Pavement distress detection using convolutional neural networks with images captured via UAV

Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavemen...

Full description

Saved in:
Bibliographic Details
Published in:Automation in construction Vol. 133; p. 103991
Main Authors: Zhu, Junqing, Zhong, Jingtao, Ma, Tao, Huang, Xiaoming, Zhang, Weiguang, Zhou, Yang
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.01.2022
Elsevier BV
Subjects:
ISSN:0926-5805, 1872-7891
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavement image collection was assembled, and the flight settings were studied for optimal image quality. The collected images were processed and annotated for model training. Three state-of-the-art object-detection algorithms—Faster R-CNN, YOLOv3, and YOLOv4, were used to train the dataset, and their prediction performances were compared. A pavement image dataset was established with six types of distress. YOLOv3 demonstrated the best performance of the three algorithms, with a mean average precision (MAP) of 56.6%. The findings of this study assist in the inspection of non-destructive automatic pavement conditions. •UAV flight parameters are examined for pavement image collection.•An UAV pavement image dataset (UAPD) was established.•Anchor size is researched for pavement distress detection.•YOLOv3 outperforms YOLOv4 and Faster R-CNN.
AbstractList Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavement image collection was assembled, and the flight settings were studied for optimal image quality. The collected images were processed and annotated for model training. Three state-of-the-art object-detection algorithms—Faster R-CNN, YOLOv3, and YOLOv4, were used to train the dataset, and their prediction performances were compared. A pavement image dataset was established with six types of distress. YOLOv3 demonstrated the best performance of the three algorithms, with a mean average precision (MAP) of 56.6%. The findings of this study assist in the inspection of non-destructive automatic pavement conditions. •UAV flight parameters are examined for pavement image collection.•An UAV pavement image dataset (UAPD) was established.•Anchor size is researched for pavement distress detection.•YOLOv3 outperforms YOLOv4 and Faster R-CNN.
Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavement image collection was assembled, and the flight settings were studied for optimal image quality. The collected images were processed and annotated for model training. Three state-of-the-art object-detection algorithms-Faster R-CNN, YOLOv3, and YOLOv4, were used to train the dataset, and their prediction performances were compared. A pavement image dataset was established with six types of distress. YOLOv3 demonstrated the best performance of the three algorithms, with a mean average precision (MAP) of 56.6%. The findings of this study assist in the inspection of non-destructive automatic pavement conditions.
ArticleNumber 103991
Author Zhong, Jingtao
Zhang, Weiguang
Ma, Tao
Zhu, Junqing
Huang, Xiaoming
Zhou, Yang
Author_xml – sequence: 1
  givenname: Junqing
  surname: Zhu
  fullname: Zhu, Junqing
  organization: School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 2
  givenname: Jingtao
  surname: Zhong
  fullname: Zhong, Jingtao
  organization: School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 3
  givenname: Tao
  surname: Ma
  fullname: Ma, Tao
  email: matao@seu.edu.cn
  organization: School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 4
  givenname: Xiaoming
  surname: Huang
  fullname: Huang, Xiaoming
  organization: School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 5
  givenname: Weiguang
  surname: Zhang
  fullname: Zhang, Weiguang
  organization: School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 6
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
BookMark eNqFkEtLAzEUhYMoWB__wEXA9dRkppMmLgQRXyDowroSwm1yp6bWSU0yFf-9GceVC10duJxzuOfbI9utb5GQI87GnHFxshxDl4xvxyUreT5VSvEtMuJyWhZTqfg2GTFViqKWrN4lezEuGWNTJtSIPD_ABt-wTdS6mALGSC0mNMn5lnbRtQuaizd-1fUXWNEWu_At6cOH10g_XHqh7g0WGKmBdeoCWrpxQGfnTwdkp4FVxMMf3Sezq8vHi5vi7v769uL8rjBVNUkFF6aucQ6VBAvWVHM2B4MGGpBQNgKEmiurjATkqrF1LzWXEsvaAIo8d58cD73r4N87jEkvfRfyt1GXgishlJST7JoMLhN8jAEbvQ758fCpOdM9R73UA0fdc9QDxxw7_RUzLkFPIwVwq__CZ0MY8_yNw6CjcdgatC5kyNp693fBFxIXliM
CitedBy_id crossref_primary_10_1111_mice_13200
crossref_primary_10_3390_drones7070419
crossref_primary_10_3390_app14031157
crossref_primary_10_1080_14680629_2023_2276422
crossref_primary_10_1016_j_measurement_2023_113252
crossref_primary_10_3390_s25113373
crossref_primary_10_1088_1361_6501_adee31
crossref_primary_10_1080_10298436_2023_2246093
crossref_primary_10_1016_j_autcon_2022_104575
crossref_primary_10_1016_j_autcon_2025_106195
crossref_primary_10_1016_j_autcon_2024_105789
crossref_primary_10_1016_j_conbuildmat_2022_129067
crossref_primary_10_1139_cjce_2024_0539
crossref_primary_10_1061_JCCEE5_CPENG_6007
crossref_primary_10_1061__ASCE_CF_1943_5509_0001748
crossref_primary_10_1109_ACCESS_2024_3451708
crossref_primary_10_3390_f15081374
crossref_primary_10_1016_j_engappai_2024_108312
crossref_primary_10_3390_a18060369
crossref_primary_10_1016_j_compstruc_2025_107761
crossref_primary_10_1088_1361_6501_ad86e0
crossref_primary_10_1088_1755_1315_1326_1_012100
crossref_primary_10_1109_ACCESS_2023_3343619
crossref_primary_10_3390_civileng6020032
crossref_primary_10_1061_JBENF2_BEENG_6053
crossref_primary_10_3390_s24144751
crossref_primary_10_3390_s23073418
crossref_primary_10_1109_JSEN_2023_3240092
crossref_primary_10_48130_dts_0025_0006
crossref_primary_10_1080_10298436_2022_2098293
crossref_primary_10_1016_j_compind_2025_104363
crossref_primary_10_3390_s24186159
crossref_primary_10_1109_ACCESS_2024_3481649
crossref_primary_10_1016_j_autcon_2024_105797
crossref_primary_10_1080_10298436_2023_2268796
crossref_primary_10_3390_rs17132248
crossref_primary_10_3390_s24103252
crossref_primary_10_1016_j_autcon_2022_104613
crossref_primary_10_1109_ACCESS_2025_3573651
crossref_primary_10_1080_15732479_2023_2274878
crossref_primary_10_1088_1361_6501_adf2cf
crossref_primary_10_1109_TITS_2025_3525476
crossref_primary_10_3390_s24175757
crossref_primary_10_1016_j_jfranklin_2024_106664
crossref_primary_10_1080_10298436_2025_2538791
crossref_primary_10_1109_TITS_2024_3437770
crossref_primary_10_1016_j_autcon_2025_106219
crossref_primary_10_1016_j_measurement_2025_117315
crossref_primary_10_3390_coatings15030349
crossref_primary_10_3390_app15116112
crossref_primary_10_1016_j_autcon_2022_104436
crossref_primary_10_1016_j_autcon_2022_104555
crossref_primary_10_1088_1361_6501_adc3b5
crossref_primary_10_3390_drones7030149
crossref_primary_10_1109_TIM_2025_3582316
crossref_primary_10_1109_ACCESS_2025_3582976
crossref_primary_10_3390_drones6110368
crossref_primary_10_3390_infrastructures9120213
crossref_primary_10_1016_j_conbuildmat_2025_143428
crossref_primary_10_1109_JSTARS_2025_3552923
crossref_primary_10_1109_TITS_2023_3306578
crossref_primary_10_1016_j_procs_2025_03_290
crossref_primary_10_1016_j_autcon_2023_104745
crossref_primary_10_1016_j_autcon_2025_106285
crossref_primary_10_1016_j_measurement_2023_113844
crossref_primary_10_3390_s23198241
crossref_primary_10_1007_s11042_025_20700_w
crossref_primary_10_3390_s25051475
crossref_primary_10_1007_s11760_023_02952_x
crossref_primary_10_1016_j_aej_2025_03_072
crossref_primary_10_1371_journal_pone_0300679
crossref_primary_10_3390_app14198731
crossref_primary_10_1109_JSTARS_2025_3548137
crossref_primary_10_1016_j_conbuildmat_2022_128854
crossref_primary_10_1016_j_measurement_2024_115119
crossref_primary_10_1016_j_conbuildmat_2022_129025
crossref_primary_10_3390_app15020551
crossref_primary_10_1016_j_autcon_2023_105062
crossref_primary_10_1016_j_dib_2025_111377
crossref_primary_10_1016_j_coldregions_2024_104313
crossref_primary_10_1061_JCCEE5_CPENG_6162
crossref_primary_10_1016_j_aei_2025_103814
crossref_primary_10_1016_j_engappai_2024_109840
crossref_primary_10_1016_j_cscm_2023_e01917
crossref_primary_10_1080_10298436_2023_2180639
crossref_primary_10_1109_TITS_2025_3544240
crossref_primary_10_1520_JTE20220268
crossref_primary_10_1016_j_measurement_2025_118193
crossref_primary_10_3390_su14063275
crossref_primary_10_1016_j_jreng_2023_12_001
crossref_primary_10_1016_j_measurement_2024_115225
crossref_primary_10_1038_s41377_023_01094_6
crossref_primary_10_1080_10298436_2022_2155648
crossref_primary_10_3390_s22155781
crossref_primary_10_1016_j_autcon_2025_106141
crossref_primary_10_1016_j_jreng_2024_04_003
crossref_primary_10_1038_s41598_024_54835_x
crossref_primary_10_3390_drones7090570
crossref_primary_10_1111_mice_13018
crossref_primary_10_1016_j_autcon_2024_105357
crossref_primary_10_3390_electronics11213622
crossref_primary_10_1109_TITS_2023_3245192
crossref_primary_10_1016_j_autcon_2022_104544
crossref_primary_10_1016_j_autcon_2024_105355
crossref_primary_10_1061_JCCEE5_CPENG_5864
crossref_primary_10_1080_10298436_2024_2401630
crossref_primary_10_1016_j_engappai_2025_111002
crossref_primary_10_1007_s40030_024_00821_5
crossref_primary_10_3390_su17073180
crossref_primary_10_3390_s22229019
crossref_primary_10_1111_mice_70034
crossref_primary_10_1080_10298436_2023_2180641
crossref_primary_10_3390_s24134288
crossref_primary_10_24857_rgsa_v19n5_132
crossref_primary_10_1109_TAI_2024_3386149
crossref_primary_10_1016_j_autcon_2022_104472
crossref_primary_10_3390_s22093341
crossref_primary_10_1016_j_tust_2024_105832
crossref_primary_10_1016_j_kscej_2024_100095
crossref_primary_10_3389_fmats_2022_1058407
crossref_primary_10_1002_gdj3_260
crossref_primary_10_1016_j_conbuildmat_2023_130597
crossref_primary_10_1016_j_conbuildmat_2022_128154
crossref_primary_10_1109_TITS_2023_3347034
crossref_primary_10_3390_electronics14132617
crossref_primary_10_1016_j_conengprac_2023_105735
crossref_primary_10_1007_s42421_025_00118_4
crossref_primary_10_1016_j_dsp_2024_104661
crossref_primary_10_3390_s24216783
crossref_primary_10_1016_j_asoc_2025_113332
crossref_primary_10_1002_stc_3093
crossref_primary_10_1016_j_autcon_2023_104945
crossref_primary_10_1088_1361_6501_ac8e22
crossref_primary_10_3390_coatings13040764
crossref_primary_10_3390_electronics11121882
crossref_primary_10_3390_jimaging11080259
crossref_primary_10_1016_j_ceramint_2022_09_136
crossref_primary_10_3390_app142411974
crossref_primary_10_1007_s11554_024_01545_2
crossref_primary_10_3390_app13179918
crossref_primary_10_1016_j_conbuildmat_2022_129916
crossref_primary_10_1016_j_jreng_2022_05_001
crossref_primary_10_3390_su14106306
crossref_primary_10_1109_ACCESS_2025_3557938
crossref_primary_10_1016_j_autcon_2024_105772
crossref_primary_10_1016_j_measurement_2024_115603
crossref_primary_10_3390_buildings14061546
crossref_primary_10_2174_0118741495308303240516073242
crossref_primary_10_1080_10298436_2024_2434910
crossref_primary_10_3390_infrastructures10030064
crossref_primary_10_1080_10298436_2022_2038381
crossref_primary_10_3390_rs15061530
crossref_primary_10_3390_s22228797
crossref_primary_10_1109_JIOT_2025_3530253
crossref_primary_10_3390_app14188100
crossref_primary_10_1016_j_autcon_2025_106122
crossref_primary_10_1109_TITS_2024_3424525
crossref_primary_10_3390_app13074549
crossref_primary_10_1177_03611981241239958
crossref_primary_10_3390_drones6110335
crossref_primary_10_1080_14680629_2025_2498107
crossref_primary_10_3390_s22083044
crossref_primary_10_1016_j_measurement_2025_117650
crossref_primary_10_3390_infrastructures9060090
crossref_primary_10_1016_j_cscm_2025_e04613
crossref_primary_10_3390_rs14163892
Cites_doi 10.1155/2020/8811649
10.3390/s20216205
10.1016/j.jclepro.2020.124583
10.1177/0361198120907283
10.3390/ijgi8090409
10.1016/j.eng.2018.11.030
10.1016/j.conbuildmat.2020.118513
10.1016/j.conbuildmat.2020.121717
10.1016/j.conbuildmat.2019.117912
10.1111/mice.12387
10.3390/app10124157
10.1109/JSTARS.2018.2865528
10.1016/j.autcon.2021.103742
10.1061/(ASCE)CF.1943-5509.0001185
10.1109/TITS.2019.2910595
10.1109/TITS.2016.2552248
10.1109/TPAMI.2016.2577031
10.1145/3065386
10.1016/j.conbuildmat.2020.119397
10.3390/s18061881
10.1016/j.aei.2015.01.008
10.1109/5.726791
10.1111/mice.12263
10.1007/s11263-019-01204-1
10.1002/stc.2551
10.1016/j.autcon.2020.103152
10.1061/(ASCE)1076-0342(2005)11:3(154)
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2021.103991
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2021_103991
S0926580521004428
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-16c55eba38adadc3b0bacecafa8a2f6a69b9d9c8ae19fd5ae195188e25cae6103
ISICitedReferencesCount 197
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707873800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Fri Jul 25 04:33:21 EDT 2025
Sat Nov 29 07:10:55 EST 2025
Tue Nov 18 21:42:08 EST 2025
Fri Feb 23 02:43:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Unmanned aerial vehicle (UAV)
Convolutional neural network (CNN)
Asphalt pavement distress
Object-detection algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-16c55eba38adadc3b0bacecafa8a2f6a69b9d9c8ae19fd5ae195188e25cae6103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2619669884
PQPubID 2045277
ParticipantIDs proquest_journals_2619669884
crossref_primary_10_1016_j_autcon_2021_103991
crossref_citationtrail_10_1016_j_autcon_2021_103991
elsevier_sciencedirect_doi_10_1016_j_autcon_2021_103991
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liu, Qi, Qin, Shi, Jia (bb0200) 2018
Yang, Zhang, Yu, Prokhorov, Mei, Ling (bb0135) 2020; 21
Lecun, Bottou, Bengio, Haffner (bb0050) 1998; 86
Wang, Mao, Zhai, Gui, Liu (bb0225) 1903
Majidifard, Adu-Gyamfi, Buttlar (bb0030) 2020; 2674
Maeda, Sekimoto, Seto, Kashiyama, Omata (bb0145) 2018; 33
Silva, San, Garcia, Mendes, Gonzalez (bb0175) 2020; 20
He, Zhang, Ren, Sun (bb0195) 2014
Lin, Dollár, Girshick, He, Hariharan, Belongie (bb0190) 2017
Peng, Zhong, Zhao, Chen, Zhang (bb0160) 2020; 2020
He, Zhang, Ren, Sun (bb0070) 2016
Zhou, Wang, Krhenbühl (bb0105) 2019
Huang, Dong, Ni, Wang (bb0005) 2021; 283
Wang, Gong (bb0120) 2005; 11
Romero-Chambi, Villarroel-Quezada, Atencio, Munoz-La Rivera (bb0155) 2020; 10
Jia, Wang, Huang, Gao, Wang, Zhou (bb0025) 2021; 273
Zhu, Ma, Fang (bb0010) 2020; 240
Mandal, Mussah, Adu-Gyamfi (bb0110) 2020
Mei, Gul (bb0125) 2020; 256
Shi, Cui, Qi, Meng, Chen (bb0140) 2016; 17
Tang, Ma, Zhang, Guan, Chen (bb0035) 2020; 113
Spencer, Hoskere, Narazaki (bb0150) 2019; 5
Gao, Hou, Jia, Wei, Wang, Li, Gong (bb0045) 2021; 128
Krizhevsky, Sutskever, Hinton (bb0055) 2017; 60
Cha, Choi, Büyüköztürk (bb0075) 2017; 32
Duque, Seo, Wacker (bb0165) 2018; 32
Kim, Jeon, Baek, Hong, Jung (bb0170) 2018; 18
Bochkovskiy, Wang, Liao (bb0115) 2020
Tan, Li (bb0185) 2019; 8
Nie, Wang (bb0220) 2019
Majidifard, Adu-Gyamfi, Buttlar (bb0095) 2020; 247
Li, Wang, Zhang, Yang, Wang (bb0080) 2019; 29
Mandal, Uong, Adu-Gyamfi (bb0040) 2018
Ren, He, Girshick, Sun (bb0085) 2017; 39
Jia, Wang, Peng, Gao, Hu, Zhao (bb0020) 2021
Redmon, Divvala, Girshick, Farhadi (bb0215) 2016
Redmon, Farhadi (bb0090) 2018
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick (bb0210) 2014
Law, Deng (bb0100) 2020; 128
Arya, Maeda, Ghosh, Toshniwal, Mraz, Kashiyama, Sekimoto (bb0205) 2020
Du, Pan, Xu, Deng, Shen, Kang (bb0230) 2020
Pan, Zhang, Cervone, Yang (bb0180) 2018; 11
Simonyan, Zisserman (bb0060) 2014
Huyan, L., Tighe, Xu, Zhai (bb0130) 2020; 27
Koch, Georgieva, Kasireddy, Akinci, Fieguth (bb0015) 2015; 29
Szegedy, Liu, Jia, Sermanet, Rabinovich (bb0065) 2015
Cha (10.1016/j.autcon.2021.103991_bb0075) 2017; 32
He (10.1016/j.autcon.2021.103991_bb0195) 2014
Redmon (10.1016/j.autcon.2021.103991_bb0215) 2016
Krizhevsky (10.1016/j.autcon.2021.103991_bb0055) 2017; 60
Law (10.1016/j.autcon.2021.103991_bb0100) 2020; 128
Spencer (10.1016/j.autcon.2021.103991_bb0150) 2019; 5
Mei (10.1016/j.autcon.2021.103991_bb0125) 2020; 256
He (10.1016/j.autcon.2021.103991_bb0070) 2016
Shi (10.1016/j.autcon.2021.103991_bb0140) 2016; 17
Kim (10.1016/j.autcon.2021.103991_bb0170) 2018; 18
Mandal (10.1016/j.autcon.2021.103991_bb0040) 2018
Yang (10.1016/j.autcon.2021.103991_bb0135) 2020; 21
Peng (10.1016/j.autcon.2021.103991_bb0160) 2020; 2020
Pan (10.1016/j.autcon.2021.103991_bb0180) 2018; 11
Szegedy (10.1016/j.autcon.2021.103991_bb0065) 2015
Jia (10.1016/j.autcon.2021.103991_bb0025) 2021; 273
Li (10.1016/j.autcon.2021.103991_bb0080) 2019; 29
Redmon (10.1016/j.autcon.2021.103991_bb0090) 2018
Wang (10.1016/j.autcon.2021.103991_bb0225) 1903
Tang (10.1016/j.autcon.2021.103991_bb0035) 2020; 113
Nie (10.1016/j.autcon.2021.103991_bb0220) 2019
Du (10.1016/j.autcon.2021.103991_bb0230) 2020
Maeda (10.1016/j.autcon.2021.103991_bb0145) 2018; 33
Romero-Chambi (10.1016/j.autcon.2021.103991_bb0155) 2020; 10
Jia (10.1016/j.autcon.2021.103991_bb0020) 2021
Simonyan (10.1016/j.autcon.2021.103991_bb0060) 2014
Liu (10.1016/j.autcon.2021.103991_bb0200) 2018
Majidifard (10.1016/j.autcon.2021.103991_bb0030) 2020; 2674
Koch (10.1016/j.autcon.2021.103991_bb0015) 2015; 29
Lin (10.1016/j.autcon.2021.103991_bb0190) 2017
Majidifard (10.1016/j.autcon.2021.103991_bb0095) 2020; 247
Zhu (10.1016/j.autcon.2021.103991_bb0010) 2020; 240
Wang (10.1016/j.autcon.2021.103991_bb0120) 2005; 11
Huyan (10.1016/j.autcon.2021.103991_bb0130) 2020; 27
Huang (10.1016/j.autcon.2021.103991_bb0005) 2021; 283
Arya (10.1016/j.autcon.2021.103991_bb0205) 2020
Lin (10.1016/j.autcon.2021.103991_bb0210) 2014
Zhou (10.1016/j.autcon.2021.103991_bb0105) 2019
Silva (10.1016/j.autcon.2021.103991_bb0175) 2020; 20
Bochkovskiy (10.1016/j.autcon.2021.103991_bb0115) 2020
Duque (10.1016/j.autcon.2021.103991_bb0165) 2018; 32
Tan (10.1016/j.autcon.2021.103991_bb0185) 2019; 8
Mandal (10.1016/j.autcon.2021.103991_bb0110) 2020
Gao (10.1016/j.autcon.2021.103991_bb0045) 2021; 128
Ren (10.1016/j.autcon.2021.103991_bb0085) 2017; 39
Lecun (10.1016/j.autcon.2021.103991_bb0050) 1998; 86
References_xml – year: 1903
  ident: bb0225
  article-title: Improvements of YoloV3 for road damage detection
  publication-title: J. Phys. Conf. Ser.
– volume: 273
  start-page: 121717
  year: 2021
  ident: bb0025
  article-title: A comparative long-term effectiveness assessment of preventive maintenance treatments under various environmental conditions
  publication-title: Constr. Build. Mater.
– volume: 128
  start-page: 642
  year: 2020
  end-page: 656
  ident: bb0100
  article-title: CornerNet: detecting objects as paired keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 2674
  start-page: 328
  year: 2020
  end-page: 339
  ident: bb0030
  article-title: Pavement image datasets: a new benchmark dataset to classify and densify pavement distresses
  publication-title: Transp. Res. Rec.
– volume: 27
  year: 2020
  ident: bb0130
  article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Struct. Control. Health Monit.
– year: 2018
  ident: bb0090
  article-title: YOLOv3: an incremental improvement
  publication-title: arXiv preprint
– volume: 21
  start-page: 1525
  year: 2020
  end-page: 1535
  ident: bb0135
  article-title: Feature pyramid and hierarchical boosting network for pavement crack detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0070
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 256
  start-page: 119397
  year: 2020
  ident: bb0125
  article-title: A cost effective solution for pavement crack inspection using cameras and deep neural networks
  publication-title: Constr. Build. Mater.
– volume: 32
  year: 2018
  ident: bb0165
  article-title: Synthesis of unmanned aerial vehicle applications for infrastructures
  publication-title: J. Perform. Constr. Facil.
– year: 2014
  ident: bb0060
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bb0085
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 247
  start-page: 118513
  year: 2020
  ident: bb0095
  article-title: Deep machine learning approach to develop a new asphalt pavement condition index
  publication-title: Constr. Build. Mater.
– start-page: 346
  year: 2014
  end-page: 361
  ident: bb0195
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2020
  ident: bb0205
  article-title: Transfer learning-based road damage detection for multiple countries
  publication-title: arXiv preprint
– volume: 113
  start-page: 103152
  year: 2020
  ident: bb0035
  article-title: Integrating three-dimensional road design and pavement structure analysis based on BIM
  publication-title: Autom. Constr.
– volume: 11
  start-page: 3701
  year: 2018
  end-page: 3712
  ident: bb0180
  article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery
  publication-title: IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens.
– year: 2021
  ident: bb0020
  article-title: Evaluation of pavement rutting based on driving safety of vehicles
  publication-title: Int. J. Pavement Res. Technol.
– year: 2019
  ident: bb0220
  article-title: Pavement crack detection based on YOLO v3
  publication-title: 2nd International Conference on Safety Produce Informatization (IICSPI), Chongqing
– year: 2020
  ident: bb0230
  article-title: Pavement distress detection and classification based on YOLO network
  publication-title: Int. J. Pavement Eng.
– volume: 29
  start-page: 930
  year: 2019
  end-page: 940
  ident: bb0080
  article-title: Automatic classification of pavement crack using deep convolutional neural network
  publication-title: Int. J. Pavement Eng.
– start-page: 936
  year: 2017
  end-page: 944
  ident: bb0190
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bb0115
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv preprint
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bb0050
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 11
  start-page: 154
  year: 2005
  end-page: 164
  ident: bb0120
  article-title: Real-time automated survey system of pavement cracking in parallel environment
  publication-title: J. Infrastruct. Syst.
– volume: 10
  year: 2020
  ident: bb0155
  article-title: Analysis of optimal flight parameters of unmanned aerial vehicles (UAVs) for detecting potholes in pavements
  publication-title: Appl. Sci.
– volume: 18
  year: 2018
  ident: bb0170
  article-title: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle
  publication-title: Sensors
– start-page: 8759
  year: 2018
  end-page: 8768
  ident: bb0200
  article-title: Path aggregation network for instance segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 283
  start-page: 124583
  year: 2021
  ident: bb0005
  article-title: LCA and LCCA based multi-objective optimization of pavement maintenance
  publication-title: J. Clean. Prod.
– volume: 8
  year: 2019
  ident: bb0185
  article-title: UAV photogrammetry-based 3d road distress detection
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 240
  year: 2020
  ident: bb0010
  article-title: Characterizaiton of agglomeration of reclaimed asphalt pavement for cold recycling
  publication-title: Constr. Build. Mater.
– volume: 5
  start-page: 199
  year: 2019
  end-page: 222
  ident: bb0150
  article-title: Advances in computer vision-based civil infrastructure inspection and monitoring
  publication-title: Engineering
– year: 2019
  ident: bb0105
  article-title: Objects as points
  publication-title: arXiv preprint
– volume: 33
  start-page: 1127
  year: 2018
  end-page: 1141
  ident: bb0145
  article-title: Road damage detection and classification using deep neural networks with smartphone images: road damage detection and classification
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 128
  start-page: 103742
  year: 2021
  ident: bb0045
  article-title: Variability evaluation of gradation for asphalt mixture in asphalt pavement construction
  publication-title: Autom. Constr.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bb0065
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 20
  year: 2020
  ident: bb0175
  article-title: An architectural multi-agent system for a pavement monitoring system with pothole recognition in uav images
  publication-title: Sensors
– start-page: 5577
  year: 2020
  end-page: 5583
  ident: bb0110
  article-title: Deep learning frameworks for pavement distress classification: a comparative analysis
  publication-title: Proceedings of the IEEE International Conference on Big Data
– volume: 29
  start-page: 196
  year: 2015
  end-page: 210
  ident: bb0015
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inform.
– volume: 17
  start-page: 3434
  year: 2016
  end-page: 3445
  ident: bb0140
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 779
  year: 2016
  end-page: 788
  ident: bb0215
  article-title: You Only Look Once: Unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: bb0075
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– start-page: 5212
  year: 2018
  end-page: 5215
  ident: bb0040
  article-title: Automated road crack detection using deep convolutional neural networks
  publication-title: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data)
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bb0055
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 2020
  year: 2020
  ident: bb0160
  article-title: The feasibility assessment study of bridge crack width recognition in images based on special inspection UAV
  publication-title: Adv. Civil Eng.
– start-page: 740
  year: 2014
  end-page: 755
  ident: bb0210
  article-title: Microsoft coco: common objects in context
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 1903
  ident: 10.1016/j.autcon.2021.103991_bb0225
  article-title: Improvements of YoloV3 for road damage detection
  publication-title: J. Phys. Conf. Ser.
– volume: 2020
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0160
  article-title: The feasibility assessment study of bridge crack width recognition in images based on special inspection UAV
  publication-title: Adv. Civil Eng.
  doi: 10.1155/2020/8811649
– volume: 20
  issue: 21
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0175
  article-title: An architectural multi-agent system for a pavement monitoring system with pothole recognition in uav images
  publication-title: Sensors
  doi: 10.3390/s20216205
– start-page: 346
  year: 2014
  ident: 10.1016/j.autcon.2021.103991_bb0195
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
– volume: 283
  start-page: 124583
  year: 2021
  ident: 10.1016/j.autcon.2021.103991_bb0005
  article-title: LCA and LCCA based multi-objective optimization of pavement maintenance
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124583
– volume: 2674
  start-page: 328
  issue: 2
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0030
  article-title: Pavement image datasets: a new benchmark dataset to classify and densify pavement distresses
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198120907283
– start-page: 779
  year: 2016
  ident: 10.1016/j.autcon.2021.103991_bb0215
  article-title: You Only Look Once: Unified, real-time object detection
– volume: 8
  issue: 9
  year: 2019
  ident: 10.1016/j.autcon.2021.103991_bb0185
  article-title: UAV photogrammetry-based 3d road distress detection
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi8090409
– start-page: 770
  year: 2016
  ident: 10.1016/j.autcon.2021.103991_bb0070
  article-title: Deep residual learning for image recognition
– volume: 5
  start-page: 199
  issue: 2
  year: 2019
  ident: 10.1016/j.autcon.2021.103991_bb0150
  article-title: Advances in computer vision-based civil infrastructure inspection and monitoring
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.030
– volume: 247
  start-page: 118513
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0095
  article-title: Deep machine learning approach to develop a new asphalt pavement condition index
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118513
– volume: 273
  start-page: 121717
  year: 2021
  ident: 10.1016/j.autcon.2021.103991_bb0025
  article-title: A comparative long-term effectiveness assessment of preventive maintenance treatments under various environmental conditions
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121717
– year: 2014
  ident: 10.1016/j.autcon.2021.103991_bb0060
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint
– year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0230
  article-title: Pavement distress detection and classification based on YOLO network
  publication-title: Int. J. Pavement Eng.
– year: 2021
  ident: 10.1016/j.autcon.2021.103991_bb0020
  article-title: Evaluation of pavement rutting based on driving safety of vehicles
  publication-title: Int. J. Pavement Res. Technol.
– volume: 240
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0010
  article-title: Characterizaiton of agglomeration of reclaimed asphalt pavement for cold recycling
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117912
– volume: 33
  start-page: 1127
  issue: 12
  year: 2018
  ident: 10.1016/j.autcon.2021.103991_bb0145
  article-title: Road damage detection and classification using deep neural networks with smartphone images: road damage detection and classification
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12387
– start-page: 5212
  year: 2018
  ident: 10.1016/j.autcon.2021.103991_bb0040
  article-title: Automated road crack detection using deep convolutional neural networks
– year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0115
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv preprint
– volume: 10
  issue: 12
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0155
  article-title: Analysis of optimal flight parameters of unmanned aerial vehicles (UAVs) for detecting potholes in pavements
  publication-title: Appl. Sci.
  doi: 10.3390/app10124157
– volume: 11
  start-page: 3701
  issue: 10
  year: 2018
  ident: 10.1016/j.autcon.2021.103991_bb0180
  article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery
  publication-title: IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens.
  doi: 10.1109/JSTARS.2018.2865528
– start-page: 740
  year: 2014
  ident: 10.1016/j.autcon.2021.103991_bb0210
  article-title: Microsoft coco: common objects in context
– volume: 128
  start-page: 103742
  year: 2021
  ident: 10.1016/j.autcon.2021.103991_bb0045
  article-title: Variability evaluation of gradation for asphalt mixture in asphalt pavement construction
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103742
– volume: 32
  issue: 4
  year: 2018
  ident: 10.1016/j.autcon.2021.103991_bb0165
  article-title: Synthesis of unmanned aerial vehicle applications for infrastructures
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001185
– year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0205
  article-title: Transfer learning-based road damage detection for multiple countries
  publication-title: arXiv preprint
– volume: 21
  start-page: 1525
  issue: 4
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0135
  article-title: Feature pyramid and hierarchical boosting network for pavement crack detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2910595
– start-page: 936
  year: 2017
  ident: 10.1016/j.autcon.2021.103991_bb0190
  article-title: Feature pyramid networks for object detection
– volume: 17
  start-page: 3434
  issue: 2
  year: 2016
  ident: 10.1016/j.autcon.2021.103991_bb0140
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2552248
– year: 2019
  ident: 10.1016/j.autcon.2021.103991_bb0105
  article-title: Objects as points
  publication-title: arXiv preprint
– start-page: 8759
  year: 2018
  ident: 10.1016/j.autcon.2021.103991_bb0200
  article-title: Path aggregation network for instance segmentation
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.autcon.2021.103991_bb0085
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.autcon.2021.103991_bb0055
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– start-page: 5577
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0110
  article-title: Deep learning frameworks for pavement distress classification: a comparative analysis
– year: 2019
  ident: 10.1016/j.autcon.2021.103991_bb0220
  article-title: Pavement crack detection based on YOLO v3
– volume: 256
  start-page: 119397
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0125
  article-title: A cost effective solution for pavement crack inspection using cameras and deep neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119397
– volume: 18
  issue: 6
  year: 2018
  ident: 10.1016/j.autcon.2021.103991_bb0170
  article-title: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle
  publication-title: Sensors
  doi: 10.3390/s18061881
– volume: 29
  start-page: 196
  issue: 2
  year: 2015
  ident: 10.1016/j.autcon.2021.103991_bb0015
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2015.01.008
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.autcon.2021.103991_bb0050
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  ident: 10.1016/j.autcon.2021.103991_bb0075
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: 128
  start-page: 642
  issue: 3
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0100
  article-title: CornerNet: detecting objects as paired keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01204-1
– volume: 27
  issue: 8
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0130
  article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.2551
– year: 2018
  ident: 10.1016/j.autcon.2021.103991_bb0090
  article-title: YOLOv3: an incremental improvement
  publication-title: arXiv preprint
– volume: 113
  start-page: 103152
  year: 2020
  ident: 10.1016/j.autcon.2021.103991_bb0035
  article-title: Integrating three-dimensional road design and pavement structure analysis based on BIM
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103152
– start-page: 1
  year: 2015
  ident: 10.1016/j.autcon.2021.103991_bb0065
  article-title: Going deeper with convolutions
– volume: 11
  start-page: 154
  issue: 3
  year: 2005
  ident: 10.1016/j.autcon.2021.103991_bb0120
  article-title: Real-time automated survey system of pavement cracking in parallel environment
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)1076-0342(2005)11:3(154)
– volume: 29
  start-page: 930
  issue: 4
  year: 2019
  ident: 10.1016/j.autcon.2021.103991_bb0080
  article-title: Automatic classification of pavement crack using deep convolutional neural network
  publication-title: Int. J. Pavement Eng.
SSID ssj0007069
Score 2.6753983
Snippet Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103991
SubjectTerms Algorithms
Artificial neural networks
Asphalt pavement distress
Convolutional neural network (CNN)
Datasets
Decision making
Image quality
Inspection
Object-detection algorithms
Pavements
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Title Pavement distress detection using convolutional neural networks with images captured via UAV
URI https://dx.doi.org/10.1016/j.autcon.2021.103991
https://www.proquest.com/docview/2619669884
Volume 133
WOSCitedRecordID wos000707873800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007069
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhgQcEAwmBhvygVsV1MRxYh8rNLRNaNphQz0gWY5jS522tNC0mvjr8fNH0m6CbQcuSWQ5r1Z-P9uvz-8DoU8Zq3NDFEwkopOccXdIaBLOTFlQCnEDDulv5ekpm0z42WDwO8bCrK7KpmE3N3z-X6G2bRZsCJ19BNydUNtgny3o9mpht9cHAX8mXQrwFs5efCBIrVvtK4IvQ4xtswpDsABBRkt3c_7gIdptei0h-YOSczhhqIerqRxejL-vq7LjZTvzcY9D58vep6LtjdFLH_jR_IwbpGuNXsDgvC9nvU3ccadvOFoGW_ZkKmfXUUKwUGTZmoUimBqzIqFsRDdWXULW1k04kPZVu-4s6d66cAkOPWAhsD-Qfu67b2bQvrWzdf6G0ZXtUngpAqQIL-UJ2s5Kyu2KuD0-PpycdPt4OSp8psYw-hh46bwD747mb4rNrS3e6S3nr9DL8IcDjz1RXqOBbnbQsxiPvthBL9ZSUr5BPyJ9cKQP7uiDHX3wBn2wpw-O9MFAH-zpgyN9sKUPtvR5iy6-Hp5_OUpCBY5EEZK3SVooSnUlCZO1rBWpRpVUWkkjmcxMIQte8ZorJnXKTU3hBgn-dEaV1FYxJ7toq5k1-h3ChCspTU5NyVROq5TltrPdjk0GtRRTsodI_HxChfT0UCXlSvwLvD2UdG_NfXqWe_qXERkRVEyvOgpLt3ve3I9AijDbFwLMD0XBGcvfP3IgH9Dzfqrsoy07Q_UBeqpW7XTx62Og4h9qbqzp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pavement+distress+detection+using+convolutional+neural+networks+with+images+captured+via+UAV&rft.jtitle=Automation+in+construction&rft.au=Zhu%2C+Junqing&rft.au=Zhong%2C+Jingtao&rft.au=Ma%2C+Tao&rft.au=Huang%2C+Xiaoming&rft.date=2022-01-01&rft.issn=0926-5805&rft.volume=133&rft.spage=103991&rft_id=info:doi/10.1016%2Fj.autcon.2021.103991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2021_103991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon