8RSbr6T0BwxDssFhjNg29-S2dsceHy65JJ_b1_36PS3Kt4_1qkgDgBhS5lQIOQOokGMlmBNCU19LV5laCNDGca-18goM5VQbLz3WtVbIpDLAAiyJOt8NXdv3HdY2xMFNHwydi0fLqJ2s7WhtJ2t7sR5B-gf86eK3607_IU9nJCLiVV1LwxXALzhTYoo
CODEN ITREAE
CitedBy_id crossref_primary_10_1109_LRA_2025_3562786
crossref_primary_10_3390_app15020947
crossref_primary_10_3390_drones9080549
crossref_primary_10_1109_TRO_2024_3522155
crossref_primary_10_1016_j_measurement_2025_118040
Cites_doi 10.1109/LRA.2022.3147337
10.1109/ICUAS54217.2022.9836116
10.1109/TVT.2020.2964110
10.1016/j.adhoc.2020.102324
10.1002/rob.22019
10.1023/B:STCO.0000035304.20635.31
10.1109/LRA.2019.2927130
10.1007/s10846-021-01462-7
10.1007/s13218-010-0059-6
10.1109/CVPR.2017.261
10.1016/j.ssci.2021.105273
10.1109/ICCV.2019.00937
10.1109/ICRA.2011.5980567
10.1109/TMTT.2018.2889045
10.1109/TPAMI.2016.2564408
10.3390/drones6080185
10.1109/CVPR42600.2020.00178
10.1109/lra.2024.3451768
10.1109/LRA.2020.3013861
10.1109/LRA.2018.2889348
10.1109/ACCESS.2020.2971938
10.1109/LRA.2021.3101877
10.1007/s10846-023-01879-2
10.1109/SSRR50563.2020.9292612
10.1109/icpr48806.2021.9413241
10.1007/s10514-012-9321-0
10.1016/j.robot.2021.103970
10.1007/s10846-021-01383-5
10.1109/ICUAS48674.2020.9213883
10.1109/LRA.2020.2972819
10.23919/IRS.2018.8447942
10.1109/CVPR.2016.609
10.1109/ROBOT.1985.1087316
10.1109/LRA.2021.3098304
10.1109/LRA.2022.3145498
10.1117/12.2518427
10.55417/fr.2022009
10.1002/rob.22021
10.15607/RSS.2014.X.007
10.3390/s22041453
10.1109/AVSS.2017.8078558
10.1109/IROS.2017.8202315
10.1109/IMOC.2007.4404382
10.1016/j.robot.2020.103649
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TRO.2024.3502494
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 611
ExternalDocumentID 10_1109_TRO_2024_3502494
10758263
Genre orig-research
GrantInformation_xml – fundername: European Commission; European Union
  funderid: 10.13039/501100000780
– fundername: CTU in Prague
  grantid: SGS23/177/OHK3/3T/13
– fundername: Czech Science Foundation (GAČR)
  grantid: 23-07517S
– fundername: Robotics and advanced industrial production
  grantid: CZ.02.01.01/00/22_008/0004590
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c334t-1a6cc9133de2ed41a4470bf5ad8f44378a2b776b63802078b5beff76e156831c3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380653000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Sat Nov 29 01:47:35 EST 2025
Tue Nov 18 22:43:55 EST 2025
Wed Aug 27 02:30:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-1a6cc9133de2ed41a4470bf5ad8f44378a2b776b63802078b5beff76e156831c3
ORCID 0000-0001-8693-6261
0000-0001-7106-3816
0000-0002-9019-1634
0000-0001-9649-8277
0000-0003-1637-6806
0000-0002-7248-6666
0000-0002-4823-8291
0009-0006-7205-0455
PageCount 19
ParticipantIDs ieee_primary_10758263
crossref_citationtrail_10_1109_TRO_2024_3502494
crossref_primary_10_1109_TRO_2024_3502494
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
Guennebaud (ref34) 2010
ref14
ref11
ref10
Pritzl (ref51) 2023
ref17
ref16
ref19
ref18
Qi (ref27) 2017; 30
Pritzl (ref52) 2024
ref50
ref46
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
Quigley (ref35) 2009
ref9
ref4
ref3
ref6
ref5
ref40
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
Qi (ref26) 2017
ref28
ref29
Amanatides (ref44) 1987; 87
Mathai (ref45) 1992; 1
References_xml – ident: ref20
  doi: 10.1109/LRA.2022.3147337
– ident: ref13
  doi: 10.1109/ICUAS54217.2022.9836116
– ident: ref16
  doi: 10.1109/TVT.2020.2964110
– year: 2010
  ident: ref34
  article-title: Eigen v3
– ident: ref1
  doi: 10.1016/j.adhoc.2020.102324
– year: 2023
  ident: ref51
  article-title: Fusion of visual-inertial odometry with LiDAR relative localization for cooperative guidance of a micro-scale aerial vehicle
– ident: ref9
  doi: 10.1002/rob.22019
– ident: ref47
  doi: 10.1023/B:STCO.0000035304.20635.31
– ident: ref5
  doi: 10.1109/LRA.2019.2927130
– ident: ref4
  doi: 10.1007/s10846-021-01462-7
– ident: ref43
  doi: 10.1007/s13218-010-0059-6
– volume: 1
  volume-title: Quadratic Forms In Random Variables: Theory And Applications
  year: 1992
  ident: ref45
– ident: ref50
  doi: 10.1109/CVPR.2017.261
– ident: ref3
  doi: 10.1016/j.ssci.2021.105273
– volume: 30
  start-page: 5099
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref27
  article-title: PointNet : Deep hierarchical feature learning on point sets in a metric space
– ident: ref28
  doi: 10.1109/ICCV.2019.00937
– ident: ref33
  doi: 10.1109/ICRA.2011.5980567
– ident: ref14
  doi: 10.1109/TMTT.2018.2889045
– ident: ref22
  doi: 10.1109/TPAMI.2016.2564408
– ident: ref24
  doi: 10.3390/drones6080185
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00178
– volume-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
  year: 2024
  ident: ref52
  article-title: Drones guiding drones: Cooperative navigation of a less-equipped micro aerial vehicle in cluttered environments
– ident: ref12
  doi: 10.1109/lra.2024.3451768
– ident: ref38
  doi: 10.1109/LRA.2020.3013861
– ident: ref39
  doi: 10.1109/LRA.2018.2889348
– ident: ref23
  doi: 10.1109/ACCESS.2020.2971938
– ident: ref32
  doi: 10.1109/LRA.2021.3101877
– ident: ref48
  doi: 10.1007/s10846-023-01879-2
– ident: ref8
  doi: 10.1109/SSRR50563.2020.9292612
– ident: ref17
  doi: 10.1109/icpr48806.2021.9413241
– ident: ref30
  doi: 10.1007/s10514-012-9321-0
– ident: ref11
  doi: 10.1016/j.robot.2021.103970
– ident: ref36
  doi: 10.1007/s10846-021-01383-5
– ident: ref7
  doi: 10.1109/ICUAS48674.2020.9213883
– ident: ref6
  doi: 10.1109/LRA.2020.2972819
– ident: ref15
  doi: 10.23919/IRS.2018.8447942
– ident: ref25
  doi: 10.1109/CVPR.2016.609
– ident: ref37
  doi: 10.1109/ROBOT.1985.1087316
– ident: ref40
  doi: 10.1109/LRA.2021.3098304
– ident: ref19
  doi: 10.1109/LRA.2022.3145498
– ident: ref18
  doi: 10.1117/12.2518427
– ident: ref10
  doi: 10.55417/fr.2022009
– ident: ref41
  doi: 10.1002/rob.22021
– start-page: 1
  volume-title: Proc. ICRA Workshop Open Source Softw.
  year: 2009
  ident: ref35
  article-title: ROS: An open-source robot operating system
– volume: 87
  start-page: 3
  issue: 3
  volume-title: Proc. Eurographics
  year: 1987
  ident: ref44
  article-title: A fast voxel traversal algorithm for ray tracing
– ident: ref49
  doi: 10.15607/RSS.2014.X.007
– start-page: 652
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2017
  ident: ref26
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– ident: ref2
  doi: 10.3390/s22041453
– ident: ref21
  doi: 10.1109/AVSS.2017.8078558
– ident: ref31
  doi: 10.1109/IROS.2017.8202315
– ident: ref46
  doi: 10.1109/IMOC.2007.4404382
– ident: ref42
  doi: 10.1016/j.robot.2020.103649
SSID ssj0024903
Score 2.4802957
Snippet A new robust and accurate approach for the detection and localization of flying objects with the purpose of highly dynamic aerial interception and agile...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 593
SubjectTerms Accuracy
Aerial systems
autonomous aerial interception
Autonomous aerial vehicles
Detectors
Laser radar
Location awareness
multirobot systems
object detection
perception and autonomy
Point cloud compression
Robot sensing systems
Robots
segmentation and categorization
Target tracking
Three-dimensional displays
Title On Onboard LiDAR-Based Flying Object Detection
URI https://ieeexplore.ieee.org/document/10758263
Volume 41
WOSCitedRecordID wos001380653000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFz148ZCtbdImOU7n8CCrjAm7lXwVBqOT2fn3-5J2Og8K3kp5hfJLHu8jeb8fQreUEyOYKbDWMRQo3KSYmyTFBQfHUmlCdCS92AQbj_lsJl6aYXU_C2Ot9ZfPbM89-rN8s9Rr1yoDD4fsNk5JC7UYS-thrW9iPeFlkB2lGCah4JszyVD0p5MMKsGY9kji7OiPGLQlquJjyujwn39zhA6a5DEY1Kt9jHZseYL2tygFT1EvK4OsVEtY-OB5PhxM8D3EKROMFm6eKciU67sEQ1v5K1hlB72OHqcPT7jRRMCaEFrhSKZaCygsjY2toZGklIWqSKThBaWEcRkrwEaBW0EiyLhKlC0Kllqo0ziJNDlD7XJZ2nMUgDsqmTArilDTRHBpmWJSQX5HQwmRv4v6G5Ry3RCGO92KRe4Lh1DkgGvucM0bXLvo7uuLt5os4w_bjoN0y65G8-KX95doL3bSu777cYXa1Wptr9Gu_qjm76sbvxU-AVK-rb8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BfXB68R57YMvPmS2TdIkj9M5Js5NxoS9ldwKg9HJ7Pz9Jmmn80HBt1JOoXzJ4VyS830AXGOGNKc6g0rFtkBhOoFMkwRmzDqWTAhSkfBiE7TfZ-Mxf6mG1f0sjDHGXz4zTffoz_L1TC1cq8x6uM1u4wStgw2CcRyW41rf1HrcCyE7UjGIQs6Wp5Ihvx0NB7YWjHETEWeHf0ShFVkVH1U6e__8n32wW6WPQatc7wOwZvJDsLNCKngEmoM8GORyZpc-6E3arSG8s5FKB52pm2gKBtJ1XoK2KfwlrLwOXjsPo_surFQRoEIIFzASiVLclpbaxEbjSGBMQ5kRoVmGMaJMxJLSRFrHsqkgZZJIk2U0MbZSYyhS6BjU8lluTkBgHVIKQg3PQoUJZ8JQSYW0GR4OhY39DXC7RClVFWW4U66Ypr50CHlqcU0drmmFawPcfH3xVtJl_GFbd5Cu2JVonv7y_gpsdUfPvbT32H86A9uxE-L1vZBzUCvmC3MBNtVHMXmfX_pt8QmQorEG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Onboard+LiDAR-Based+Flying+Object+Detection&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Vrba%2C+Matou%C5%A1&rft.au=Walter%2C+Viktor&rft.au=Pritzl%2C+V%C3%A1clav&rft.au=Pliska%2C+Michal&rft.date=2025-01-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=41&rft.spage=593&rft.epage=611&rft_id=info:doi/10.1109%2FTRO.2024.3502494&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2024_3502494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon