Fatigue driving detection model based on multi-feature fusion and semi-supervised active learning
Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive use of on-board sensors, a huge number of unlabelled driving data can be easily collected, however, it is a costly and laborious work to annot...
Saved in:
| Published in: | IET intelligent transport systems Vol. 13; no. 9; pp. 1401 - 1409 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
The Institution of Engineering and Technology
01.09.2019
|
| Subjects: | |
| ISSN: | 1751-956X, 1751-9578 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive use of on-board sensors, a huge number of unlabelled driving data can be easily collected, however, it is a costly and laborious work to annotate semantic labels for these data manually, posing some difficulties to detect fatigue driving with these data. In this work, the authors propose a novel fatigue driving detection model based on multi-feature fusion and semi-supervised active learning. In the authors’ model, the steering features of the vehicle and the facial features of the driver are fused to improve the accuracy and stability of the model. Semi-supervised active learning algorithm allows us to make semantic labels for only a small number of data that can be propagated to the rest data, and help us establish an efficient fatigue driving detection model with automatic label propagation. Some experiments are conducted to validate their model, the results show that the accuracy is 86.25%, which proves the effectiveness of the fatigue driving detection model. |
|---|---|
| AbstractList | Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive use of on‐board sensors, a huge number of unlabelled driving data can be easily collected, however, it is a costly and laborious work to annotate semantic labels for these data manually, posing some difficulties to detect fatigue driving with these data. In this work, the authors propose a novel fatigue driving detection model based on multi‐feature fusion and semi‐supervised active learning. In the authors’ model, the steering features of the vehicle and the facial features of the driver are fused to improve the accuracy and stability of the model. Semi‐supervised active learning algorithm allows us to make semantic labels for only a small number of data that can be propagated to the rest data, and help us establish an efficient fatigue driving detection model with automatic label propagation. Some experiments are conducted to validate their model, the results show that the accuracy is 86.25%, which proves the effectiveness of the fatigue driving detection model. |
| Author | Li, Xu Liu, Xiang Hong, Lin Wang, Jian-chun |
| Author_xml | – sequence: 1 givenname: Xu surname: Li fullname: Li, Xu email: lixu@sdust.edu.cn organization: 1College of Transportation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China – sequence: 2 givenname: Lin surname: Hong fullname: Hong, Lin organization: 1College of Transportation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China – sequence: 3 givenname: Jian-chun surname: Wang fullname: Wang, Jian-chun organization: 1College of Transportation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China – sequence: 4 givenname: Xiang surname: Liu fullname: Liu, Xiang organization: 2School of Automotive Studies, Tongji University, Shanghai 201804, People's Republic of China |
| BookMark | eNqFkMFKAzEQhoNUsK0-gLe8QGqS3W023rRYLRQE6cFbyCazJWW7W5JspW_vhooHD_U0M_B_M8k3QaO2awGhe0ZnjObywUEkLoYZp6ycFYWkV2jMRMGILEQ5-u3nnzdoEsKO0mLOORsjvdTRbXvA1ruja7fYQgQTXdfifWehwZUOYHEa-yY6UoOOvQdc9yFldGtxgL0joT-AP7qU1QN-BNyA9u2w8RZd17oJcPdTp2izfNks3sj6_XW1eFoTk2W5JMYYDrWuWJVTK-ZcGiZyQeuitCXLqnlBBdRgOLfUSpsDZUZaxmiZmbKUMpsicV5rfBeCh1oZF3X6SPTaNYpRlUSpQZQaRKkkSiVRA8n-kAfv9tqfLjKPZ-bLNXD6H1CrzQd_XlIqsvRUcoZTbNf1vh28XDj2DSUKk2M |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2945136 crossref_primary_10_1016_j_asoc_2020_106657 crossref_primary_10_1109_ACCESS_2025_3568625 crossref_primary_10_3390_app12126007 crossref_primary_10_1016_j_engappai_2022_105399 crossref_primary_10_1109_ACCESS_2019_2947692 crossref_primary_10_1016_j_neucom_2023_126999 crossref_primary_10_1016_j_bspc_2023_104831 crossref_primary_10_1109_ACCESS_2019_2958667 crossref_primary_10_1109_ACCESS_2019_2960157 crossref_primary_10_1049_ipr2_12207 crossref_primary_10_1109_ACCESS_2020_3014508 crossref_primary_10_1016_j_imavis_2022_104588 crossref_primary_10_1109_JSEN_2020_2973049 crossref_primary_10_1016_j_bspc_2024_106460 crossref_primary_10_3390_s22155868 crossref_primary_10_1080_00207543_2022_2138611 crossref_primary_10_1007_s00521_023_09255_9 crossref_primary_10_1109_LRA_2025_3561563 crossref_primary_10_1109_MIM_2025_10982115 crossref_primary_10_1049_itr2_12048 crossref_primary_10_3390_su15129405 crossref_primary_10_1016_j_aap_2024_107511 crossref_primary_10_3390_math11092101 crossref_primary_10_1109_TITS_2021_3120435 |
| Cites_doi | 10.1016/j.inffus.2017.11.005 10.1109/ICOIP.2010.101 10.1109/ICoICT.2018.8528759 10.1016/j.image.2016.05.018 10.1109/STSIVA.2015.7330398 10.1109/NSEC.2015.7396336 10.1109/ICETECH.2016.7569378 10.1016/S0001-4575(01)00056-2 10.1016/j.eswa.2015.05.028 10.1016/j.trd.2018.07.007 10.1016/j.medengphy.2013.07.011 10.1016/j.procs.2016.05.512 10.1016/j.aap.2011.11.019 10.1049/iet-its.2012.0032 10.1016/j.trf.2006.03.003 10.1016/j.procs.2018.04.060 10.1109/IAdCC.2014.6779459 10.1109/IGESC.2016.7790075 10.1016/S1005-8885(16)60050-X 10.1049/iet-its.2017.0183 10.1016/j.eswa.2016.06.042 10.1109/CMVIT.2017.25 10.1016/j.sleep.2013.06.018 10.1016/j.aap.2015.09.002 10.1109/TITS.2015.2462084 10.1016/j.ins.2010.01.011 10.1046/j.1365-2869.2000.00228.x 10.1016/0001-4575(94)90019-1 10.1049/iet-its.2018.5290 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-its.2018.5590 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-9578 |
| EndPage | 1409 |
| ExternalDocumentID | 10_1049_iet_its_2018_5590 ITR2BF00739 |
| Genre | article |
| GrantInformation_xml | – fundername: Tongji University Think Tank Research grantid: No.22120180208 – fundername: Shandong Key Research and Development Program grantid: No.2017GHY15116 – fundername: Tongji University Think Tank Research funderid: 22120180208 – fundername: Shandong Key Research and Development Program funderid: 2017GHY15116 |
| GroupedDBID | 0R 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 EBS EJD HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI M43 M7S O9- OCL P2P P62 PTHSS RIE RIG RNS RUI UNR .DC 0R~ 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADZOD AEEZP AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC MCNEO OK1 ROL AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3349-ccc2efab1b40d7629c17470f58d813b6507efec22d0d9d4e01c9d11083c88993 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482448600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-956X |
| IngestDate | Tue Nov 18 21:23:11 EST 2025 Wed Oct 29 21:12:46 EDT 2025 Wed Jan 22 16:32:14 EST 2025 Tue Jan 05 21:44:20 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | laborious work efficient fatigue driving detection model road safety facial features semantic labels semisupervised active learning algorithm fatigue costly work novel fatigue steering features rest data learning (artificial intelligence) unlabelled driving data authors |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3349-ccc2efab1b40d7629c17470f58d813b6507efec22d0d9d4e01c9d11083c88993 |
| PageCount | 9 |
| ParticipantIDs | iet_journals_10_1049_iet_its_2018_5590 wiley_primary_10_1049_iet_its_2018_5590_ITR2BF00739 crossref_citationtrail_10_1049_iet_its_2018_5590 crossref_primary_10_1049_iet_its_2018_5590 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20190900 September 2019 2019-09-00 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 9 year: 2019 text: 20190900 |
| PublicationDecade | 2010 |
| PublicationTitle | IET intelligent transport systems |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Chen, L.; Zhao, Y.; Zhang, J. (C10) 2015; 42 Fu, R.; Wang, H.; Zhao, W. (C24) 2016; 63 Nordbakke, S.; Sagberg, F. (C4) 2007; 10 Kaplan, S.; Guvensan, M.A.; Yavuz, A.G. (C5) 2015; 16 Zhao, C.; Zhao, M.; Liu, J. (C6) 2012; 45 Yang, G.; Lin, Y.; Bhattacharya, P. (C16) 2010; 180 Wang, X.; Xu, C. (C33) 2016; 95 Hajinoroozi, M.; Mao, Z.; Jung, T.P. (C12) 2016; 47 Akerstedt, T. (C2) 2010; 9 Wierwille, W.W.; Ellsworth, L.A. (C20) 1994; 26 Saini, V.; Saini, R. (C15) 2014; 5 Jung, S.J.; Shin, H.S.; Chung, W.Y. (C19) 2014; 8 Wang, P.; Min, J.L.; Hu, J.F. (C18) 2018; 10 Jabbar, R.; Al-Khalifa, K.; Kharbeche, M. (C25) 2018; 130 Kartsch, V.J.; Benatti, S.; Schiavone, P.D. (C34) 2018; 43 Agustina, G.C.; Orosco, L.; Laciar, E. (C36) 2014; 36 Liu, J.; Wang, L.; Nie, F. (C9) 2016 Quera Salva, M.A.; Barbot, F. (C1) 2014; 15 Godley, S.T.; Triggs, T.J.; Fildes, B.N. (C30) 2002; 34 Chai, M.; Li, S.; Sun, W. (C31) 2019; 66 Elleuch, M.; Maalej, R.; Kherallah, M. (C14) 2016; 80 Zhao, L.; Wang, Z.; Wang, X. (C28) 2018; 12 Zheng, C.; Xiaojuan, B.; Yu, W. (C23) 2016; 23 2015; 16 2011 2010 2002; 34 2016; 95 November 2016 1994; 26 2007; 10 2010; 180 2018; 43 2018; 130 2014; 5 2019; 66 2015; 42 2014; 15 2018 2016; 63 2014; 36 2017 2016 2015 2014 2016; 80 2018; 12 2014; 8 2012; 45 2018; 10 2016; 47 2010; 9 2016; 23 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_8_1 Liu J. (e_1_2_7_10_1) 2016 e_1_2_7_7_1 e_1_2_7_19_1 Park S. (e_1_2_7_14_1) 2016 e_1_2_7_17_1 e_1_2_7_2_1 Akerstedt T. (e_1_2_7_3_1) 2010; 9 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_11_1 Yang Z. (e_1_2_7_4_1) 2014 e_1_2_7_26_1 Zhang W. (e_1_2_7_12_1) 2015 e_1_2_7_27_1 Weng C. (e_1_2_7_30_1) 2016 e_1_2_7_28_1 e_1_2_7_29_1 Shahid A. (e_1_2_7_18_1) 2011 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 Saini V. (e_1_2_7_16_1) 2014; 5 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 |
| References_xml | – volume: 63 start-page: 397 year: 2016 end-page: 411 ident: C24 article-title: Dynamic driver fatigue detection using hidden Markov model in real driving condition publication-title: Expert Syst. Appl. – volume: 15 start-page: 23 issue: 1 year: 2014 end-page: 26 ident: C1 article-title: Sleep disorders, sleepiness, and near-miss accidents among long-distance highway drivers in the summertime publication-title: Sleep Med. – volume: 47 start-page: 549 year: 2016 end-page: 555 ident: C12 article-title: EEG-based prediction of driver's cognitive performance by deep convolutional neural network publication-title: Signal Process., Image Commun. – volume: 36 start-page: 244 issue: 2 year: 2014 end-page: 249 ident: C36 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Med. Eng. Phys. – volume: 8 start-page: 43 issue: 1 year: 2014 end-page: 50 ident: C19 article-title: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel publication-title: IET Intell. Transp. Syst. – volume: 12 start-page: 127 issue: 2 year: 2018 end-page: 133 ident: C28 article-title: Driver drowsiness detection using facial dynamic fusion information and a deep belief network publication-title: IET Intell. Transp. Syst. – volume: 26 start-page: 571 issue: 5 year: 1994 end-page: 581 ident: C20 article-title: Evaluation of driver drowsiness by trained raters publication-title: Accident Anal. Prev. – volume: 95 start-page: 350 year: 2016 end-page: 357 ident: C33 article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics publication-title: Accident Anal. Prev. – volume: 23 start-page: 91 issue: 4 year: 2016 end-page: 100 ident: C23 article-title: Fatigue driving detection based on Haar feature and extreme learning machine publication-title: J. China Univ. Posts Telecommun. – volume: 180 start-page: 1942 issue: 10 year: 2010 end-page: 1954 ident: C16 article-title: A driver fatigue recognition model based on information fusion and dynamic Bayesian network publication-title: Inf. Sci. – volume: 130 start-page: 400 year: 2018 end-page: 407 ident: C25 article-title: Real-time driver drowsiness detection for android application using deep neural networks techniques publication-title: Procedia Comput. Sci. – volume: 45 start-page: 83 year: 2012 end-page: 90 ident: C6 article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator publication-title: Accident Anal. Prev. – volume: 5 start-page: 4245 issue: 3 year: 2014 end-page: 4249 ident: C15 article-title: Driver drowsiness detection system and techniques: a review publication-title: Comput. Sci. Inf. Technol. – volume: 10 start-page: 1322 issue: 1 year: 2018 end-page: 1328 ident: C18 article-title: Ensemble classifier for driver's fatigue detection based on a single EEG channel publication-title: IET Intell. Transp. Syst. – year: 2016 ident: C9 article-title: Research on fatigue driving detection method based on steering wheel angle publication-title: Automob. Technol. – volume: 42 start-page: 7344 issue: 21 year: 2015 end-page: 7355 ident: C10 article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning publication-title: Expert Syst. Appl. – volume: 9 start-page: 395 issue: 4 year: 2010 end-page: 395 ident: C2 article-title: Consensus statement: fatigue and accidents in transport operations publication-title: J. Sleep Res. – volume: 66 start-page: 95 year: 2019 end-page: 103 ident: C31 article-title: Drowsiness monitoring based on steering wheel status publication-title: Transp. Res. D, Transp. Environ. – volume: 80 start-page: 1712 year: 2016 end-page: 1723 ident: C14 article-title: A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition publication-title: Procedia Comput. Sci. – volume: 34 start-page: 589 issue: 5 year: 2002 end-page: 600 ident: C30 article-title: Driving simulator validation for speed research publication-title: Accident Anal. Prev. – volume: 16 start-page: 1 issue: 6 year: 2015 end-page: 16 ident: C5 article-title: Driver behavior analysis for safe driving: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 43 start-page: 66 year: 2018 end-page: 76 ident: C34 article-title: A sensor fusion approach for drowsiness detection in wearable ultra-low-power systems publication-title: Inf. Fusion – volume: 10 start-page: 1 issue: 1 year: 2007 end-page: 10 ident: C4 article-title: Sleepy at the wheel: knowledge, symptoms and behaviour among car drivers publication-title: Transp. Res. F, Psychol. Behav. – volume: 23 start-page: 91 issue: 4 year: 2016 end-page: 100 article-title: Fatigue driving detection based on Haar feature and extreme learning machine publication-title: J. China Univ. Posts Telecommun. – volume: 10 start-page: 1322 issue: 1 year: 2018 end-page: 1328 article-title: Ensemble classifier for driver's fatigue detection based on a single EEG channel publication-title: IET Intell. Transp. Syst. – volume: 95 start-page: 350 year: 2016 end-page: 357 article-title: Driver drowsiness detection based on non‐intrusive metrics considering individual specifics publication-title: Accident Anal. Prev. – volume: 8 start-page: 43 issue: 1 year: 2014 end-page: 50 article-title: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel publication-title: IET Intell. Transp. Syst. – volume: 130 start-page: 400 year: 2018 end-page: 407 article-title: Real‐time driver drowsiness detection for android application using deep neural networks techniques publication-title: Procedia Comput. Sci. – volume: 66 start-page: 95 year: 2019 end-page: 103 article-title: Drowsiness monitoring based on steering wheel status publication-title: Transp. Res. D, Transp. Environ. – volume: 10 start-page: 1 issue: 1 year: 2007 end-page: 10 article-title: Sleepy at the wheel: knowledge, symptoms and behaviour among car drivers publication-title: Transp. Res. F, Psychol. Behav. – volume: 180 start-page: 1942 issue: 10 year: 2010 end-page: 1954 article-title: A driver fatigue recognition model based on information fusion and dynamic Bayesian network publication-title: Inf. Sci. – start-page: 1 year: 2015 end-page: 8 – year: 2016 article-title: Research on fatigue driving detection method based on steering wheel angle publication-title: Automob. Technol. – volume: 63 start-page: 397 year: 2016 end-page: 411 article-title: Dynamic driver fatigue detection using hidden Markov model in real driving condition publication-title: Expert Syst. Appl. – volume: 9 start-page: 395 issue: 4 year: 2010 end-page: 395 article-title: Consensus statement: fatigue and accidents in transport operations publication-title: J. Sleep Res. – start-page: 343 year: 2018 end-page: 347 – volume: 34 start-page: 589 issue: 5 year: 2002 end-page: 600 article-title: Driving simulator validation for speed research publication-title: Accident Anal. Prev. – volume: 47 start-page: 549 year: 2016 end-page: 555 article-title: EEG‐based prediction of driver's cognitive performance by deep convolutional neural network publication-title: Signal Process., Image Commun. – volume: 43 start-page: 66 year: 2018 end-page: 76 article-title: A sensor fusion approach for drowsiness detection in wearable ultra‐low‐power systems publication-title: Inf. Fusion – start-page: 209 year: 2011 end-page: 210 – start-page: 903 year: 2016 end-page: 908 – volume: 80 start-page: 1712 year: 2016 end-page: 1723 article-title: A new design based‐SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition publication-title: Procedia Comput. Sci. – year: November 2016 – volume: 5 start-page: 4245 issue: 3 year: 2014 end-page: 4249 article-title: Driver drowsiness detection system and techniques: a review publication-title: Comput. Sci. Inf. Technol. – start-page: 995 year: 2014 end-page: 999 – start-page: 549 year: 2010 end-page: 552 – start-page: 1 year: 2015 end-page: 5 – start-page: 1 year: 2015 end-page: 7 – volume: 26 start-page: 571 issue: 5 year: 1994 end-page: 581 article-title: Evaluation of driver drowsiness by trained raters publication-title: Accident Anal. Prev. – volume: 36 start-page: 244 issue: 2 year: 2014 end-page: 249 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Med. Eng. Phys. – volume: 12 start-page: 127 issue: 2 year: 2018 end-page: 133 article-title: Driver drowsiness detection using facial dynamic fusion information and a deep belief network publication-title: IET Intell. Transp. Syst. – volume: 45 start-page: 83 year: 2012 end-page: 90 article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator publication-title: Accident Anal. Prev. – start-page: 105 year: 2017 end-page: 110 – start-page: 428 year: 2014 end-page: 436 – start-page: 154 year: 2016 end-page: 164 – start-page: 1 year: 2016 end-page: 6 – volume: 42 start-page: 7344 issue: 21 year: 2015 end-page: 7355 article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet‐based nonlinear features and machine learning publication-title: Expert Syst. Appl. – volume: 15 start-page: 23 issue: 1 year: 2014 end-page: 26 article-title: Sleep disorders, sleepiness, and near‐miss accidents among long‐distance highway drivers in the summertime publication-title: Sleep Med. – volume: 16 start-page: 1 issue: 6 year: 2015 end-page: 16 article-title: Driver behavior analysis for safe driving: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – ident: e_1_2_7_35_1 doi: 10.1016/j.inffus.2017.11.005 – ident: e_1_2_7_23_1 doi: 10.1109/ICOIP.2010.101 – ident: e_1_2_7_9_1 doi: 10.1109/ICoICT.2018.8528759 – ident: e_1_2_7_13_1 doi: 10.1016/j.image.2016.05.018 – ident: e_1_2_7_8_1 doi: 10.1109/STSIVA.2015.7330398 – ident: e_1_2_7_33_1 doi: 10.1109/NSEC.2015.7396336 – ident: e_1_2_7_22_1 doi: 10.1109/ICETECH.2016.7569378 – ident: e_1_2_7_31_1 doi: 10.1016/S0001-4575(01)00056-2 – ident: e_1_2_7_11_1 doi: 10.1016/j.eswa.2015.05.028 – start-page: 209 volume-title: Karolinska sleepiness scale (KSS) year: 2011 ident: e_1_2_7_18_1 – ident: e_1_2_7_32_1 doi: 10.1016/j.trd.2018.07.007 – ident: e_1_2_7_37_1 doi: 10.1016/j.medengphy.2013.07.011 – start-page: 154 volume-title: Asian Conf. on Computer Vision year: 2016 ident: e_1_2_7_14_1 – ident: e_1_2_7_15_1 doi: 10.1016/j.procs.2016.05.512 – volume: 5 start-page: 4245 issue: 3 year: 2014 ident: e_1_2_7_16_1 article-title: Driver drowsiness detection system and techniques: a review publication-title: Comput. Sci. Inf. Technol. – ident: e_1_2_7_7_1 doi: 10.1016/j.aap.2011.11.019 – ident: e_1_2_7_20_1 doi: 10.1049/iet-its.2012.0032 – ident: e_1_2_7_5_1 doi: 10.1016/j.trf.2006.03.003 – ident: e_1_2_7_26_1 doi: 10.1016/j.procs.2018.04.060 – ident: e_1_2_7_27_1 doi: 10.1109/IAdCC.2014.6779459 – ident: e_1_2_7_28_1 doi: 10.1109/IGESC.2016.7790075 – start-page: 428 volume-title: Evaluation research of joystick in flight deck based on accuracy and muscle fatigue year: 2014 ident: e_1_2_7_4_1 – ident: e_1_2_7_24_1 doi: 10.1016/S1005-8885(16)60050-X – ident: e_1_2_7_29_1 doi: 10.1049/iet-its.2017.0183 – volume-title: Asian Conf. on Computer Vision Workshop on Driver Drowsiness Detection from Video year: 2016 ident: e_1_2_7_30_1 – ident: e_1_2_7_25_1 doi: 10.1016/j.eswa.2016.06.042 – ident: e_1_2_7_36_1 doi: 10.1109/CMVIT.2017.25 – ident: e_1_2_7_2_1 doi: 10.1016/j.sleep.2013.06.018 – year: 2016 ident: e_1_2_7_10_1 article-title: Research on fatigue driving detection method based on steering wheel angle publication-title: Automob. Technol. – ident: e_1_2_7_34_1 doi: 10.1016/j.aap.2015.09.002 – ident: e_1_2_7_6_1 doi: 10.1109/TITS.2015.2462084 – ident: e_1_2_7_17_1 doi: 10.1016/j.ins.2010.01.011 – volume: 9 start-page: 395 issue: 4 year: 2010 ident: e_1_2_7_3_1 article-title: Consensus statement: fatigue and accidents in transport operations publication-title: J. Sleep Res. doi: 10.1046/j.1365-2869.2000.00228.x – start-page: 1 volume-title: Int. Joint Conf. on Neural Networks year: 2015 ident: e_1_2_7_12_1 – ident: e_1_2_7_21_1 doi: 10.1016/0001-4575(94)90019-1 – ident: e_1_2_7_19_1 doi: 10.1049/iet-its.2018.5290 |
| SSID | ssj0056221 |
| Score | 2.3562522 |
| Snippet | Fatigue driving is one of the main factors of traffic accidents and there are many research efforts focusing on fatigue driving detection. With the extensive... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1401 |
| SubjectTerms | authors costly work efficient fatigue driving detection model facial features fatigue laborious work learning (artificial intelligence) novel fatigue Research Article rest data road safety semantic labels semisupervised active learning algorithm steering features unlabelled driving data |
| Title | Fatigue driving detection model based on multi-feature fusion and semi-supervised active learning |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-its.2018.5590 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-its.2018.5590 |
| Volume | 13 |
| WOSCitedRecordID | wos000482448600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7q46AH3-KbPYgHIZpsNsnuUcViL0WkYG8h2UcpaCxt4tmf4G_0lzizSYtFUBAvgeyLZXZ25tvXfIScJoCSIQeUV3DlcaNjTzIrPQALOQsjUCGeO7KJpNsV_b68b5Gb6VuYOj7EbMMNZ4az1zjBs7xmIQFQC4M4NKU3LDHidiAuABfDun0pCMIEVZvx-6k5Bv9eP75KkE8-ivuzo015-a2JOee0ANnzkNX5nPb6v_R2g6w1kJNe1TqySVqm2CKrXwIRbhPThgEaVIbq8RB3GKg2pbujVVBHlUPR2WmKv3gB8ePt3RoXEZTaCrfbaFZoOjHPmDOpRmh_sHzmjCltmCkGO6TXvu3d3HkNAYOnwpBLTynFjM3yIOe-BqspFaxfEt9GQosgzAHcJcYaxZj2tdTc-IGSGt8VhErAOi7cJYvFS2H2CM2YynSQKKsAwIFCCBHlzEZWxXGmRMz3iT8VfKqa4OTIkfGUukNyLlMQYAoCTFGAKQpwn5zPqozqyBw_FT7DtGZ-Tn4qGLph_L3JtNN7YNdtd9R58Kdah2QF0psba0dksRxX5pgsq9dyOBmfOC2G72On-wmK-_mf |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66CurBt7g-cxAPQrVN0zY5-loUdRHZw95Km4csaJXdrmd_gr_RX-JM2l0UQUE8NpmEMpnMK8k3hOwl4CVDDwiv4MrjRseeZFZ64CzkLIxAhHjuik0k7bboduXtBDkbvYWp8CHGCTfcGU5f4wbHhHQVcHIEyeyZ0uuVCLkdiENwjCFwn-JgbbCOAeO3I30MBr56fZVgQfko7o7PNuXRtym-WKdJ6P7qszqj01r4n99dJPO100mPKylZIhOmWCZzn6AIV4hpwRLdDw3V_R7mGKg2pbulVVBXLIeiudMUP_EK4vvrmzUOE5TaISbcaFZoOjCP2DMYPqMGQvrMqVNa16a4XyWd1nnn9MKrSzB4Kgy59JRSzNgsD3Lua9CbUkEEk_g2EloEYQ7uXWKsUYxpX0vNjR8oqfFlQagERHLhGmkUT4VZJzRjKtNBoqwCFw5EQogoZzayKo4zJWLeJP6I86mq4cmxSsZD6o7JuUyBgSkwMEUGpsjAJjkYD3musDl-It7HtnqHDn4iDN06_j5letm5Yyctd9i58adRu2TmonNznV5ftq82ySzQ1PfXtkij7A_NNplWL2Vv0N9xIv0BadT8cg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58IXrwLb7dg3gQonlskt2jr2BRSpEeegvJPkpBY2lTz_4Ef6O_xJlNWhShgnhMdjaE2dmZb_bxDSEnMaBkaAHj5Uw6TKvIEb4RDoCF3A9CMCGW22ITcbPJOx3RmiE347swFT_EZMENZ4b11zjBdV-ZKuFkSJLZ06XTK5Fy2-PnAIwhcZ9nIfha5HdmrbE_hgBf3b6KsaB8GHUme5vi4scnvkWnWWj-jllt0ElW_-d318hKDTrpZWUl62RGFxtk-QsV4SbRCQxRd6SpGvRwjYEqXdpTWgW1xXIohjtF8RGPIH68vRttOUGpGeGCG80KRYf6GVuGoz56IJTPrDuldW2K7hZpJ7ft6zunLsHgyCBgwpFS-tpkuZczV4HfFBIymNg1IVfcC3KAd7E2Wvq-cpVQTLueFApvFgSSQyYXbJO54qXQO4RmvsyUF0sjAcKBSXAe5r4JjYyiTPKI7RJ3rPlU1vTkWCXjKbXb5EykoMAUFJiiAlNU4C45m3TpV9wc04RP8V09Q4fTBAM7jr9_Mm20H_2rxG527v2p1zFZbN0k6UOjeb9PlkCkPr52QObKwUgfkgX5WvaGgyNr0Z8Uv_v2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+driving+detection+model+based+on+multi%E2%80%90feature+fusion+and+semi%E2%80%90supervised+active+learning&rft.jtitle=IET+intelligent+transport+systems&rft.au=Li%2C+Xu&rft.au=Hong%2C+Lin&rft.au=Wang%2C+Jian%E2%80%90chun&rft.au=Liu%2C+Xiang&rft.date=2019-09-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=13&rft.issue=9&rft.spage=1401&rft.epage=1409&rft_id=info:doi/10.1049%2Fiet-its.2018.5590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_its_2018_5590 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |