A two-phase framework of locating the reference point for decomposition-based constrained multi-objective evolutionary algorithms

Reference point is a key component in decomposition-based constrained multi-objective evolutionary algorithms (CMOEAs). A proper way of updating it requires considering constraint-handling techniques due to the existing constraints. However, it remains unexplored in this field. To remedy this issue,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 239; s. 107933
Hlavní autoři: Peng, Chaoda, Liu, Hai-Lin, Goodman, Erik D., Tan, Kay Chen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 05.03.2022
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Reference point is a key component in decomposition-based constrained multi-objective evolutionary algorithms (CMOEAs). A proper way of updating it requires considering constraint-handling techniques due to the existing constraints. However, it remains unexplored in this field. To remedy this issue, this paper firstly designs a set of benchmark problems with difficulties that a CMOEA must update the reference point effectively. Then a two-phase framework of locating the reference point is proposed to enhance performance of the current decomposition-based CMOEAs by evolving two populations—the main and external population. At the first phase, the external population evolves along with the main population to identify the approximate locations of the constrained and unconstrained Pareto front (PF). At the second phase, a location estimation mechanism is designed to estimate the best fit reference point between the two PFs for the main population by evolving the external population. Besides, a replacement strategy is used to drive the main population to the promising regions. Experimental studies are conducted on 26 benchmark problems, and the results highlight the effectiveness of the proposed framework.
AbstractList Reference point is a key component in decomposition-based constrained multi-objective evolutionary algorithms (CMOEAs). A proper way of updating it requires considering constraint-handling techniques due to the existing constraints. However, it remains unexplored in this field. To remedy this issue, this paper firstly designs a set of benchmark problems with difficulties that a CMOEA must update the reference point effectively. Then a two-phase framework of locating the reference point is proposed to enhance performance of the current decomposition-based CMOEAs by evolving two populations-the main and external population. At the first phase, the external population evolves along with the main population to identify the approximate locations of the constrained and unconstrained Pareto front (PF). At the second phase, a location estimation mechanism is designed to estimate the best fit reference point between the two PFs for the main population by evolving the external population. Besides, a replacement strategy is used to drive the main population to the promising regions. Experimental studies are conducted on 26 benchmark problems, and the results highlight the effectiveness of the proposed framework.
ArticleNumber 107933
Author Goodman, Erik D.
Tan, Kay Chen
Peng, Chaoda
Liu, Hai-Lin
Author_xml – sequence: 1
  givenname: Chaoda
  surname: Peng
  fullname: Peng, Chaoda
  email: ChaodaPeng@scau.edu.cn
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, Guangdong Province, China
– sequence: 2
  givenname: Hai-Lin
  orcidid: 0000-0003-2276-1938
  surname: Liu
  fullname: Liu, Hai-Lin
  email: hlliu@gdut.edu.cn
  organization: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou city, Guangdong Province, China
– sequence: 3
  givenname: Erik D.
  orcidid: 0000-0002-2419-0692
  surname: Goodman
  fullname: Goodman, Erik D.
  email: goodman@egr.msu.edu
  organization: BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
– sequence: 4
  givenname: Kay Chen
  surname: Tan
  fullname: Tan, Kay Chen
  email: kctan@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR
BookMark eNqFkE9r3DAQxUVJoJs_3yAHQc_eSpYt2T0UQmjaQKCX9ixkeZyVY2tcSbshx37zyrinHNqTBvHem3m_C3Lm0QMhN5ztOePy47h_9hhf475kJc9fqhXiHdnxRpWFqlh7RnasrVmhWM3fk4sYR8ZYWfJmR37f0vSCxXIwEegQzAwvGJ4pDnRCa5LzTzQdgAYYIIC3QBd0PtEBA-3B4rxgdMmhL7oc0FOLPqZgnM_zfJySK7AbwSZ3AgonnI6r1oRXaqYnDC4d5nhFzgczRbj--16Sn_dfftx9Kx6_f324u30srBBVKriQ3LZdI6remI51lTE1qKYzjbQCmsrk7qUVUjJRZR1I2fFOMcnqvjZCgbgkH7bcJeCvI8SkRzwGn1fqUopGKd5ylVWfNpUNGGOura1LZr16rTVpzvSKXI96Q65X5HpDns3VG_MS3Jzr_s_2ebNBrn9yEHS0boXdu5DZ6R7dvwP-AMdqov4
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127768
crossref_primary_10_1109_TSUSC_2024_3401003
crossref_primary_10_1007_s40747_022_00761_2
crossref_primary_10_1016_j_knosys_2024_112524
crossref_primary_10_1109_TSMC_2024_3427864
crossref_primary_10_1016_j_knosys_2023_111032
crossref_primary_10_1016_j_swevo_2025_102006
crossref_primary_10_1109_TEVC_2023_3345470
crossref_primary_10_1016_j_eswa_2023_121707
crossref_primary_10_1002_tee_24200
crossref_primary_10_1007_s11047_022_09889_z
Cites_doi 10.1016/j.asoc.2016.04.030
10.1016/j.asoc.2017.04.002
10.1007/BF01743536
10.1016/j.knosys.2021.107131
10.1109/4235.996017
10.1109/TEVC.2020.2981949
10.1109/TEVC.2019.2896967
10.1016/j.ins.2010.03.021
10.1109/TEVC.2008.2009032
10.1016/j.asoc.2013.10.008
10.1016/j.asoc.2012.07.027
10.1145/2463372.2463449
10.1016/j.swevo.2018.08.017
10.1109/TEVC.2013.2281534
10.1109/4235.873238
10.1109/TEVC.2019.2894743
10.1287/opre.45.1.92
10.1162/evco_a_00259
10.1016/j.swevo.2020.100676
10.1016/j.knosys.2021.107263
10.1016/j.asoc.2017.06.053
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 5, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 5, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107933
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107933
S0950705121010777
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-1361c9b834daab0b4aa5e78ba86c3e84a2022c366034c9be66b1b70605d5a37e3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788495000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:42:33 EST 2025
Sat Nov 29 07:07:20 EST 2025
Tue Nov 18 22:28:08 EST 2025
Fri Feb 23 02:39:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Decomposition
Referent point
Constraint-handling technique
Multi-objective evolutionary algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-1361c9b834daab0b4aa5e78ba86c3e84a2022c366034c9be66b1b70605d5a37e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2419-0692
0000-0003-2276-1938
PQID 2638771917
PQPubID 2035257
ParticipantIDs proquest_journals_2638771917
crossref_citationtrail_10_1016_j_knosys_2021_107933
crossref_primary_10_1016_j_knosys_2021_107933
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107933
PublicationCentury 2000
PublicationDate 2022-03-05
PublicationDateYYYYMMDD 2022-03-05
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Woldesenbet, Yen, Tessema (b21) 2009; 13
Jain, Deb (b8) 2013; 18
Ming, Gong, Zhen, Li, Wang, Liao (b29) 2021; 228
Wang, Xiong, Ishibuchi, Wu, Zhang (b13) 2017; 58
Deb, Pratap, Agarwal, Meyarivan (b23) 2002; 6
Wang, Liang, Zhang (b4) 2018
Yen (b19) 2009
Peng, Liu, Gu (b3) 2017; 60
Wang, Cai, Li, Pedrycz (b12) 2021; 227
Coello, Lamont, Van Veldhuizen (b33) 2007
Jan, Khanum (b24) 2013; 13
Zitzler, Thiele (b32) 1998
M. Miyakawa, K. Takadama, H. Sato, Two-stage non-dominated sorting and directed mating for solving problems with multi-objectives and constraints, in: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, pp. 647–654.
C.M. Fonseca, J.D. Knowles, L. Thiele, E. Zitzler, A tutorial on the performance assessment of stochastic multiobjective optimizers, in: Third International Conference on Evolutionary Multi-Criterion Optimization, Vol. 216, 2005.
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b16) 2020; 28
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b2) 2019; 44
Jiao, Luo, Shang, Liu (b6) 2014; 14
Harada, Sakuma, Ono, Kobayashi (b26) 2007
Li, Chen, Fu, Yao (b9) 2018
Runarsson, Yao (b25) 2000; 4
Wierzbicki (b31) 1980
Deb, Pratap, Meyarivan (b34) 2001
Peng, Liu, Goodman (b5) 2020
Zhang, Zhou, Zhao, Suganthan, Liu, Tiwari (b17) 2008
Tanabe, Oyama (b30) 2017
Osyczka, Kundu (b35) 1995; 10
Ma, Wang (b15) 2019; 23
Surry, Radcliffe (b20) 1997; 26
Zhou, Zhu, Wang, Zhang, Xiang, Zhang (b10) 2018
Liu, Wang (b1) 2019
Fukumoto, Oyama (b14) 2019
Ben Hadj-Alouane, Bean (b22) 1997; 45
Peng, Liu, Goodman (b7) 2020
Zhu, Zhang, Lin (b11) 2020
Panda, Pani (b18) 2016; 46
Singh, Ray, Smith (b27) 2010; 180
Jan (10.1016/j.knosys.2021.107933_b24) 2013; 13
Wang (10.1016/j.knosys.2021.107933_b4) 2018
Deb (10.1016/j.knosys.2021.107933_b34) 2001
Deb (10.1016/j.knosys.2021.107933_b23) 2002; 6
10.1016/j.knosys.2021.107933_b28
Fan (10.1016/j.knosys.2021.107933_b2) 2019; 44
Ben Hadj-Alouane (10.1016/j.knosys.2021.107933_b22) 1997; 45
Singh (10.1016/j.knosys.2021.107933_b27) 2010; 180
Osyczka (10.1016/j.knosys.2021.107933_b35) 1995; 10
Jain (10.1016/j.knosys.2021.107933_b8) 2013; 18
Fan (10.1016/j.knosys.2021.107933_b16) 2020; 28
Li (10.1016/j.knosys.2021.107933_b9) 2018
Wang (10.1016/j.knosys.2021.107933_b12) 2021; 227
Coello (10.1016/j.knosys.2021.107933_b33) 2007
Wierzbicki (10.1016/j.knosys.2021.107933_b31) 1980
Jiao (10.1016/j.knosys.2021.107933_b6) 2014; 14
Fukumoto (10.1016/j.knosys.2021.107933_b14) 2019
Zhang (10.1016/j.knosys.2021.107933_b17) 2008
Yen (10.1016/j.knosys.2021.107933_b19) 2009
Surry (10.1016/j.knosys.2021.107933_b20) 1997; 26
Woldesenbet (10.1016/j.knosys.2021.107933_b21) 2009; 13
Panda (10.1016/j.knosys.2021.107933_b18) 2016; 46
Peng (10.1016/j.knosys.2021.107933_b5) 2020
10.1016/j.knosys.2021.107933_b36
Peng (10.1016/j.knosys.2021.107933_b3) 2017; 60
Wang (10.1016/j.knosys.2021.107933_b13) 2017; 58
Zhou (10.1016/j.knosys.2021.107933_b10) 2018
Ma (10.1016/j.knosys.2021.107933_b15) 2019; 23
Runarsson (10.1016/j.knosys.2021.107933_b25) 2000; 4
Zhu (10.1016/j.knosys.2021.107933_b11) 2020
Harada (10.1016/j.knosys.2021.107933_b26) 2007
Tanabe (10.1016/j.knosys.2021.107933_b30) 2017
Ming (10.1016/j.knosys.2021.107933_b29) 2021; 228
Zitzler (10.1016/j.knosys.2021.107933_b32) 1998
Peng (10.1016/j.knosys.2021.107933_b7) 2020
Liu (10.1016/j.knosys.2021.107933_b1) 2019
References_xml – year: 2018
  ident: b9
  article-title: Two-archive evolutionary algorithm for constrained multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 121
  year: 2009
  end-page: 143
  ident: b19
  article-title: An adaptive penalty function for handling constraint in multi-objective evolutionary optimization
  publication-title: Constraint-Handling in Evolutionary Optimization
– volume: 18
  start-page: 602
  year: 2013
  end-page: 622
  ident: b8
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part
  publication-title: IEEE Trans. Evol. Comput.
– volume: 45
  start-page: 92
  year: 1997
  end-page: 101
  ident: b22
  article-title: A genetic algorithm for the multiple-choice integer program
  publication-title: Oper. Res.
– start-page: 292
  year: 1998
  end-page: 301
  ident: b32
  article-title: Multiobjective optimization using evolutionary algorithms-a comparative case study
  publication-title: International Conference on Parallel Problem Solving from Nature
– year: 2020
  ident: b11
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 391
  year: 1997
  end-page: 412
  ident: b20
  article-title: The
  publication-title: Control Cybernet.
– start-page: 1
  year: 2018
  end-page: 14
  ident: b10
  article-title: Tri-goal evolution framework for constrained many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– start-page: 156
  year: 2007
  end-page: 170
  ident: b26
  article-title: Constraint-handling method for multi-objective function optimization: Pareto descent repair operator
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b23
  article-title: A fast and elitist multiobjective genetic algorithm:
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  start-page: 363
  year: 2014
  end-page: 380
  ident: b6
  article-title: A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 94
  year: 1995
  end-page: 99
  ident: b35
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Struct. Optim.
– volume: 46
  start-page: 344
  year: 2016
  end-page: 360
  ident: b18
  article-title: A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: b25
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: b2
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 28
  start-page: 339
  year: 2020
  end-page: 378
  ident: b16
  article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit
  publication-title: Evol. Comput.
– year: 2008
  ident: b17
  article-title: Multiobjective Optimization Test Instances for the
– reference: M. Miyakawa, K. Takadama, H. Sato, Two-stage non-dominated sorting and directed mating for solving problems with multi-objectives and constraints, in: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, pp. 647–654.
– start-page: 2138
  year: 2019
  end-page: 2145
  ident: b14
  article-title: Impact of estimation method of ideal/nadir points on practically-constrained multi-objective optimization problems for decomposition-based multi-objective evolutionary algorithm
  publication-title: 2019 IEEE Symposium Series on Computational Intelligence
– year: 2020
  ident: b7
  article-title: Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2020
  end-page: 13
  ident: b5
  article-title: A cooperative evolutionary framework based on an improved version of directed weight vectors for constrained multiobjective optimization with deceptive constraints
  publication-title: IEEE Trans. Cybern.
– start-page: 1127
  year: 2017
  end-page: 1134
  ident: b30
  article-title: A note on constrained multi-objective optimization benchmark problems
  publication-title: 2017 IEEE Congress on Evolutionary Computation
– volume: 180
  start-page: 2499
  year: 2010
  end-page: 2513
  ident: b27
  article-title: : Constrained Pareto simulated annealing for constrained multi-objective optimization
  publication-title: Inform. Sci.
– start-page: 1
  year: 2018
  end-page: 13
  ident: b4
  article-title: Cooperative differential evolution framework for constrained multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– year: 2007
  ident: b33
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems, Vol. 5
– start-page: 284
  year: 2001
  end-page: 298
  ident: b34
  article-title: Constrained test problems for multi-objective evolutionary optimization
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– reference: C.M. Fonseca, J.D. Knowles, L. Thiele, E. Zitzler, A tutorial on the performance assessment of stochastic multiobjective optimizers, in: Third International Conference on Evolutionary Multi-Criterion Optimization, Vol. 216, 2005.
– volume: 227
  year: 2021
  ident: b12
  article-title: Constraint handling technique based on lebesgue measure for constrained multiobjective particle swarm optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 128
  year: 2013
  end-page: 148
  ident: b24
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 972
  year: 2019
  end-page: 986
  ident: b15
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 468
  year: 1980
  end-page: 486
  ident: b31
  article-title: The use of reference objectives in multiobjective optimization
  publication-title: Multiple Criteria Decision Making Theory and Application
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: b21
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 228
  year: 2021
  ident: b29
  article-title: A simple two-stage evolutionary algorithm for constrained multi-objective optimization
  publication-title: Knowl.-Based Syst.
– volume: 58
  start-page: 25
  year: 2017
  end-page: 34
  ident: b13
  article-title: On the effect of reference point in
  publication-title: Appl. Soft Comput.
– volume: 60
  start-page: 613
  year: 2017
  end-page: 622
  ident: b3
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: b1
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 344
  year: 2016
  ident: 10.1016/j.knosys.2021.107933_b18
  article-title: A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.04.030
– volume: 58
  start-page: 25
  year: 2017
  ident: 10.1016/j.knosys.2021.107933_b13
  article-title: On the effect of reference point in MOEA/D for multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.002
– year: 2007
  ident: 10.1016/j.knosys.2021.107933_b33
– volume: 10
  start-page: 94
  issue: 2
  year: 1995
  ident: 10.1016/j.knosys.2021.107933_b35
  article-title: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
  publication-title: Struct. Optim.
  doi: 10.1007/BF01743536
– volume: 227
  year: 2021
  ident: 10.1016/j.knosys.2021.107933_b12
  article-title: Constraint handling technique based on lebesgue measure for constrained multiobjective particle swarm optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107131
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.knosys.2021.107933_b23
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 2020
  ident: 10.1016/j.knosys.2021.107933_b11
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2981949
– start-page: 1127
  year: 2017
  ident: 10.1016/j.knosys.2021.107933_b30
  article-title: A note on constrained multi-objective optimization benchmark problems
– start-page: 468
  year: 1980
  ident: 10.1016/j.knosys.2021.107933_b31
  article-title: The use of reference objectives in multiobjective optimization
– volume: 23
  start-page: 972
  issue: 6
  year: 2019
  ident: 10.1016/j.knosys.2021.107933_b15
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2896967
– start-page: 156
  year: 2007
  ident: 10.1016/j.knosys.2021.107933_b26
  article-title: Constraint-handling method for multi-objective function optimization: Pareto descent repair operator
– volume: 180
  start-page: 2499
  issue: 13
  year: 2010
  ident: 10.1016/j.knosys.2021.107933_b27
  article-title: C-PSA: Constrained Pareto simulated annealing for constrained multi-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.03.021
– start-page: 292
  year: 1998
  ident: 10.1016/j.knosys.2021.107933_b32
  article-title: Multiobjective optimization using evolutionary algorithms-a comparative case study
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.knosys.2021.107933_b21
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 14
  start-page: 363
  year: 2014
  ident: 10.1016/j.knosys.2021.107933_b6
  article-title: A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.10.008
– year: 2018
  ident: 10.1016/j.knosys.2021.107933_b9
  article-title: Two-archive evolutionary algorithm for constrained multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2008
  ident: 10.1016/j.knosys.2021.107933_b17
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2021.107933_b24
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/d
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.07.027
– ident: 10.1016/j.knosys.2021.107933_b28
  doi: 10.1145/2463372.2463449
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.knosys.2021.107933_b4
  article-title: Cooperative differential evolution framework for constrained multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– start-page: 121
  year: 2009
  ident: 10.1016/j.knosys.2021.107933_b19
  article-title: An adaptive penalty function for handling constraint in multi-objective evolutionary optimization
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.knosys.2021.107933_b2
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– volume: 18
  start-page: 602
  issue: 4
  year: 2013
  ident: 10.1016/j.knosys.2021.107933_b8
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.knosys.2021.107933_b25
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.873238
– ident: 10.1016/j.knosys.2021.107933_b36
– year: 2019
  ident: 10.1016/j.knosys.2021.107933_b1
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2894743
– start-page: 2138
  year: 2019
  ident: 10.1016/j.knosys.2021.107933_b14
  article-title: Impact of estimation method of ideal/nadir points on practically-constrained multi-objective optimization problems for decomposition-based multi-objective evolutionary algorithm
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.107933_b5
  article-title: A cooperative evolutionary framework based on an improved version of directed weight vectors for constrained multiobjective optimization with deceptive constraints
  publication-title: IEEE Trans. Cybern.
– volume: 45
  start-page: 92
  issue: 1
  year: 1997
  ident: 10.1016/j.knosys.2021.107933_b22
  article-title: A genetic algorithm for the multiple-choice integer program
  publication-title: Oper. Res.
  doi: 10.1287/opre.45.1.92
– volume: 28
  start-page: 339
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2021.107933_b16
  article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00259
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.knosys.2021.107933_b10
  article-title: Tri-goal evolution framework for constrained many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– start-page: 284
  year: 2001
  ident: 10.1016/j.knosys.2021.107933_b34
  article-title: Constrained test problems for multi-objective evolutionary optimization
– year: 2020
  ident: 10.1016/j.knosys.2021.107933_b7
  article-title: Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100676
– volume: 26
  start-page: 391
  year: 1997
  ident: 10.1016/j.knosys.2021.107933_b20
  article-title: The COMOGA method: constrained optimisation by multi-objective genetic algorithms
  publication-title: Control Cybernet.
– volume: 228
  year: 2021
  ident: 10.1016/j.knosys.2021.107933_b29
  article-title: A simple two-stage evolutionary algorithm for constrained multi-objective optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107263
– volume: 60
  start-page: 613
  year: 2017
  ident: 10.1016/j.knosys.2021.107933_b3
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.053
SSID ssj0002218
Score 2.3910048
Snippet Reference point is a key component in decomposition-based constrained multi-objective evolutionary algorithms (CMOEAs). A proper way of updating it requires...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107933
SubjectTerms Algorithms
Benchmarks
Constraint-handling technique
Constraints
Decomposition
Evolutionary algorithms
Frame analysis
Genetic algorithms
Multi-objective evolutionary algorithm
Multiple objective analysis
Phonetic form
Population
Referent point
Title A two-phase framework of locating the reference point for decomposition-based constrained multi-objective evolutionary algorithms
URI https://dx.doi.org/10.1016/j.knosys.2021.107933
https://www.proquest.com/docview/2638771917
Volume 239
WOSCitedRecordID wos000788495000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXvoukTQsO3QQaliiJ0mik6dMIOqSFN4EUpVqOIRqO4mTNT-k_7VEkJcdNm2boIhg0RZC-z3fHw913CL3Ny5RKFqWEcS5JGJSC8CTwSSlkKPOSirRt2vd9wo6Pk-k0_ToY_HS1MOsFq-vk8jJd_ldRwxgIW5fO3kHc3aIwAJ9B6PAEscPznwQ_9poLRZYzME9e6VKvtE-ozVbjqqO69iLeUlWan0npTuE6wdxmcRFt33TJm6aY5eCLSpN8SJSYGyXpFWt7EJ15xxc_1KpqZpb93Pq7X1zIzi53tkGQ3ipko2oOZ1z1oYFJdd5aRF6RSdWB94NS0oZrQXmfeu-GfdShNokhmqnZlrbZQAbcgXUmV3QtIjkibGT5Z61yDgzVkVWvvqbzozdqfhOEmA9PawVHgYt_4A_76deJtrcMYJeW6DLe5plZJdOrZGaVe2g3AEyD4twdfzqafu7MfRC0QeRu964-s00i_H03f_J_tjyB1r05eYwe2nsJHhs8PUGDon6KHrmeH9iagGfoaow7eOEOXliV2MELA7xwBy_cwgsDvPAN8MIb8MJb8MKb8MI9vJ6jb--PTg4_EtvGg-SUhg3xaeznqUhoKDkXIxFyHhUsETyJc1okIddgyGkcj2gI84o4Fr7QpE6RjDhlBX2BdmpVF3sIR2XMZBKUIylZWPI4FTEM6F4xRZhHku4j6n7cLLcc9_oQi-xvot1HpHtraThebpnPnNwy66ca_zMDMN7y5oETc2ZVBnwPJpAxHTd5eceNvEIP-j_SAdppVufFa3Q_XzfV2eqNBeovwgTICQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-phase+framework+of+locating+the+reference+point+for+decomposition-based+constrained+multi-objective+evolutionary+algorithms&rft.jtitle=Knowledge-based+systems&rft.au=Peng%2C+Chaoda&rft.au=Liu%2C+Hai-Lin&rft.au=Goodman%2C+Erik+D.&rft.au=Tan%2C+Kay+Chen&rft.date=2022-03-05&rft.issn=0950-7051&rft.volume=239&rft.spage=107933&rft_id=info:doi/10.1016%2Fj.knosys.2021.107933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2021_107933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon