Pavement distress detection using convolutional neural networks with images captured via UAV
Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavemen...
Saved in:
| Published in: | Automation in construction Vol. 133; p. 103991 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.01.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0926-5805, 1872-7891 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavement image collection was assembled, and the flight settings were studied for optimal image quality. The collected images were processed and annotated for model training. Three state-of-the-art object-detection algorithms—Faster R-CNN, YOLOv3, and YOLOv4, were used to train the dataset, and their prediction performances were compared. A pavement image dataset was established with six types of distress. YOLOv3 demonstrated the best performance of the three algorithms, with a mean average precision (MAP) of 56.6%. The findings of this study assist in the inspection of non-destructive automatic pavement conditions.
•UAV flight parameters are examined for pavement image collection.•An UAV pavement image dataset (UAPD) was established.•Anchor size is researched for pavement distress detection.•YOLOv3 outperforms YOLOv4 and Faster R-CNN. |
|---|---|
| AbstractList | Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavement image collection was assembled, and the flight settings were studied for optimal image quality. The collected images were processed and annotated for model training. Three state-of-the-art object-detection algorithms—Faster R-CNN, YOLOv3, and YOLOv4, were used to train the dataset, and their prediction performances were compared. A pavement image dataset was established with six types of distress. YOLOv3 demonstrated the best performance of the three algorithms, with a mean average precision (MAP) of 56.6%. The findings of this study assist in the inspection of non-destructive automatic pavement conditions.
•UAV flight parameters are examined for pavement image collection.•An UAV pavement image dataset (UAPD) was established.•Anchor size is researched for pavement distress detection.•YOLOv3 outperforms YOLOv4 and Faster R-CNN. Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement images. This paper proposes the collection of pavement distress information using a UAV with a high-resolution camera. A UAV platform for pavement image collection was assembled, and the flight settings were studied for optimal image quality. The collected images were processed and annotated for model training. Three state-of-the-art object-detection algorithms-Faster R-CNN, YOLOv3, and YOLOv4, were used to train the dataset, and their prediction performances were compared. A pavement image dataset was established with six types of distress. YOLOv3 demonstrated the best performance of the three algorithms, with a mean average precision (MAP) of 56.6%. The findings of this study assist in the inspection of non-destructive automatic pavement conditions. |
| ArticleNumber | 103991 |
| Author | Zhong, Jingtao Zhang, Weiguang Ma, Tao Zhu, Junqing Huang, Xiaoming Zhou, Yang |
| Author_xml | – sequence: 1 givenname: Junqing surname: Zhu fullname: Zhu, Junqing organization: School of Transportation, Southeast University, Nanjing 211189, China – sequence: 2 givenname: Jingtao surname: Zhong fullname: Zhong, Jingtao organization: School of Transportation, Southeast University, Nanjing 211189, China – sequence: 3 givenname: Tao surname: Ma fullname: Ma, Tao email: matao@seu.edu.cn organization: School of Transportation, Southeast University, Nanjing 211189, China – sequence: 4 givenname: Xiaoming surname: Huang fullname: Huang, Xiaoming organization: School of Transportation, Southeast University, Nanjing 211189, China – sequence: 5 givenname: Weiguang surname: Zhang fullname: Zhang, Weiguang organization: School of Transportation, Southeast University, Nanjing 211189, China – sequence: 6 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: School of Materials Science and Engineering, Southeast University, Nanjing 211189, China |
| BookMark | eNqFkEtLAzEUhYMoWB__wEXA9dRkppMmLgQRXyDowroSwm1yp6bWSU0yFf-9GceVC10duJxzuOfbI9utb5GQI87GnHFxshxDl4xvxyUreT5VSvEtMuJyWhZTqfg2GTFViqKWrN4lezEuGWNTJtSIPD_ABt-wTdS6mALGSC0mNMn5lnbRtQuaizd-1fUXWNEWu_At6cOH10g_XHqh7g0WGKmBdeoCWrpxQGfnTwdkp4FVxMMf3Sezq8vHi5vi7v769uL8rjBVNUkFF6aucQ6VBAvWVHM2B4MGGpBQNgKEmiurjATkqrF1LzWXEsvaAIo8d58cD73r4N87jEkvfRfyt1GXgishlJST7JoMLhN8jAEbvQ758fCpOdM9R73UA0fdc9QDxxw7_RUzLkFPIwVwq__CZ0MY8_yNw6CjcdgatC5kyNp693fBFxIXliM |
| CitedBy_id | crossref_primary_10_1111_mice_13200 crossref_primary_10_3390_drones7070419 crossref_primary_10_3390_app14031157 crossref_primary_10_1080_14680629_2023_2276422 crossref_primary_10_1016_j_measurement_2023_113252 crossref_primary_10_3390_s25113373 crossref_primary_10_1088_1361_6501_adee31 crossref_primary_10_1080_10298436_2023_2246093 crossref_primary_10_1016_j_autcon_2022_104575 crossref_primary_10_1016_j_autcon_2025_106195 crossref_primary_10_1016_j_autcon_2024_105789 crossref_primary_10_1016_j_conbuildmat_2022_129067 crossref_primary_10_1139_cjce_2024_0539 crossref_primary_10_1061_JCCEE5_CPENG_6007 crossref_primary_10_1061__ASCE_CF_1943_5509_0001748 crossref_primary_10_1109_ACCESS_2024_3451708 crossref_primary_10_3390_f15081374 crossref_primary_10_1016_j_engappai_2024_108312 crossref_primary_10_3390_a18060369 crossref_primary_10_1016_j_compstruc_2025_107761 crossref_primary_10_1088_1361_6501_ad86e0 crossref_primary_10_1088_1755_1315_1326_1_012100 crossref_primary_10_1109_ACCESS_2023_3343619 crossref_primary_10_3390_civileng6020032 crossref_primary_10_1061_JBENF2_BEENG_6053 crossref_primary_10_3390_s24144751 crossref_primary_10_3390_s23073418 crossref_primary_10_1109_JSEN_2023_3240092 crossref_primary_10_48130_dts_0025_0006 crossref_primary_10_1080_10298436_2022_2098293 crossref_primary_10_1016_j_compind_2025_104363 crossref_primary_10_3390_s24186159 crossref_primary_10_1109_ACCESS_2024_3481649 crossref_primary_10_1016_j_autcon_2024_105797 crossref_primary_10_1080_10298436_2023_2268796 crossref_primary_10_3390_rs17132248 crossref_primary_10_3390_s24103252 crossref_primary_10_1016_j_autcon_2022_104613 crossref_primary_10_1109_ACCESS_2025_3573651 crossref_primary_10_1080_15732479_2023_2274878 crossref_primary_10_1088_1361_6501_adf2cf crossref_primary_10_1109_TITS_2025_3525476 crossref_primary_10_3390_s24175757 crossref_primary_10_1016_j_jfranklin_2024_106664 crossref_primary_10_1080_10298436_2025_2538791 crossref_primary_10_1109_TITS_2024_3437770 crossref_primary_10_1016_j_autcon_2025_106219 crossref_primary_10_1016_j_measurement_2025_117315 crossref_primary_10_3390_coatings15030349 crossref_primary_10_3390_app15116112 crossref_primary_10_1016_j_autcon_2022_104436 crossref_primary_10_1016_j_autcon_2022_104555 crossref_primary_10_1088_1361_6501_adc3b5 crossref_primary_10_3390_drones7030149 crossref_primary_10_1109_TIM_2025_3582316 crossref_primary_10_1109_ACCESS_2025_3582976 crossref_primary_10_3390_drones6110368 crossref_primary_10_3390_infrastructures9120213 crossref_primary_10_1016_j_conbuildmat_2025_143428 crossref_primary_10_1109_JSTARS_2025_3552923 crossref_primary_10_1109_TITS_2023_3306578 crossref_primary_10_1016_j_procs_2025_03_290 crossref_primary_10_1016_j_autcon_2023_104745 crossref_primary_10_1016_j_autcon_2025_106285 crossref_primary_10_1016_j_measurement_2023_113844 crossref_primary_10_3390_s23198241 crossref_primary_10_1007_s11042_025_20700_w crossref_primary_10_3390_s25051475 crossref_primary_10_1007_s11760_023_02952_x crossref_primary_10_1016_j_aej_2025_03_072 crossref_primary_10_1371_journal_pone_0300679 crossref_primary_10_3390_app14198731 crossref_primary_10_1109_JSTARS_2025_3548137 crossref_primary_10_1016_j_conbuildmat_2022_128854 crossref_primary_10_1016_j_measurement_2024_115119 crossref_primary_10_1016_j_conbuildmat_2022_129025 crossref_primary_10_3390_app15020551 crossref_primary_10_1016_j_autcon_2023_105062 crossref_primary_10_1016_j_dib_2025_111377 crossref_primary_10_1016_j_coldregions_2024_104313 crossref_primary_10_1061_JCCEE5_CPENG_6162 crossref_primary_10_1016_j_aei_2025_103814 crossref_primary_10_1016_j_engappai_2024_109840 crossref_primary_10_1016_j_cscm_2023_e01917 crossref_primary_10_1080_10298436_2023_2180639 crossref_primary_10_1109_TITS_2025_3544240 crossref_primary_10_1520_JTE20220268 crossref_primary_10_1016_j_measurement_2025_118193 crossref_primary_10_3390_su14063275 crossref_primary_10_1016_j_jreng_2023_12_001 crossref_primary_10_1016_j_measurement_2024_115225 crossref_primary_10_1038_s41377_023_01094_6 crossref_primary_10_1080_10298436_2022_2155648 crossref_primary_10_3390_s22155781 crossref_primary_10_1016_j_autcon_2025_106141 crossref_primary_10_1016_j_jreng_2024_04_003 crossref_primary_10_1038_s41598_024_54835_x crossref_primary_10_3390_drones7090570 crossref_primary_10_1111_mice_13018 crossref_primary_10_1016_j_autcon_2024_105357 crossref_primary_10_3390_electronics11213622 crossref_primary_10_1109_TITS_2023_3245192 crossref_primary_10_1016_j_autcon_2022_104544 crossref_primary_10_1016_j_autcon_2024_105355 crossref_primary_10_1061_JCCEE5_CPENG_5864 crossref_primary_10_1080_10298436_2024_2401630 crossref_primary_10_1016_j_engappai_2025_111002 crossref_primary_10_1007_s40030_024_00821_5 crossref_primary_10_3390_su17073180 crossref_primary_10_3390_s22229019 crossref_primary_10_1111_mice_70034 crossref_primary_10_1080_10298436_2023_2180641 crossref_primary_10_3390_s24134288 crossref_primary_10_24857_rgsa_v19n5_132 crossref_primary_10_1109_TAI_2024_3386149 crossref_primary_10_1016_j_autcon_2022_104472 crossref_primary_10_3390_s22093341 crossref_primary_10_1016_j_tust_2024_105832 crossref_primary_10_1016_j_kscej_2024_100095 crossref_primary_10_3389_fmats_2022_1058407 crossref_primary_10_1002_gdj3_260 crossref_primary_10_1016_j_conbuildmat_2023_130597 crossref_primary_10_1016_j_conbuildmat_2022_128154 crossref_primary_10_1109_TITS_2023_3347034 crossref_primary_10_3390_electronics14132617 crossref_primary_10_1016_j_conengprac_2023_105735 crossref_primary_10_1007_s42421_025_00118_4 crossref_primary_10_1016_j_dsp_2024_104661 crossref_primary_10_3390_s24216783 crossref_primary_10_1016_j_asoc_2025_113332 crossref_primary_10_1002_stc_3093 crossref_primary_10_1016_j_autcon_2023_104945 crossref_primary_10_1088_1361_6501_ac8e22 crossref_primary_10_3390_coatings13040764 crossref_primary_10_3390_electronics11121882 crossref_primary_10_3390_jimaging11080259 crossref_primary_10_1016_j_ceramint_2022_09_136 crossref_primary_10_3390_app142411974 crossref_primary_10_1007_s11554_024_01545_2 crossref_primary_10_3390_app13179918 crossref_primary_10_1016_j_conbuildmat_2022_129916 crossref_primary_10_1016_j_jreng_2022_05_001 crossref_primary_10_3390_su14106306 crossref_primary_10_1109_ACCESS_2025_3557938 crossref_primary_10_1016_j_autcon_2024_105772 crossref_primary_10_1016_j_measurement_2024_115603 crossref_primary_10_3390_buildings14061546 crossref_primary_10_2174_0118741495308303240516073242 crossref_primary_10_1080_10298436_2024_2434910 crossref_primary_10_3390_infrastructures10030064 crossref_primary_10_1080_10298436_2022_2038381 crossref_primary_10_3390_rs15061530 crossref_primary_10_3390_s22228797 crossref_primary_10_1109_JIOT_2025_3530253 crossref_primary_10_3390_app14188100 crossref_primary_10_1016_j_autcon_2025_106122 crossref_primary_10_1109_TITS_2024_3424525 crossref_primary_10_3390_app13074549 crossref_primary_10_1177_03611981241239958 crossref_primary_10_3390_drones6110335 crossref_primary_10_1080_14680629_2025_2498107 crossref_primary_10_3390_s22083044 crossref_primary_10_1016_j_measurement_2025_117650 crossref_primary_10_3390_infrastructures9060090 crossref_primary_10_1016_j_cscm_2025_e04613 crossref_primary_10_3390_rs14163892 |
| Cites_doi | 10.1155/2020/8811649 10.3390/s20216205 10.1016/j.jclepro.2020.124583 10.1177/0361198120907283 10.3390/ijgi8090409 10.1016/j.eng.2018.11.030 10.1016/j.conbuildmat.2020.118513 10.1016/j.conbuildmat.2020.121717 10.1016/j.conbuildmat.2019.117912 10.1111/mice.12387 10.3390/app10124157 10.1109/JSTARS.2018.2865528 10.1016/j.autcon.2021.103742 10.1061/(ASCE)CF.1943-5509.0001185 10.1109/TITS.2019.2910595 10.1109/TITS.2016.2552248 10.1109/TPAMI.2016.2577031 10.1145/3065386 10.1016/j.conbuildmat.2020.119397 10.3390/s18061881 10.1016/j.aei.2015.01.008 10.1109/5.726791 10.1111/mice.12263 10.1007/s11263-019-01204-1 10.1002/stc.2551 10.1016/j.autcon.2020.103152 10.1061/(ASCE)1076-0342(2005)11:3(154) |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jan 2022 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jan 2022 |
| DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.autcon.2021.103991 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1872-7891 |
| ExternalDocumentID | 10_1016_j_autcon_2021_103991 S0926580521004428 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c334t-16c55eba38adadc3b0bacecafa8a2f6a69b9d9c8ae19fd5ae195188e25cae6103 |
| ISICitedReferencesCount | 197 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707873800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-5805 |
| IngestDate | Fri Jul 25 04:33:21 EDT 2025 Sat Nov 29 07:10:55 EST 2025 Tue Nov 18 21:42:08 EST 2025 Fri Feb 23 02:43:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Unmanned aerial vehicle (UAV) Convolutional neural network (CNN) Asphalt pavement distress Object-detection algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-16c55eba38adadc3b0bacecafa8a2f6a69b9d9c8ae19fd5ae195188e25cae6103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2619669884 |
| PQPubID | 2045277 |
| ParticipantIDs | proquest_journals_2619669884 crossref_primary_10_1016_j_autcon_2021_103991 crossref_citationtrail_10_1016_j_autcon_2021_103991 elsevier_sciencedirect_doi_10_1016_j_autcon_2021_103991 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Automation in construction |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Liu, Qi, Qin, Shi, Jia (bb0200) 2018 Yang, Zhang, Yu, Prokhorov, Mei, Ling (bb0135) 2020; 21 Lecun, Bottou, Bengio, Haffner (bb0050) 1998; 86 Wang, Mao, Zhai, Gui, Liu (bb0225) 1903 Majidifard, Adu-Gyamfi, Buttlar (bb0030) 2020; 2674 Maeda, Sekimoto, Seto, Kashiyama, Omata (bb0145) 2018; 33 Silva, San, Garcia, Mendes, Gonzalez (bb0175) 2020; 20 He, Zhang, Ren, Sun (bb0195) 2014 Lin, Dollár, Girshick, He, Hariharan, Belongie (bb0190) 2017 Peng, Zhong, Zhao, Chen, Zhang (bb0160) 2020; 2020 He, Zhang, Ren, Sun (bb0070) 2016 Zhou, Wang, Krhenbühl (bb0105) 2019 Huang, Dong, Ni, Wang (bb0005) 2021; 283 Wang, Gong (bb0120) 2005; 11 Romero-Chambi, Villarroel-Quezada, Atencio, Munoz-La Rivera (bb0155) 2020; 10 Jia, Wang, Huang, Gao, Wang, Zhou (bb0025) 2021; 273 Zhu, Ma, Fang (bb0010) 2020; 240 Mandal, Mussah, Adu-Gyamfi (bb0110) 2020 Mei, Gul (bb0125) 2020; 256 Shi, Cui, Qi, Meng, Chen (bb0140) 2016; 17 Tang, Ma, Zhang, Guan, Chen (bb0035) 2020; 113 Spencer, Hoskere, Narazaki (bb0150) 2019; 5 Gao, Hou, Jia, Wei, Wang, Li, Gong (bb0045) 2021; 128 Krizhevsky, Sutskever, Hinton (bb0055) 2017; 60 Cha, Choi, Büyüköztürk (bb0075) 2017; 32 Duque, Seo, Wacker (bb0165) 2018; 32 Kim, Jeon, Baek, Hong, Jung (bb0170) 2018; 18 Bochkovskiy, Wang, Liao (bb0115) 2020 Tan, Li (bb0185) 2019; 8 Nie, Wang (bb0220) 2019 Majidifard, Adu-Gyamfi, Buttlar (bb0095) 2020; 247 Li, Wang, Zhang, Yang, Wang (bb0080) 2019; 29 Mandal, Uong, Adu-Gyamfi (bb0040) 2018 Ren, He, Girshick, Sun (bb0085) 2017; 39 Jia, Wang, Peng, Gao, Hu, Zhao (bb0020) 2021 Redmon, Divvala, Girshick, Farhadi (bb0215) 2016 Redmon, Farhadi (bb0090) 2018 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick (bb0210) 2014 Law, Deng (bb0100) 2020; 128 Arya, Maeda, Ghosh, Toshniwal, Mraz, Kashiyama, Sekimoto (bb0205) 2020 Du, Pan, Xu, Deng, Shen, Kang (bb0230) 2020 Pan, Zhang, Cervone, Yang (bb0180) 2018; 11 Simonyan, Zisserman (bb0060) 2014 Huyan, L., Tighe, Xu, Zhai (bb0130) 2020; 27 Koch, Georgieva, Kasireddy, Akinci, Fieguth (bb0015) 2015; 29 Szegedy, Liu, Jia, Sermanet, Rabinovich (bb0065) 2015 Cha (10.1016/j.autcon.2021.103991_bb0075) 2017; 32 He (10.1016/j.autcon.2021.103991_bb0195) 2014 Redmon (10.1016/j.autcon.2021.103991_bb0215) 2016 Krizhevsky (10.1016/j.autcon.2021.103991_bb0055) 2017; 60 Law (10.1016/j.autcon.2021.103991_bb0100) 2020; 128 Spencer (10.1016/j.autcon.2021.103991_bb0150) 2019; 5 Mei (10.1016/j.autcon.2021.103991_bb0125) 2020; 256 He (10.1016/j.autcon.2021.103991_bb0070) 2016 Shi (10.1016/j.autcon.2021.103991_bb0140) 2016; 17 Kim (10.1016/j.autcon.2021.103991_bb0170) 2018; 18 Mandal (10.1016/j.autcon.2021.103991_bb0040) 2018 Yang (10.1016/j.autcon.2021.103991_bb0135) 2020; 21 Peng (10.1016/j.autcon.2021.103991_bb0160) 2020; 2020 Pan (10.1016/j.autcon.2021.103991_bb0180) 2018; 11 Szegedy (10.1016/j.autcon.2021.103991_bb0065) 2015 Jia (10.1016/j.autcon.2021.103991_bb0025) 2021; 273 Li (10.1016/j.autcon.2021.103991_bb0080) 2019; 29 Redmon (10.1016/j.autcon.2021.103991_bb0090) 2018 Wang (10.1016/j.autcon.2021.103991_bb0225) 1903 Tang (10.1016/j.autcon.2021.103991_bb0035) 2020; 113 Nie (10.1016/j.autcon.2021.103991_bb0220) 2019 Du (10.1016/j.autcon.2021.103991_bb0230) 2020 Maeda (10.1016/j.autcon.2021.103991_bb0145) 2018; 33 Romero-Chambi (10.1016/j.autcon.2021.103991_bb0155) 2020; 10 Jia (10.1016/j.autcon.2021.103991_bb0020) 2021 Simonyan (10.1016/j.autcon.2021.103991_bb0060) 2014 Liu (10.1016/j.autcon.2021.103991_bb0200) 2018 Majidifard (10.1016/j.autcon.2021.103991_bb0030) 2020; 2674 Koch (10.1016/j.autcon.2021.103991_bb0015) 2015; 29 Lin (10.1016/j.autcon.2021.103991_bb0190) 2017 Majidifard (10.1016/j.autcon.2021.103991_bb0095) 2020; 247 Zhu (10.1016/j.autcon.2021.103991_bb0010) 2020; 240 Wang (10.1016/j.autcon.2021.103991_bb0120) 2005; 11 Huyan (10.1016/j.autcon.2021.103991_bb0130) 2020; 27 Huang (10.1016/j.autcon.2021.103991_bb0005) 2021; 283 Arya (10.1016/j.autcon.2021.103991_bb0205) 2020 Lin (10.1016/j.autcon.2021.103991_bb0210) 2014 Zhou (10.1016/j.autcon.2021.103991_bb0105) 2019 Silva (10.1016/j.autcon.2021.103991_bb0175) 2020; 20 Bochkovskiy (10.1016/j.autcon.2021.103991_bb0115) 2020 Duque (10.1016/j.autcon.2021.103991_bb0165) 2018; 32 Tan (10.1016/j.autcon.2021.103991_bb0185) 2019; 8 Mandal (10.1016/j.autcon.2021.103991_bb0110) 2020 Gao (10.1016/j.autcon.2021.103991_bb0045) 2021; 128 Ren (10.1016/j.autcon.2021.103991_bb0085) 2017; 39 Lecun (10.1016/j.autcon.2021.103991_bb0050) 1998; 86 |
| References_xml | – year: 1903 ident: bb0225 article-title: Improvements of YoloV3 for road damage detection publication-title: J. Phys. Conf. Ser. – volume: 273 start-page: 121717 year: 2021 ident: bb0025 article-title: A comparative long-term effectiveness assessment of preventive maintenance treatments under various environmental conditions publication-title: Constr. Build. Mater. – volume: 128 start-page: 642 year: 2020 end-page: 656 ident: bb0100 article-title: CornerNet: detecting objects as paired keypoints publication-title: Int. J. Comput. Vis. – volume: 2674 start-page: 328 year: 2020 end-page: 339 ident: bb0030 article-title: Pavement image datasets: a new benchmark dataset to classify and densify pavement distresses publication-title: Transp. Res. Rec. – volume: 27 year: 2020 ident: bb0130 article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Struct. Control. Health Monit. – year: 2018 ident: bb0090 article-title: YOLOv3: an incremental improvement publication-title: arXiv preprint – volume: 21 start-page: 1525 year: 2020 end-page: 1535 ident: bb0135 article-title: Feature pyramid and hierarchical boosting network for pavement crack detection publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 770 year: 2016 end-page: 778 ident: bb0070 article-title: Deep residual learning for image recognition publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition – volume: 256 start-page: 119397 year: 2020 ident: bb0125 article-title: A cost effective solution for pavement crack inspection using cameras and deep neural networks publication-title: Constr. Build. Mater. – volume: 32 year: 2018 ident: bb0165 article-title: Synthesis of unmanned aerial vehicle applications for infrastructures publication-title: J. Perform. Constr. Facil. – year: 2014 ident: bb0060 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: bb0085 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 247 start-page: 118513 year: 2020 ident: bb0095 article-title: Deep machine learning approach to develop a new asphalt pavement condition index publication-title: Constr. Build. Mater. – start-page: 346 year: 2014 end-page: 361 ident: bb0195 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: Proceedings of the European Conference on Computer Vision – year: 2020 ident: bb0205 article-title: Transfer learning-based road damage detection for multiple countries publication-title: arXiv preprint – volume: 113 start-page: 103152 year: 2020 ident: bb0035 article-title: Integrating three-dimensional road design and pavement structure analysis based on BIM publication-title: Autom. Constr. – volume: 11 start-page: 3701 year: 2018 end-page: 3712 ident: bb0180 article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery publication-title: IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens. – year: 2021 ident: bb0020 article-title: Evaluation of pavement rutting based on driving safety of vehicles publication-title: Int. J. Pavement Res. Technol. – year: 2019 ident: bb0220 article-title: Pavement crack detection based on YOLO v3 publication-title: 2nd International Conference on Safety Produce Informatization (IICSPI), Chongqing – year: 2020 ident: bb0230 article-title: Pavement distress detection and classification based on YOLO network publication-title: Int. J. Pavement Eng. – volume: 29 start-page: 930 year: 2019 end-page: 940 ident: bb0080 article-title: Automatic classification of pavement crack using deep convolutional neural network publication-title: Int. J. Pavement Eng. – start-page: 936 year: 2017 end-page: 944 ident: bb0190 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bb0115 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv preprint – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bb0050 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 11 start-page: 154 year: 2005 end-page: 164 ident: bb0120 article-title: Real-time automated survey system of pavement cracking in parallel environment publication-title: J. Infrastruct. Syst. – volume: 10 year: 2020 ident: bb0155 article-title: Analysis of optimal flight parameters of unmanned aerial vehicles (UAVs) for detecting potholes in pavements publication-title: Appl. Sci. – volume: 18 year: 2018 ident: bb0170 article-title: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle publication-title: Sensors – start-page: 8759 year: 2018 end-page: 8768 ident: bb0200 article-title: Path aggregation network for instance segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 283 start-page: 124583 year: 2021 ident: bb0005 article-title: LCA and LCCA based multi-objective optimization of pavement maintenance publication-title: J. Clean. Prod. – volume: 8 year: 2019 ident: bb0185 article-title: UAV photogrammetry-based 3d road distress detection publication-title: ISPRS Int. J. Geo Inf. – volume: 240 year: 2020 ident: bb0010 article-title: Characterizaiton of agglomeration of reclaimed asphalt pavement for cold recycling publication-title: Constr. Build. Mater. – volume: 5 start-page: 199 year: 2019 end-page: 222 ident: bb0150 article-title: Advances in computer vision-based civil infrastructure inspection and monitoring publication-title: Engineering – year: 2019 ident: bb0105 article-title: Objects as points publication-title: arXiv preprint – volume: 33 start-page: 1127 year: 2018 end-page: 1141 ident: bb0145 article-title: Road damage detection and classification using deep neural networks with smartphone images: road damage detection and classification publication-title: Comput. Aided Civil Infrastruct. Eng. – volume: 128 start-page: 103742 year: 2021 ident: bb0045 article-title: Variability evaluation of gradation for asphalt mixture in asphalt pavement construction publication-title: Autom. Constr. – start-page: 1 year: 2015 end-page: 9 ident: bb0065 article-title: Going deeper with convolutions publication-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition – volume: 20 year: 2020 ident: bb0175 article-title: An architectural multi-agent system for a pavement monitoring system with pothole recognition in uav images publication-title: Sensors – start-page: 5577 year: 2020 end-page: 5583 ident: bb0110 article-title: Deep learning frameworks for pavement distress classification: a comparative analysis publication-title: Proceedings of the IEEE International Conference on Big Data – volume: 29 start-page: 196 year: 2015 end-page: 210 ident: bb0015 article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Adv. Eng. Inform. – volume: 17 start-page: 3434 year: 2016 end-page: 3445 ident: bb0140 article-title: Automatic road crack detection using random structured forests publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 779 year: 2016 end-page: 788 ident: bb0215 article-title: You Only Look Once: Unified, real-time object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: bb0075 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civil Infrastruct. Eng. – start-page: 5212 year: 2018 end-page: 5215 ident: bb0040 article-title: Automated road crack detection using deep convolutional neural networks publication-title: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data) – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bb0055 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 2020 year: 2020 ident: bb0160 article-title: The feasibility assessment study of bridge crack width recognition in images based on special inspection UAV publication-title: Adv. Civil Eng. – start-page: 740 year: 2014 end-page: 755 ident: bb0210 article-title: Microsoft coco: common objects in context publication-title: Proceedings of the European Conference on Computer Vision – year: 1903 ident: 10.1016/j.autcon.2021.103991_bb0225 article-title: Improvements of YoloV3 for road damage detection publication-title: J. Phys. Conf. Ser. – volume: 2020 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0160 article-title: The feasibility assessment study of bridge crack width recognition in images based on special inspection UAV publication-title: Adv. Civil Eng. doi: 10.1155/2020/8811649 – volume: 20 issue: 21 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0175 article-title: An architectural multi-agent system for a pavement monitoring system with pothole recognition in uav images publication-title: Sensors doi: 10.3390/s20216205 – start-page: 346 year: 2014 ident: 10.1016/j.autcon.2021.103991_bb0195 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition – volume: 283 start-page: 124583 year: 2021 ident: 10.1016/j.autcon.2021.103991_bb0005 article-title: LCA and LCCA based multi-objective optimization of pavement maintenance publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124583 – volume: 2674 start-page: 328 issue: 2 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0030 article-title: Pavement image datasets: a new benchmark dataset to classify and densify pavement distresses publication-title: Transp. Res. Rec. doi: 10.1177/0361198120907283 – start-page: 779 year: 2016 ident: 10.1016/j.autcon.2021.103991_bb0215 article-title: You Only Look Once: Unified, real-time object detection – volume: 8 issue: 9 year: 2019 ident: 10.1016/j.autcon.2021.103991_bb0185 article-title: UAV photogrammetry-based 3d road distress detection publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi8090409 – start-page: 770 year: 2016 ident: 10.1016/j.autcon.2021.103991_bb0070 article-title: Deep residual learning for image recognition – volume: 5 start-page: 199 issue: 2 year: 2019 ident: 10.1016/j.autcon.2021.103991_bb0150 article-title: Advances in computer vision-based civil infrastructure inspection and monitoring publication-title: Engineering doi: 10.1016/j.eng.2018.11.030 – volume: 247 start-page: 118513 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0095 article-title: Deep machine learning approach to develop a new asphalt pavement condition index publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118513 – volume: 273 start-page: 121717 year: 2021 ident: 10.1016/j.autcon.2021.103991_bb0025 article-title: A comparative long-term effectiveness assessment of preventive maintenance treatments under various environmental conditions publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121717 – year: 2014 ident: 10.1016/j.autcon.2021.103991_bb0060 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint – year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0230 article-title: Pavement distress detection and classification based on YOLO network publication-title: Int. J. Pavement Eng. – year: 2021 ident: 10.1016/j.autcon.2021.103991_bb0020 article-title: Evaluation of pavement rutting based on driving safety of vehicles publication-title: Int. J. Pavement Res. Technol. – volume: 240 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0010 article-title: Characterizaiton of agglomeration of reclaimed asphalt pavement for cold recycling publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117912 – volume: 33 start-page: 1127 issue: 12 year: 2018 ident: 10.1016/j.autcon.2021.103991_bb0145 article-title: Road damage detection and classification using deep neural networks with smartphone images: road damage detection and classification publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12387 – start-page: 5212 year: 2018 ident: 10.1016/j.autcon.2021.103991_bb0040 article-title: Automated road crack detection using deep convolutional neural networks – year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0115 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv preprint – volume: 10 issue: 12 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0155 article-title: Analysis of optimal flight parameters of unmanned aerial vehicles (UAVs) for detecting potholes in pavements publication-title: Appl. Sci. doi: 10.3390/app10124157 – volume: 11 start-page: 3701 issue: 10 year: 2018 ident: 10.1016/j.autcon.2021.103991_bb0180 article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery publication-title: IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens. doi: 10.1109/JSTARS.2018.2865528 – start-page: 740 year: 2014 ident: 10.1016/j.autcon.2021.103991_bb0210 article-title: Microsoft coco: common objects in context – volume: 128 start-page: 103742 year: 2021 ident: 10.1016/j.autcon.2021.103991_bb0045 article-title: Variability evaluation of gradation for asphalt mixture in asphalt pavement construction publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103742 – volume: 32 issue: 4 year: 2018 ident: 10.1016/j.autcon.2021.103991_bb0165 article-title: Synthesis of unmanned aerial vehicle applications for infrastructures publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001185 – year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0205 article-title: Transfer learning-based road damage detection for multiple countries publication-title: arXiv preprint – volume: 21 start-page: 1525 issue: 4 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0135 article-title: Feature pyramid and hierarchical boosting network for pavement crack detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2910595 – start-page: 936 year: 2017 ident: 10.1016/j.autcon.2021.103991_bb0190 article-title: Feature pyramid networks for object detection – volume: 17 start-page: 3434 issue: 2 year: 2016 ident: 10.1016/j.autcon.2021.103991_bb0140 article-title: Automatic road crack detection using random structured forests publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2552248 – year: 2019 ident: 10.1016/j.autcon.2021.103991_bb0105 article-title: Objects as points publication-title: arXiv preprint – start-page: 8759 year: 2018 ident: 10.1016/j.autcon.2021.103991_bb0200 article-title: Path aggregation network for instance segmentation – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.autcon.2021.103991_bb0085 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.autcon.2021.103991_bb0055 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – start-page: 5577 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0110 article-title: Deep learning frameworks for pavement distress classification: a comparative analysis – year: 2019 ident: 10.1016/j.autcon.2021.103991_bb0220 article-title: Pavement crack detection based on YOLO v3 – volume: 256 start-page: 119397 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0125 article-title: A cost effective solution for pavement crack inspection using cameras and deep neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119397 – volume: 18 issue: 6 year: 2018 ident: 10.1016/j.autcon.2021.103991_bb0170 article-title: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle publication-title: Sensors doi: 10.3390/s18061881 – volume: 29 start-page: 196 issue: 2 year: 2015 ident: 10.1016/j.autcon.2021.103991_bb0015 article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2015.01.008 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.autcon.2021.103991_bb0050 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 32 start-page: 361 issue: 5 year: 2017 ident: 10.1016/j.autcon.2021.103991_bb0075 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12263 – volume: 128 start-page: 642 issue: 3 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0100 article-title: CornerNet: detecting objects as paired keypoints publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01204-1 – volume: 27 issue: 8 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0130 article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.2551 – year: 2018 ident: 10.1016/j.autcon.2021.103991_bb0090 article-title: YOLOv3: an incremental improvement publication-title: arXiv preprint – volume: 113 start-page: 103152 year: 2020 ident: 10.1016/j.autcon.2021.103991_bb0035 article-title: Integrating three-dimensional road design and pavement structure analysis based on BIM publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103152 – start-page: 1 year: 2015 ident: 10.1016/j.autcon.2021.103991_bb0065 article-title: Going deeper with convolutions – volume: 11 start-page: 154 issue: 3 year: 2005 ident: 10.1016/j.autcon.2021.103991_bb0120 article-title: Real-time automated survey system of pavement cracking in parallel environment publication-title: J. Infrastruct. Syst. doi: 10.1061/(ASCE)1076-0342(2005)11:3(154) – volume: 29 start-page: 930 issue: 4 year: 2019 ident: 10.1016/j.autcon.2021.103991_bb0080 article-title: Automatic classification of pavement crack using deep convolutional neural network publication-title: Int. J. Pavement Eng. |
| SSID | ssj0007069 |
| Score | 2.6753983 |
| Snippet | Pavement distress detection is crucial in the decision-making for maintenance planning. Unmanned aerial vehicles (UAVs) are helpful in collecting pavement... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103991 |
| SubjectTerms | Algorithms Artificial neural networks Asphalt pavement distress Convolutional neural network (CNN) Datasets Decision making Image quality Inspection Object-detection algorithms Pavements Unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
| Title | Pavement distress detection using convolutional neural networks with images captured via UAV |
| URI | https://dx.doi.org/10.1016/j.autcon.2021.103991 https://www.proquest.com/docview/2619669884 |
| Volume | 133 |
| WOSCitedRecordID | wos000707873800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7891 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007069 issn: 0926-5805 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhgQcEAwmBhvygVsV1MRxYh8rNLRNaNphQz0gWY5jS522tNC0mvjr8fNH0m6CbQcuSWQ5r1Z-P9uvz-8DoU8Zq3NDFEwkopOccXdIaBLOTFlQCnEDDulv5ekpm0z42WDwO8bCrK7KpmE3N3z-X6G2bRZsCJ19BNydUNtgny3o9mpht9cHAX8mXQrwFs5efCBIrVvtK4IvQ4xtswpDsABBRkt3c_7gIdptei0h-YOSczhhqIerqRxejL-vq7LjZTvzcY9D58vep6LtjdFLH_jR_IwbpGuNXsDgvC9nvU3ccadvOFoGW_ZkKmfXUUKwUGTZmoUimBqzIqFsRDdWXULW1k04kPZVu-4s6d66cAkOPWAhsD-Qfu67b2bQvrWzdf6G0ZXtUngpAqQIL-UJ2s5Kyu2KuD0-PpycdPt4OSp8psYw-hh46bwD747mb4rNrS3e6S3nr9DL8IcDjz1RXqOBbnbQsxiPvthBL9ZSUr5BPyJ9cKQP7uiDHX3wBn2wpw-O9MFAH-zpgyN9sKUPtvR5iy6-Hp5_OUpCBY5EEZK3SVooSnUlCZO1rBWpRpVUWkkjmcxMIQte8ZorJnXKTU3hBgn-dEaV1FYxJ7toq5k1-h3ChCspTU5NyVROq5TltrPdjk0GtRRTsodI_HxChfT0UCXlSvwLvD2UdG_NfXqWe_qXERkRVEyvOgpLt3ve3I9AijDbFwLMD0XBGcvfP3IgH9Dzfqrsoy07Q_UBeqpW7XTx62Og4h9qbqzp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pavement+distress+detection+using+convolutional+neural+networks+with+images+captured+via+UAV&rft.jtitle=Automation+in+construction&rft.au=Zhu%2C+Junqing&rft.au=Zhong%2C+Jingtao&rft.au=Ma%2C+Tao&rft.au=Huang%2C+Xiaoming&rft.date=2022-01-01&rft.issn=0926-5805&rft.volume=133&rft.spage=103991&rft_id=info:doi/10.1016%2Fj.autcon.2021.103991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2021_103991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |