Fatigue driving detection model based on multi-feature fusion and semi-supervised active learning

Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive use of on-board sensors, a huge number of unlabelled driving data can be easily collected, however, it is a costly and laborious work to annot...

Full description

Saved in:
Bibliographic Details
Published in:IET intelligent transport systems Vol. 13; no. 9; pp. 1401 - 1409
Main Authors: Li, Xu, Hong, Lin, Wang, Jian-chun, Liu, Xiang
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 01.09.2019
Subjects:
ISSN:1751-956X, 1751-9578
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive use of on-board sensors, a huge number of unlabelled driving data can be easily collected, however, it is a costly and laborious work to annotate semantic labels for these data manually, posing some difficulties to detect fatigue driving with these data. In this work, the authors propose a novel fatigue driving detection model based on multi-feature fusion and semi-supervised active learning. In the authors’ model, the steering features of the vehicle and the facial features of the driver are fused to improve the accuracy and stability of the model. Semi-supervised active learning algorithm allows us to make semantic labels for only a small number of data that can be propagated to the rest data, and help us establish an efficient fatigue driving detection model with automatic label propagation. Some experiments are conducted to validate their model, the results show that the accuracy is 86.25%, which proves the effectiveness of the fatigue driving detection model.
AbstractList Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive use of on‐board sensors, a huge number of unlabelled driving data can be easily collected, however, it is a costly and laborious work to annotate semantic labels for these data manually, posing some difficulties to detect fatigue driving with these data. In this work, the authors propose a novel fatigue driving detection model based on multi‐feature fusion and semi‐supervised active learning. In the authors’ model, the steering features of the vehicle and the facial features of the driver are fused to improve the accuracy and stability of the model. Semi‐supervised active learning algorithm allows us to make semantic labels for only a small number of data that can be propagated to the rest data, and help us establish an efficient fatigue driving detection model with automatic label propagation. Some experiments are conducted to validate their model, the results show that the accuracy is 86.25%, which proves the effectiveness of the fatigue driving detection model.
Author Li, Xu
Liu, Xiang
Hong, Lin
Wang, Jian-chun
Author_xml – sequence: 1
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  email: lixu@sdust.edu.cn
  organization: 1College of Transportation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
– sequence: 2
  givenname: Lin
  surname: Hong
  fullname: Hong, Lin
  organization: 1College of Transportation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
– sequence: 3
  givenname: Jian-chun
  surname: Wang
  fullname: Wang, Jian-chun
  organization: 1College of Transportation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
– sequence: 4
  givenname: Xiang
  surname: Liu
  fullname: Liu, Xiang
  organization: 2School of Automotive Studies, Tongji University, Shanghai 201804, People's Republic of China
BookMark eNqFkMFKAzEQhoNUsK0-gLe8QGqS3W023rRYLRQE6cFbyCazJWW7W5JspW_vhooHD_U0M_B_M8k3QaO2awGhe0ZnjObywUEkLoYZp6ycFYWkV2jMRMGILEQ5-u3nnzdoEsKO0mLOORsjvdTRbXvA1ruja7fYQgQTXdfifWehwZUOYHEa-yY6UoOOvQdc9yFldGtxgL0joT-AP7qU1QN-BNyA9u2w8RZd17oJcPdTp2izfNks3sj6_XW1eFoTk2W5JMYYDrWuWJVTK-ZcGiZyQeuitCXLqnlBBdRgOLfUSpsDZUZaxmiZmbKUMpsicV5rfBeCh1oZF3X6SPTaNYpRlUSpQZQaRKkkSiVRA8n-kAfv9tqfLjKPZ-bLNXD6H1CrzQd_XlIqsvRUcoZTbNf1vh28XDj2DSUKk2M
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2945136
crossref_primary_10_1016_j_asoc_2020_106657
crossref_primary_10_1109_ACCESS_2025_3568625
crossref_primary_10_3390_app12126007
crossref_primary_10_1016_j_engappai_2022_105399
crossref_primary_10_1109_ACCESS_2019_2947692
crossref_primary_10_1016_j_neucom_2023_126999
crossref_primary_10_1016_j_bspc_2023_104831
crossref_primary_10_1109_ACCESS_2019_2958667
crossref_primary_10_1109_ACCESS_2019_2960157
crossref_primary_10_1049_ipr2_12207
crossref_primary_10_1109_ACCESS_2020_3014508
crossref_primary_10_1016_j_imavis_2022_104588
crossref_primary_10_1109_JSEN_2020_2973049
crossref_primary_10_1016_j_bspc_2024_106460
crossref_primary_10_3390_s22155868
crossref_primary_10_1080_00207543_2022_2138611
crossref_primary_10_1007_s00521_023_09255_9
crossref_primary_10_1109_LRA_2025_3561563
crossref_primary_10_1109_MIM_2025_10982115
crossref_primary_10_1049_itr2_12048
crossref_primary_10_3390_su15129405
crossref_primary_10_1016_j_aap_2024_107511
crossref_primary_10_3390_math11092101
crossref_primary_10_1109_TITS_2021_3120435
Cites_doi 10.1016/j.inffus.2017.11.005
10.1109/ICOIP.2010.101
10.1109/ICoICT.2018.8528759
10.1016/j.image.2016.05.018
10.1109/STSIVA.2015.7330398
10.1109/NSEC.2015.7396336
10.1109/ICETECH.2016.7569378
10.1016/S0001-4575(01)00056-2
10.1016/j.eswa.2015.05.028
10.1016/j.trd.2018.07.007
10.1016/j.medengphy.2013.07.011
10.1016/j.procs.2016.05.512
10.1016/j.aap.2011.11.019
10.1049/iet-its.2012.0032
10.1016/j.trf.2006.03.003
10.1016/j.procs.2018.04.060
10.1109/IAdCC.2014.6779459
10.1109/IGESC.2016.7790075
10.1016/S1005-8885(16)60050-X
10.1049/iet-its.2017.0183
10.1016/j.eswa.2016.06.042
10.1109/CMVIT.2017.25
10.1016/j.sleep.2013.06.018
10.1016/j.aap.2015.09.002
10.1109/TITS.2015.2462084
10.1016/j.ins.2010.01.011
10.1046/j.1365-2869.2000.00228.x
10.1016/0001-4575(94)90019-1
10.1049/iet-its.2018.5290
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-its.2018.5590
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9578
EndPage 1409
ExternalDocumentID 10_1049_iet_its_2018_5590
ITR2BF00739
Genre article
GrantInformation_xml – fundername: Tongji University Think Tank Research
  grantid: No.22120180208
– fundername: Shandong Key Research and Development Program
  grantid: No.2017GHY15116
– fundername: Tongji University Think Tank Research
  funderid: 22120180208
– fundername: Shandong Key Research and Development Program
  funderid: 2017GHY15116
GroupedDBID 0R
24P
29I
29J
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
M43
M7S
O9-
OCL
P2P
P62
PTHSS
RIE
RIG
RNS
RUI
UNR
.DC
0R~
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADZOD
AEEZP
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
MCNEO
OK1
ROL
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3349-ccc2efab1b40d7629c17470f58d813b6507efec22d0d9d4e01c9d11083c88993
IEDL.DBID 24P
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482448600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-956X
IngestDate Tue Nov 18 21:23:11 EST 2025
Wed Oct 29 21:12:46 EDT 2025
Wed Jan 22 16:32:14 EST 2025
Tue Jan 05 21:44:20 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords laborious work
efficient fatigue driving detection model
road safety
facial features
semantic labels
semisupervised active learning algorithm
fatigue
costly work
novel fatigue
steering features
rest data
learning (artificial intelligence)
unlabelled driving data
authors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3349-ccc2efab1b40d7629c17470f58d813b6507efec22d0d9d4e01c9d11083c88993
PageCount 9
ParticipantIDs iet_journals_10_1049_iet_its_2018_5590
wiley_primary_10_1049_iet_its_2018_5590_ITR2BF00739
crossref_citationtrail_10_1049_iet_its_2018_5590
crossref_primary_10_1049_iet_its_2018_5590
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20190900
September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 9
  year: 2019
  text: 20190900
PublicationDecade 2010
PublicationTitle IET intelligent transport systems
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Chen, L.; Zhao, Y.; Zhang, J. (C10) 2015; 42
Fu, R.; Wang, H.; Zhao, W. (C24) 2016; 63
Nordbakke, S.; Sagberg, F. (C4) 2007; 10
Kaplan, S.; Guvensan, M.A.; Yavuz, A.G. (C5) 2015; 16
Zhao, C.; Zhao, M.; Liu, J. (C6) 2012; 45
Yang, G.; Lin, Y.; Bhattacharya, P. (C16) 2010; 180
Wang, X.; Xu, C. (C33) 2016; 95
Hajinoroozi, M.; Mao, Z.; Jung, T.P. (C12) 2016; 47
Akerstedt, T. (C2) 2010; 9
Wierwille, W.W.; Ellsworth, L.A. (C20) 1994; 26
Saini, V.; Saini, R. (C15) 2014; 5
Jung, S.J.; Shin, H.S.; Chung, W.Y. (C19) 2014; 8
Wang, P.; Min, J.L.; Hu, J.F. (C18) 2018; 10
Jabbar, R.; Al-Khalifa, K.; Kharbeche, M. (C25) 2018; 130
Kartsch, V.J.; Benatti, S.; Schiavone, P.D. (C34) 2018; 43
Agustina, G.C.; Orosco, L.; Laciar, E. (C36) 2014; 36
Liu, J.; Wang, L.; Nie, F. (C9) 2016
Quera Salva, M.A.; Barbot, F. (C1) 2014; 15
Godley, S.T.; Triggs, T.J.; Fildes, B.N. (C30) 2002; 34
Chai, M.; Li, S.; Sun, W. (C31) 2019; 66
Elleuch, M.; Maalej, R.; Kherallah, M. (C14) 2016; 80
Zhao, L.; Wang, Z.; Wang, X. (C28) 2018; 12
Zheng, C.; Xiaojuan, B.; Yu, W. (C23) 2016; 23
2015; 16
2011
2010
2002; 34
2016; 95
November 2016
1994; 26
2007; 10
2010; 180
2018; 43
2018; 130
2014; 5
2019; 66
2015; 42
2014; 15
2018
2016; 63
2014; 36
2017
2016
2015
2014
2016; 80
2018; 12
2014; 8
2012; 45
2018; 10
2016; 47
2010; 9
2016; 23
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_8_1
Liu J. (e_1_2_7_10_1) 2016
e_1_2_7_7_1
e_1_2_7_19_1
Park S. (e_1_2_7_14_1) 2016
e_1_2_7_17_1
e_1_2_7_2_1
Akerstedt T. (e_1_2_7_3_1) 2010; 9
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_11_1
Yang Z. (e_1_2_7_4_1) 2014
e_1_2_7_26_1
Zhang W. (e_1_2_7_12_1) 2015
e_1_2_7_27_1
Weng C. (e_1_2_7_30_1) 2016
e_1_2_7_28_1
e_1_2_7_29_1
Shahid A. (e_1_2_7_18_1) 2011
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Saini V. (e_1_2_7_16_1) 2014; 5
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
References_xml – volume: 63
  start-page: 397
  year: 2016
  end-page: 411
  ident: C24
  article-title: Dynamic driver fatigue detection using hidden Markov model in real driving condition
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 23
  issue: 1
  year: 2014
  end-page: 26
  ident: C1
  article-title: Sleep disorders, sleepiness, and near-miss accidents among long-distance highway drivers in the summertime
  publication-title: Sleep Med.
– volume: 47
  start-page: 549
  year: 2016
  end-page: 555
  ident: C12
  article-title: EEG-based prediction of driver's cognitive performance by deep convolutional neural network
  publication-title: Signal Process., Image Commun.
– volume: 36
  start-page: 244
  issue: 2
  year: 2014
  end-page: 249
  ident: C36
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Med. Eng. Phys.
– volume: 8
  start-page: 43
  issue: 1
  year: 2014
  end-page: 50
  ident: C19
  article-title: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel
  publication-title: IET Intell. Transp. Syst.
– volume: 12
  start-page: 127
  issue: 2
  year: 2018
  end-page: 133
  ident: C28
  article-title: Driver drowsiness detection using facial dynamic fusion information and a deep belief network
  publication-title: IET Intell. Transp. Syst.
– volume: 26
  start-page: 571
  issue: 5
  year: 1994
  end-page: 581
  ident: C20
  article-title: Evaluation of driver drowsiness by trained raters
  publication-title: Accident Anal. Prev.
– volume: 95
  start-page: 350
  year: 2016
  end-page: 357
  ident: C33
  article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics
  publication-title: Accident Anal. Prev.
– volume: 23
  start-page: 91
  issue: 4
  year: 2016
  end-page: 100
  ident: C23
  article-title: Fatigue driving detection based on Haar feature and extreme learning machine
  publication-title: J. China Univ. Posts Telecommun.
– volume: 180
  start-page: 1942
  issue: 10
  year: 2010
  end-page: 1954
  ident: C16
  article-title: A driver fatigue recognition model based on information fusion and dynamic Bayesian network
  publication-title: Inf. Sci.
– volume: 130
  start-page: 400
  year: 2018
  end-page: 407
  ident: C25
  article-title: Real-time driver drowsiness detection for android application using deep neural networks techniques
  publication-title: Procedia Comput. Sci.
– volume: 45
  start-page: 83
  year: 2012
  end-page: 90
  ident: C6
  article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator
  publication-title: Accident Anal. Prev.
– volume: 5
  start-page: 4245
  issue: 3
  year: 2014
  end-page: 4249
  ident: C15
  article-title: Driver drowsiness detection system and techniques: a review
  publication-title: Comput. Sci. Inf. Technol.
– volume: 10
  start-page: 1322
  issue: 1
  year: 2018
  end-page: 1328
  ident: C18
  article-title: Ensemble classifier for driver's fatigue detection based on a single EEG channel
  publication-title: IET Intell. Transp. Syst.
– year: 2016
  ident: C9
  article-title: Research on fatigue driving detection method based on steering wheel angle
  publication-title: Automob. Technol.
– volume: 42
  start-page: 7344
  issue: 21
  year: 2015
  end-page: 7355
  ident: C10
  article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 395
  issue: 4
  year: 2010
  end-page: 395
  ident: C2
  article-title: Consensus statement: fatigue and accidents in transport operations
  publication-title: J. Sleep Res.
– volume: 66
  start-page: 95
  year: 2019
  end-page: 103
  ident: C31
  article-title: Drowsiness monitoring based on steering wheel status
  publication-title: Transp. Res. D, Transp. Environ.
– volume: 80
  start-page: 1712
  year: 2016
  end-page: 1723
  ident: C14
  article-title: A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition
  publication-title: Procedia Comput. Sci.
– volume: 34
  start-page: 589
  issue: 5
  year: 2002
  end-page: 600
  ident: C30
  article-title: Driving simulator validation for speed research
  publication-title: Accident Anal. Prev.
– volume: 16
  start-page: 1
  issue: 6
  year: 2015
  end-page: 16
  ident: C5
  article-title: Driver behavior analysis for safe driving: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 43
  start-page: 66
  year: 2018
  end-page: 76
  ident: C34
  article-title: A sensor fusion approach for drowsiness detection in wearable ultra-low-power systems
  publication-title: Inf. Fusion
– volume: 10
  start-page: 1
  issue: 1
  year: 2007
  end-page: 10
  ident: C4
  article-title: Sleepy at the wheel: knowledge, symptoms and behaviour among car drivers
  publication-title: Transp. Res. F, Psychol. Behav.
– volume: 23
  start-page: 91
  issue: 4
  year: 2016
  end-page: 100
  article-title: Fatigue driving detection based on Haar feature and extreme learning machine
  publication-title: J. China Univ. Posts Telecommun.
– volume: 10
  start-page: 1322
  issue: 1
  year: 2018
  end-page: 1328
  article-title: Ensemble classifier for driver's fatigue detection based on a single EEG channel
  publication-title: IET Intell. Transp. Syst.
– volume: 95
  start-page: 350
  year: 2016
  end-page: 357
  article-title: Driver drowsiness detection based on non‐intrusive metrics considering individual specifics
  publication-title: Accident Anal. Prev.
– volume: 8
  start-page: 43
  issue: 1
  year: 2014
  end-page: 50
  article-title: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel
  publication-title: IET Intell. Transp. Syst.
– volume: 130
  start-page: 400
  year: 2018
  end-page: 407
  article-title: Real‐time driver drowsiness detection for android application using deep neural networks techniques
  publication-title: Procedia Comput. Sci.
– volume: 66
  start-page: 95
  year: 2019
  end-page: 103
  article-title: Drowsiness monitoring based on steering wheel status
  publication-title: Transp. Res. D, Transp. Environ.
– volume: 10
  start-page: 1
  issue: 1
  year: 2007
  end-page: 10
  article-title: Sleepy at the wheel: knowledge, symptoms and behaviour among car drivers
  publication-title: Transp. Res. F, Psychol. Behav.
– volume: 180
  start-page: 1942
  issue: 10
  year: 2010
  end-page: 1954
  article-title: A driver fatigue recognition model based on information fusion and dynamic Bayesian network
  publication-title: Inf. Sci.
– start-page: 1
  year: 2015
  end-page: 8
– year: 2016
  article-title: Research on fatigue driving detection method based on steering wheel angle
  publication-title: Automob. Technol.
– volume: 63
  start-page: 397
  year: 2016
  end-page: 411
  article-title: Dynamic driver fatigue detection using hidden Markov model in real driving condition
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 395
  issue: 4
  year: 2010
  end-page: 395
  article-title: Consensus statement: fatigue and accidents in transport operations
  publication-title: J. Sleep Res.
– start-page: 343
  year: 2018
  end-page: 347
– volume: 34
  start-page: 589
  issue: 5
  year: 2002
  end-page: 600
  article-title: Driving simulator validation for speed research
  publication-title: Accident Anal. Prev.
– volume: 47
  start-page: 549
  year: 2016
  end-page: 555
  article-title: EEG‐based prediction of driver's cognitive performance by deep convolutional neural network
  publication-title: Signal Process., Image Commun.
– volume: 43
  start-page: 66
  year: 2018
  end-page: 76
  article-title: A sensor fusion approach for drowsiness detection in wearable ultra‐low‐power systems
  publication-title: Inf. Fusion
– start-page: 209
  year: 2011
  end-page: 210
– start-page: 903
  year: 2016
  end-page: 908
– volume: 80
  start-page: 1712
  year: 2016
  end-page: 1723
  article-title: A new design based‐SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition
  publication-title: Procedia Comput. Sci.
– year: November 2016
– volume: 5
  start-page: 4245
  issue: 3
  year: 2014
  end-page: 4249
  article-title: Driver drowsiness detection system and techniques: a review
  publication-title: Comput. Sci. Inf. Technol.
– start-page: 995
  year: 2014
  end-page: 999
– start-page: 549
  year: 2010
  end-page: 552
– start-page: 1
  year: 2015
  end-page: 5
– start-page: 1
  year: 2015
  end-page: 7
– volume: 26
  start-page: 571
  issue: 5
  year: 1994
  end-page: 581
  article-title: Evaluation of driver drowsiness by trained raters
  publication-title: Accident Anal. Prev.
– volume: 36
  start-page: 244
  issue: 2
  year: 2014
  end-page: 249
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Med. Eng. Phys.
– volume: 12
  start-page: 127
  issue: 2
  year: 2018
  end-page: 133
  article-title: Driver drowsiness detection using facial dynamic fusion information and a deep belief network
  publication-title: IET Intell. Transp. Syst.
– volume: 45
  start-page: 83
  year: 2012
  end-page: 90
  article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator
  publication-title: Accident Anal. Prev.
– start-page: 105
  year: 2017
  end-page: 110
– start-page: 428
  year: 2014
  end-page: 436
– start-page: 154
  year: 2016
  end-page: 164
– start-page: 1
  year: 2016
  end-page: 6
– volume: 42
  start-page: 7344
  issue: 21
  year: 2015
  end-page: 7355
  article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet‐based nonlinear features and machine learning
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 23
  issue: 1
  year: 2014
  end-page: 26
  article-title: Sleep disorders, sleepiness, and near‐miss accidents among long‐distance highway drivers in the summertime
  publication-title: Sleep Med.
– volume: 16
  start-page: 1
  issue: 6
  year: 2015
  end-page: 16
  article-title: Driver behavior analysis for safe driving: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: e_1_2_7_35_1
  doi: 10.1016/j.inffus.2017.11.005
– ident: e_1_2_7_23_1
  doi: 10.1109/ICOIP.2010.101
– ident: e_1_2_7_9_1
  doi: 10.1109/ICoICT.2018.8528759
– ident: e_1_2_7_13_1
  doi: 10.1016/j.image.2016.05.018
– ident: e_1_2_7_8_1
  doi: 10.1109/STSIVA.2015.7330398
– ident: e_1_2_7_33_1
  doi: 10.1109/NSEC.2015.7396336
– ident: e_1_2_7_22_1
  doi: 10.1109/ICETECH.2016.7569378
– ident: e_1_2_7_31_1
  doi: 10.1016/S0001-4575(01)00056-2
– ident: e_1_2_7_11_1
  doi: 10.1016/j.eswa.2015.05.028
– start-page: 209
  volume-title: Karolinska sleepiness scale (KSS)
  year: 2011
  ident: e_1_2_7_18_1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.trd.2018.07.007
– ident: e_1_2_7_37_1
  doi: 10.1016/j.medengphy.2013.07.011
– start-page: 154
  volume-title: Asian Conf. on Computer Vision
  year: 2016
  ident: e_1_2_7_14_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.procs.2016.05.512
– volume: 5
  start-page: 4245
  issue: 3
  year: 2014
  ident: e_1_2_7_16_1
  article-title: Driver drowsiness detection system and techniques: a review
  publication-title: Comput. Sci. Inf. Technol.
– ident: e_1_2_7_7_1
  doi: 10.1016/j.aap.2011.11.019
– ident: e_1_2_7_20_1
  doi: 10.1049/iet-its.2012.0032
– ident: e_1_2_7_5_1
  doi: 10.1016/j.trf.2006.03.003
– ident: e_1_2_7_26_1
  doi: 10.1016/j.procs.2018.04.060
– ident: e_1_2_7_27_1
  doi: 10.1109/IAdCC.2014.6779459
– ident: e_1_2_7_28_1
  doi: 10.1109/IGESC.2016.7790075
– start-page: 428
  volume-title: Evaluation research of joystick in flight deck based on accuracy and muscle fatigue
  year: 2014
  ident: e_1_2_7_4_1
– ident: e_1_2_7_24_1
  doi: 10.1016/S1005-8885(16)60050-X
– ident: e_1_2_7_29_1
  doi: 10.1049/iet-its.2017.0183
– volume-title: Asian Conf. on Computer Vision Workshop on Driver Drowsiness Detection from Video
  year: 2016
  ident: e_1_2_7_30_1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.eswa.2016.06.042
– ident: e_1_2_7_36_1
  doi: 10.1109/CMVIT.2017.25
– ident: e_1_2_7_2_1
  doi: 10.1016/j.sleep.2013.06.018
– year: 2016
  ident: e_1_2_7_10_1
  article-title: Research on fatigue driving detection method based on steering wheel angle
  publication-title: Automob. Technol.
– ident: e_1_2_7_34_1
  doi: 10.1016/j.aap.2015.09.002
– ident: e_1_2_7_6_1
  doi: 10.1109/TITS.2015.2462084
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ins.2010.01.011
– volume: 9
  start-page: 395
  issue: 4
  year: 2010
  ident: e_1_2_7_3_1
  article-title: Consensus statement: fatigue and accidents in transport operations
  publication-title: J. Sleep Res.
  doi: 10.1046/j.1365-2869.2000.00228.x
– start-page: 1
  volume-title: Int. Joint Conf. on Neural Networks
  year: 2015
  ident: e_1_2_7_12_1
– ident: e_1_2_7_21_1
  doi: 10.1016/0001-4575(94)90019-1
– ident: e_1_2_7_19_1
  doi: 10.1049/iet-its.2018.5290
SSID ssj0056221
Score 2.3562522
Snippet Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1401
SubjectTerms authors
costly work
efficient fatigue driving detection model
facial features
fatigue
laborious work
learning (artificial intelligence)
novel fatigue
Research Article
rest data
road safety
semantic labels
semisupervised active learning algorithm
steering features
unlabelled driving data
Title Fatigue driving detection model based on multi-feature fusion and semi-supervised active learning
URI http://digital-library.theiet.org/content/journals/10.1049/iet-its.2018.5590
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-its.2018.5590
Volume 13
WOSCitedRecordID wos000482448600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056221
  issn: 1751-956X
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7q46AH3-KbPYgHIZpsNsnuUcViL0WkYG8h2UcpaCxt4tmf4G_0lzizSYtFUBAvgeyLZXZ25tvXfIScJoCSIQeUV3DlcaNjTzIrPQALOQsjUCGeO7KJpNsV_b68b5Gb6VuYOj7EbMMNZ4az1zjBs7xmIQFQC4M4NKU3LDHidiAuABfDun0pCMIEVZvx-6k5Bv9eP75KkE8-ivuzo015-a2JOee0ANnzkNX5nPb6v_R2g6w1kJNe1TqySVqm2CKrXwIRbhPThgEaVIbq8RB3GKg2pbujVVBHlUPR2WmKv3gB8ePt3RoXEZTaCrfbaFZoOjHPmDOpRmh_sHzmjCltmCkGO6TXvu3d3HkNAYOnwpBLTynFjM3yIOe-BqspFaxfEt9GQosgzAHcJcYaxZj2tdTc-IGSGt8VhErAOi7cJYvFS2H2CM2YynSQKKsAwIFCCBHlzEZWxXGmRMz3iT8VfKqa4OTIkfGUukNyLlMQYAoCTFGAKQpwn5zPqozqyBw_FT7DtGZ-Tn4qGLph_L3JtNN7YNdtd9R58Kdah2QF0psba0dksRxX5pgsq9dyOBmfOC2G72On-wmK-_mf
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66CurBt7g-cxAPQrVN0zY5-loUdRHZw95Km4csaJXdrmd_gr_RX-JM2l0UQUE8NpmEMpnMK8k3hOwl4CVDDwiv4MrjRseeZFZ64CzkLIxAhHjuik0k7bboduXtBDkbvYWp8CHGCTfcGU5f4wbHhHQVcHIEyeyZ0uuVCLkdiENwjCFwn-JgbbCOAeO3I30MBr56fZVgQfko7o7PNuXRtym-WKdJ6P7qszqj01r4n99dJPO100mPKylZIhOmWCZzn6AIV4hpwRLdDw3V_R7mGKg2pbulVVBXLIeiudMUP_EK4vvrmzUOE5TaISbcaFZoOjCP2DMYPqMGQvrMqVNa16a4XyWd1nnn9MKrSzB4Kgy59JRSzNgsD3Lua9CbUkEEk_g2EloEYQ7uXWKsUYxpX0vNjR8oqfFlQagERHLhGmkUT4VZJzRjKtNBoqwCFw5EQogoZzayKo4zJWLeJP6I86mq4cmxSsZD6o7JuUyBgSkwMEUGpsjAJjkYD3musDl-It7HtnqHDn4iDN06_j5letm5Yyctd9i58adRu2TmonNznV5ftq82ySzQ1PfXtkij7A_NNplWL2Vv0N9xIv0BadT8cg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58IXrwLb7dg3gQonlskt2jr2BRSpEeegvJPkpBY2lTz_4Ef6O_xJlNWhShgnhMdjaE2dmZb_bxDSEnMaBkaAHj5Uw6TKvIEb4RDoCF3A9CMCGW22ITcbPJOx3RmiE347swFT_EZMENZ4b11zjBdV-ZKuFkSJLZ06XTK5Fy2-PnAIwhcZ9nIfha5HdmrbE_hgBf3b6KsaB8GHUme5vi4scnvkWnWWj-jllt0ElW_-d318hKDTrpZWUl62RGFxtk-QsV4SbRCQxRd6SpGvRwjYEqXdpTWgW1xXIohjtF8RGPIH68vRttOUGpGeGCG80KRYf6GVuGoz56IJTPrDuldW2K7hZpJ7ft6zunLsHgyCBgwpFS-tpkuZczV4HfFBIymNg1IVfcC3KAd7E2Wvq-cpVQTLueFApvFgSSQyYXbJO54qXQO4RmvsyUF0sjAcKBSXAe5r4JjYyiTPKI7RJ3rPlU1vTkWCXjKbXb5EykoMAUFJiiAlNU4C45m3TpV9wc04RP8V09Q4fTBAM7jr9_Mm20H_2rxG527v2p1zFZbN0k6UOjeb9PlkCkPr52QObKwUgfkgX5WvaGgyNr0Z8Uv_v2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+driving+detection+model+based+on+multi%E2%80%90feature+fusion+and+semi%E2%80%90supervised+active+learning&rft.jtitle=IET+intelligent+transport+systems&rft.au=Li%2C+Xu&rft.au=Hong%2C+Lin&rft.au=Wang%2C+Jian%E2%80%90chun&rft.au=Liu%2C+Xiang&rft.date=2019-09-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=13&rft.issue=9&rft.spage=1401&rft.epage=1409&rft_id=info:doi/10.1049%2Fiet-its.2018.5590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_its_2018_5590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon