Progressive graph-based subspace transductive learning for semi-supervised classification

Graph-based transductive learning (GTL) is the efficient semi-supervised learning technique which is always employed in that sufficient labeled samples can not be obtained. Conventional GTL methods generally construct a inaccurate graph in feature domain and they are not able to align feature inform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing Jg. 13; H. 14; S. 2753 - 2762
Hauptverfasser: Chen, Long, Zhong, Zhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 12.12.2019
Schlagworte:
ISSN:1751-9659, 1751-9667
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graph-based transductive learning (GTL) is the efficient semi-supervised learning technique which is always employed in that sufficient labeled samples can not be obtained. Conventional GTL methods generally construct a inaccurate graph in feature domain and they are not able to align feature information with label information. To address these issues, we propose an approach called Progressive Graph-based subspace transductive learning (PGSTL) in this paper. PGSTL gradually find the intrinsic relationship between samples that more accurately aligns feature with label. Meanwhile, PGSTL develops a feature affinity matrix in the subspace of original high-dimensional feature space, which effectively reduce the interference of noise points. And then, the representative relation matrix and the feature affinity matrix are optimized by iterative optimization strategy and finally aligned. In this way, PGSTL can not only effectively reduce the interference of noisy points, but also comprehensively consider the information in the feature and label domain of data. Extensive experimental results on various benchmark datasets demonstrate that the PGSTL achieves the best performance compared to some state-of-the-art semi-supervised learning methods.
AbstractList Graph-based transductive learning (GTL) is the efficient semi-supervised learning technique which is always employed in that sufficient labeled samples can not be obtained. Conventional GTL methods generally construct a inaccurate graph in feature domain and they are not able to align feature information with label information. To address these issues, we propose an approach called Progressive Graph-based subspace transductive learning (PGSTL) in this paper. PGSTL gradually find the intrinsic relationship between samples that more accurately aligns feature with label. Meanwhile, PGSTL develops a feature affinity matrix in the subspace of original high-dimensional feature space, which effectively reduce the interference of noise points. And then, the representative relation matrix and the feature affinity matrix are optimized by iterative optimization strategy and finally aligned. In this way, PGSTL can not only effectively reduce the interference of noisy points, but also comprehensively consider the information in the feature and label domain of data. Extensive experimental results on various benchmark datasets demonstrate that the PGSTL achieves the best performance compared to some state-of-the-art semi-supervised learning methods.
Author Zhong, Zhi
Chen, Long
Author_xml – sequence: 1
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: 2School of Computer and Information Engineering, Nanning Normal University, Nanning, 530000, People's Republic of China
– sequence: 2
  givenname: Zhi
  surname: Zhong
  fullname: Zhong, Zhi
  email: 1063477512@qq.com
  organization: 2School of Computer and Information Engineering, Nanning Normal University, Nanning, 530000, People's Republic of China
BookMark eNqFkMtOwzAQRS1UJNrCB7DLD7jYceIHO6goVKpEhWDBynL8KK7SJLKTov49CUUsWJTVzOKeO6MzAaOqriwA1xjNMMrEjbct9E2YpQjzGSWUnIExZjmGglI2-t1zcQEmMW4RygXi-Ri8r0O9CTZGv7fJJqjmAxYqWpPEroiN0jZpg6qi6XQ7JEqrQuWrTeLqkES78zB2jQ17PyC6VH2P81q1vq4uwblTZbRXP3MK3hYPr_MnuHp-XM7vVlATkgnIqGOCUGqEERnLRU4U1shyZ3iWaeYcMhxrygquhMlQkRGuTO5Q4QzmhloyBezYq0MdY7BOat9-f9B_7kuJkRwMyd6Q7A3JwZAcDPUk_kM2we9UOJxkbo_Mpy_t4X9ALtcv6f0CpSgVPQyP8BDb1l2oejEnjn0Bhw6RnA
CitedBy_id crossref_primary_10_1007_s11063_021_10453_6
crossref_primary_10_1007_s12524_022_01500_3
Cites_doi 10.1016/j.patrec.2014.02.020
10.1109/TGRS.2018.2864987
10.1016/j.patcog.2011.02.013
10.1007/978-3-319-46484-8_35
10.1016/j.media.2017.05.003
10.1109/TNNLS.2014.2363679
10.1137/1.9781611972795.68
10.1145/1273496.1273571
10.1145/2623330.2623726
10.1007/s10115-013-0702-2
10.1109/TMM.2017.2703636
10.1109/CVPR.2009.5206871
10.1007/s11042-017-5272-y
10.1023/A:1018628609742
10.1109/MSP.2010.936015
10.1023/B:MACH.0000033120.25363.1e
10.1007/s11042-017-5381-7
10.1109/TMM.2017.2729019
10.1007/978-3-642-40994-3_11
10.1016/j.ins.2014.02.067
10.3724/SP.J.1004.2012.01335
10.1109/TIP.2009.2038764
10.1109/TPAMI.2019.2894139
10.1109/ICCV.2013.218
10.1016/j.neucom.2018.10.027
10.2307/2346830
10.1016/j.knosys.2014.12.014
10.1016/j.patcog.2016.03.020
10.1145/1039621.1039623
10.3115/1219840.1219889
10.1109/TKDE.2017.2763618
10.1016/j.neucom.2015.11.112
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2018.6363
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 2762
ExternalDocumentID 10_1049_iet_ipr_2018_6363
IPR2BF02029
Genre article
GrantInformation_xml – fundername: Research Fund of Guangxi Key Lab of Multi‐source Information Mining & Security
  funderid: MIMS18‐07
GroupedDBID 0R
24P
29I
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS
O9-
OCL
P2P
QWB
RIE
RNS
RUI
UNR
ZL0
.DC
0R~
1OC
4.4
8FE
8FG
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3349-76f79366d9d9475953a1c0e8fd844c7ff0d81c67b8a9d40b438ad5f0bfd18d6e3
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505048400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Wed Oct 29 21:09:14 EDT 2025
Tue Nov 18 21:44:57 EST 2025
Wed Jan 22 16:30:27 EST 2025
Tue Jan 05 21:44:21 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords label domain
pattern classification
iterative methods
sufficient labelled samples
representative relation matrix
graph theory
high-dimensional feature space
feature information
semisupervised classification
feature affinity matrix
matrix algebra
noise points
progressive graph-based subspace transductive learning
feature relationships
optimisation
feature domain
efficient semisupervised learning technique
fixed subject-wise graph
feature-to-label alignment
learning (artificial intelligence)
PGSTL
iterative optimisation strategy
label information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3349-76f79366d9d9475953a1c0e8fd844c7ff0d81c67b8a9d40b438ad5f0bfd18d6e3
PageCount 10
ParticipantIDs iet_journals_10_1049_iet_ipr_2018_6363
wiley_primary_10_1049_iet_ipr_2018_6363_IPR2BF02029
crossref_primary_10_1049_iet_ipr_2018_6363
crossref_citationtrail_10_1049_iet_ipr_2018_6363
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2019-12-12
PublicationDateYYYYMMDD 2019-12-12
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-12
  day: 12
PublicationDecade 2010
PublicationTitle IET image processing
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Suykens, J.A.K.; Vandewalle, J. (C1) 1999; 9
Hady, M.F.A.; Schwenker, F. (C8) 2006; 172
Lei, C.; Zhu, X. (C30) 2018; 77
Zheng, W.; Zhu, X.; Wen, G. (C33) 2018
Zhu, X.; Zhang, S.; Hu, R. (C5) 2018
Shi, C.; Duan, C.; Gu, Z. (C11) 2019; 330
Belkin, M.; Niyogi, P.; Sindhwani, V. (C22) 2006; 7
Yuan, Y.; Wan, J.; Wang, Q. (C51) 2016; 56
Zhu, X.; Zhang, S.; Hu, R. (C6) 2018; 30
Belkin, M.; Niyogi, P. (C16) 2004; 56
Song, J.; Guo, Y.; Gao, L. (C46) 2018
Fan, M.; Gu, N.; Qiao, H. (C28) 2011; 44
Kim, K.H.; Choi, S. (C44) 2014; 45
Li, B.; Qin, L.; Yu, S. (C2) 2004; 3
Getz, G.; Shental, N.; Domany, E. (C37) 2006
Zhu, X.; Goldberg, A.B.; Brachman, R. (C9) 2009; 3
Zhou, L.; Ping, X.; Xu, S. (C4) 2012; 38
Wang, Q.; Liu, S.; Chanussot, J. (C50) 2019; 57
Cheng, B.; Yang, J.; Yan, S. (C39) 2010; 19
Zheng, W.; Zhu, X.; Zhu, Y. (C29) 2018; 77
Peng, X.; Yuan, M.; Yu, Z. (C42) 2016; 208
Zhang, Y.M.; Huang, K.; Geng, G.G. (C15) 2015; 26
Peng, J.; Estradab, G.; Pedersoli, M. (C10) 2019
Gao, L.; Li, X.; Song, J. (C47) 2019
Xiaofeng Zhu, Y.L.J.Z.L.Y.; Zhang, S.; Fang, Y. (C54) 2018; 31
Gershman, A.B.; Sidiropoulos, N.D.; Shahbazpanahi, S. (C55) 2010; 27
Liu, X.; Pan, S.; Hao, Z. (C43) 2014; 277
Yu, G.; Zhang, G.; Zhang, Z. (C41) 2015; 43
Gao, L.; Guo, Z.; Zhang, H. (C48) 2017; 19
Hartigan, J.A. (C3) 1979; 28
Wang, B.; Tsotsos, J. (C45) 2016; 52
Li, Y.F.; Tsang, I.W.; Kwok, J.T. (C23) 2013; 14
Zhu, X.; Li, X.; Zhang, S. (C24) 2017; 19
Wang, Z.; Zhu, X.; Adeli, E. (C36) 2017; 39
Rosenberg, C.; Hebert, M.; Schneiderman, H. (C14) 2005; 1
Zhao, M.; Chow, T.W.S.; Zhang, Z. (C34) 2015; 76
2010; 19
2016; 208
2019; 57
2015; 76
2006; 7
2009
2004; 3
2007
2016; 52
2006
2005
2004
2012; 38
2006; 172
2003
2002
2014; 45
2014; 277
2016; 56
1999; 9
1979; 28
2015; 26
2010; 27
2013; 14
2001
2000
2017; 39
2004; 56
2015; 43
2019
2018
2011; 44
2017
2018; 30
2005; 1
2017; 19
2016
2014
2013
2009; 3
2018; 77
2018; 31
2019; 330
e_1_2_8_28_1
e_1_2_8_49_1
Belkin M. (e_1_2_8_23_1) 2006; 7
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Belkin M. (e_1_2_8_26_1) 2004
Song J. (e_1_2_8_47_1) 2018
e_1_2_8_57_1
Zhu X. (e_1_2_8_10_1) 2009; 3
e_1_2_8_32_1
Getz G. (e_1_2_8_38_1) 2006
e_1_2_8_53_1
e_1_2_8_51_1
Li Y.F. (e_1_2_8_24_1) 2013; 14
e_1_2_8_30_1
Wang B. (e_1_2_8_46_1) 2016; 52
e_1_2_8_29_1
Zheng W. (e_1_2_8_34_1) 2018
e_1_2_8_25_1
Xiaofeng Zhu Y.L.J.Z.L.Y. (e_1_2_8_55_1) 2018; 31
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Peng J. (e_1_2_8_11_1) 2019
Rosenberg C. (e_1_2_8_15_1) 2005; 1
e_1_2_8_8_1
Hady M.F.A. (e_1_2_8_9_1) 2006; 172
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Zhu X. (e_1_2_8_6_1) 2018
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 30
  start-page: 517
  issue: 3
  year: 2018
  end-page: 529
  ident: C6
  article-title: Local and global structure preservation for robust unsupervised spectral feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 3
  start-page: 215
  issue: 4
  year: 2004
  end-page: 226
  ident: C2
  article-title: An adaptive k-nearest neighbor text categorization strategy
  publication-title: ACM Trans. Asian Lang. Inf. Process.
– volume: 172
  start-page: 530
  issue: 2
  year: 2006
  end-page: 530
  ident: C8
  article-title: Semi-supervised learning
  publication-title: J. Royal Stat. Soc.
– volume: 19
  start-page: 2045
  issue: 9
  year: 2017
  end-page: 2055
  ident: C48
  article-title: Video captioning with attention-based LSTM and semantic consistency
  publication-title: IEEE Trans. Multimed.
– year: 2018
  ident: C33
  article-title: Unsupervised feature selection by self-paced learning regularization
  publication-title: Pattern Recognit. Lett.
– volume: 1
  start-page: 29
  year: 2005
  end-page: 36
  ident: C14
  article-title: Semi-supervised self-training of object detection models
  publication-title: IEEE Int. Conf. Comput. Vis.
– year: 2019
  ident: C10
  article-title: Deep co-training for semi-supervised image segmentation
  publication-title: CoRR
– volume: 277
  start-page: 327
  issue: 2
  year: 2014
  end-page: 337
  ident: C43
  article-title: Graph-based semi-supervised learning by mixed label propagation with a soft constraint
  publication-title: Inf. Sci.
– year: 2006
  ident: C37
  article-title: Semi-supervised learning – a statistical physics approach
  publication-title: Comput. Sci.
– volume: 330
  start-page: 412
  year: 2019
  end-page: 424
  ident: C11
  article-title: Semi-supervised feature selection analysis with structured multi-view sparse regularization
  publication-title: Neurocomputing
– volume: 31
  start-page: 1532
  issue: 8
  year: 2018
  end-page: 1543
  ident: C54
  article-title: Low-rank sparse subspace for spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 3
  start-page: 130
  issue: 1
  year: 2009
  ident: C9
  article-title: Introduction to semisupervised learning
  publication-title: Semi-Supervised Learn.
– volume: 52
  start-page: 75
  year: 2016
  end-page: 84
  ident: C45
  article-title: Dynamic label propagation for semi-supervised multiclass multi-label classification
  publication-title: Elsevier Sci. Inc.
– volume: 57
  start-page: 1155
  issue: 2
  year: 2019
  end-page: 1167
  ident: C50
  article-title: Scene classification with recurrent attention of VHR remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 76
  start-page: 148
  year: 2015
  end-page: 165
  ident: C34
  article-title: Automatic image annotation via compact graph based semi-supervised learning
  publication-title: Knowl.-Based Syst.
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: C1
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  end-page: 108
  ident: C3
  article-title: A k-means clustering algorithm
  publication-title: Appl. Stat.
– volume: 38
  start-page: 1335
  issue: 38
  year: 2012
  end-page: 1342
  ident: C4
  article-title: Cluster ensemble based on spectral clustering
  publication-title: Acta Autom. Sin.
– year: 2018
  ident: C46
  article-title: From deterministic to generative: multimodal stochastic rnns for video captioning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 14
  start-page: 2151
  issue: 1
  year: 2013
  end-page: 2188
  ident: C23
  article-title: Convex and scalable weakly labeled svms
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: C5
  article-title: One-step multi-view spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 45
  start-page: 17
  issue: 1
  year: 2014
  end-page: 25
  ident: C44
  article-title: Label propagation through minimax paths for scalable semi-supervised learning
  publication-title: Pattern Recognit. Lett.
– volume: 56
  start-page: 209
  issue: 1–3
  year: 2004
  end-page: 239
  ident: C16
  article-title: Semi-supervised learning on Riemannian manifolds
  publication-title: Mach. Learn.
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: C22
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 81
  issue: 1
  year: 2015
  end-page: 101
  ident: C41
  article-title: Semi-supervised classification based on subspace sparse representation
  publication-title: Knowl. Inf. Syst.
– volume: 44
  start-page: 1777
  issue: 8
  year: 2011
  end-page: 1784
  ident: C28
  article-title: Sparse regularization for semi-supervised classification
  publication-title: Pattern Recognit.
– year: 2019
  ident: C47
  article-title: Hierarchical LSTMS with adaptive attention for visual captioning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 858
  issue: 4
  year: 2010
  end-page: 866
  ident: C39
  article-title: Learning with l1-graph for image analysis
  publication-title: IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc.
– volume: 77
  start-page: 29739
  issue: 22
  year: 2018
  end-page: 29755
  ident: C29
  article-title: Dynamic graph learning for spectral feature selection
  publication-title: Multimedia Tools Appl.
– volume: 39
  start-page: 218
  year: 2017
  ident: C36
  article-title: ADNI and PPMI: multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning
  publication-title: Med. Image Anal.
– volume: 27
  start-page: 62
  issue: 3
  year: 2010
  end-page: 75
  ident: C55
  article-title: Convex optimization-based beamforming
  publication-title: IEEE Signal Process. Mag.
– volume: 77
  start-page: 29605
  issue: 22
  year: 2018
  end-page: 29622
  ident: C30
  article-title: Unsupervised feature selection via local structure learning and sparse learning
  publication-title: Multimedia Tools Appl.
– volume: 26
  start-page: 1979
  issue: 9
  year: 2015
  end-page: 1991
  ident: C15
  article-title: MTC: a fast and robust graph-based transductive learning method
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 19
  start-page: 2033
  issue: 9
  year: 2017
  end-page: 2044
  ident: C24
  article-title: Graph PCA hashing for similarity search
  publication-title: IEEE Trans. Multimed.
– volume: 56
  start-page: 159
  year: 2016
  end-page: 169
  ident: C51
  article-title: Congested scene classification via efficient unsupervised feature learning and density estimation
  publication-title: Pattern Recognit.
– volume: 208
  start-page: 143
  issue: C
  year: 2016
  end-page: 152
  ident: C42
  article-title: Semi-supervised subspace learning with l2graph
  publication-title: Neurocomputing
– volume: 208
  start-page: 143
  issue: C
  year: 2016
  end-page: 152
  article-title: Semi‐supervised subspace learning with l2graph
  publication-title: Neurocomputing
– volume: 27
  start-page: 62
  issue: 3
  year: 2010
  end-page: 75
  article-title: Convex optimization‐based beamforming
  publication-title: IEEE Signal Process. Mag.
– volume: 56
  start-page: 159
  year: 2016
  end-page: 169
  article-title: Congested scene classification via efficient unsupervised feature learning and density estimation
  publication-title: Pattern Recognit.
– volume: 172
  start-page: 530
  issue: 2
  year: 2006
  end-page: 530
  article-title: Semi‐supervised learning
  publication-title: J. Royal Stat. Soc.
– volume: 19
  start-page: 2033
  issue: 9
  year: 2017
  end-page: 2044
  article-title: Graph PCA hashing for similarity search
  publication-title: IEEE Trans. Multimed.
– start-page: 624
  year: 2004
  end-page: 638
– volume: 3
  start-page: 130
  issue: 1
  year: 2009
  article-title: Introduction to semisupervised learning
  publication-title: Semi‐Supervised Learn.
– volume: 39
  start-page: 218
  year: 2017
  article-title: ADNI and PPMI: multi‐modal classification of neurodegenerative disease by progressive graph‐based transductive learning
  publication-title: Med. Image Anal.
– volume: 76
  start-page: 148
  year: 2015
  end-page: 165
  article-title: Automatic image annotation via compact graph based semi‐supervised learning
  publication-title: Knowl.‐Based Syst.
– volume: 57
  start-page: 1155
  issue: 2
  year: 2019
  end-page: 1167
  article-title: Scene classification with recurrent attention of VHR remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 45
  start-page: 17
  issue: 1
  year: 2014
  end-page: 25
  article-title: Label propagation through minimax paths for scalable semi‐supervised learning
  publication-title: Pattern Recognit. Lett.
– start-page: 381
  year: 2009
  end-page: 388
– start-page: 1881
  year: 2016
  end-page: 1887
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– start-page: 601
  year: 2002
  end-page: 608
– start-page: 1737
  year: 2013
  end-page: 1744
– start-page: 86
  year: 2000
  end-page: 93
– start-page: 2408
  year: 2017
  end-page: 2414
– volume: 26
  start-page: 1979
  issue: 9
  year: 2015
  end-page: 1991
  article-title: MTC: a fast and robust graph‐based transductive learning method
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 792
  year: 2009
  end-page: 801
– year: 2018
  article-title: Unsupervised feature selection by self‐paced learning regularization
  publication-title: Pattern Recognit. Lett.
– volume: 19
  start-page: 858
  issue: 4
  year: 2010
  end-page: 866
  article-title: Learning with l1‐graph for image analysis
  publication-title: IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc.
– start-page: 321
  year: 2003
  end-page: 328
– volume: 77
  start-page: 29739
  issue: 22
  year: 2018
  end-page: 29755
  article-title: Dynamic graph learning for spectral feature selection
  publication-title: Multimedia Tools Appl.
– year: 2018
  article-title: One‐step multi‐view spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 2465
  year: 2005
  end-page: 2472
– volume: 3
  start-page: 215
  issue: 4
  year: 2004
  end-page: 226
  article-title: An adaptive k‐nearest neighbor text categorization strategy
  publication-title: ACM Trans. Asian Lang. Inf. Process.
– volume: 14
  start-page: 2151
  issue: 1
  year: 2013
  end-page: 2188
  article-title: Convex and scalable weakly labeled svms
  publication-title: J. Mach. Learn. Res.
– year: 2006
  article-title: Semi‐supervised learning – a statistical physics approach
  publication-title: Comput. Sci.
– volume: 19
  start-page: 2045
  issue: 9
  year: 2017
  end-page: 2055
  article-title: Video captioning with attention‐based LSTM and semantic consistency
  publication-title: IEEE Trans. Multimed.
– start-page: 593
  year: 2007
  end-page: 600
– start-page: 19
  year: 2001
  end-page: 26
– volume: 43
  start-page: 81
  issue: 1
  year: 2015
  end-page: 101
  article-title: Semi‐supervised classification based on subspace sparse representation
  publication-title: Knowl. Inf. Syst.
– volume: 44
  start-page: 1777
  issue: 8
  year: 2011
  end-page: 1784
  article-title: Sparse regularization for semi‐supervised classification
  publication-title: Pattern Recognit.
– volume: 77
  start-page: 29605
  issue: 22
  year: 2018
  end-page: 29622
  article-title: Unsupervised feature selection via local structure learning and sparse learning
  publication-title: Multimedia Tools Appl.
– start-page: 395
  year: 2005
  end-page: 402
– volume: 277
  start-page: 327
  issue: 2
  year: 2014
  end-page: 337
  article-title: Graph‐based semi‐supervised learning by mixed label propagation with a soft constraint
  publication-title: Inf. Sci.
– start-page: 583
  year: 2016
  end-page: 598
– volume: 38
  start-page: 1335
  issue: 38
  year: 2012
  end-page: 1342
  article-title: Cluster ensemble based on spectral clustering
  publication-title: Acta Autom. Sin.
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– year: 2003
– start-page: 977
  year: 2014
  end-page: 986
– volume: 31
  start-page: 1532
  issue: 8
  year: 2018
  end-page: 1543
  article-title: Low‐rank sparse subspace for spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 1
  start-page: 29
  year: 2005
  end-page: 36
  article-title: Semi‐supervised self‐training of object detection models
  publication-title: IEEE Int. Conf. Comput. Vis.
– year: 2019
  article-title: Hierarchical LSTMS with adaptive attention for visual captioning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 912
  year: 2003
  end-page: 919
– start-page: 160
  year: 2013
  end-page: 175
– volume: 30
  start-page: 517
  issue: 3
  year: 2018
  end-page: 529
  article-title: Local and global structure preservation for robust unsupervised spectral feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2019
  article-title: Deep co‐training for semi‐supervised image segmentation
  publication-title: CoRR
– volume: 56
  start-page: 209
  issue: 1–3
  year: 2004
  end-page: 239
  article-title: Semi‐supervised learning on Riemannian manifolds
  publication-title: Mach. Learn.
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  end-page: 108
  article-title: A k‐means clustering algorithm
  publication-title: Appl. Stat.
– start-page: 441
  year: 2009
  end-page: 448
– volume: 52
  start-page: 75
  year: 2016
  end-page: 84
  article-title: Dynamic label propagation for semi‐supervised multiclass multi‐label classification
  publication-title: Elsevier Sci. Inc.
– volume: 330
  start-page: 412
  year: 2019
  end-page: 424
  article-title: Semi‐supervised feature selection analysis with structured multi‐view sparse regularization
  publication-title: Neurocomputing
– start-page: 290
  year: 2003
  end-page: 297
– year: 2017
– year: 2018
  article-title: From deterministic to generative: multimodal stochastic rnns for video captioning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2018
  ident: e_1_2_8_47_1
  article-title: From deterministic to generative: multimodal stochastic rnns for video captioning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 1
  start-page: 29
  year: 2005
  ident: e_1_2_8_15_1
  article-title: Semi‐supervised self‐training of object detection models
  publication-title: IEEE Int. Conf. Comput. Vis.
– ident: e_1_2_8_45_1
  doi: 10.1016/j.patrec.2014.02.020
– ident: e_1_2_8_14_1
– ident: e_1_2_8_51_1
  doi: 10.1109/TGRS.2018.2864987
– ident: e_1_2_8_29_1
  doi: 10.1016/j.patcog.2011.02.013
– ident: e_1_2_8_41_1
  doi: 10.1007/978-3-319-46484-8_35
– ident: e_1_2_8_59_1
– ident: e_1_2_8_22_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.media.2017.05.003
– volume: 52
  start-page: 75
  year: 2016
  ident: e_1_2_8_46_1
  article-title: Dynamic label propagation for semi‐supervised multiclass multi‐label classification
  publication-title: Elsevier Sci. Inc.
– ident: e_1_2_8_32_1
– ident: e_1_2_8_16_1
  doi: 10.1109/TNNLS.2014.2363679
– ident: e_1_2_8_13_1
– ident: e_1_2_8_28_1
  doi: 10.1137/1.9781611972795.68
– ident: e_1_2_8_33_1
  doi: 10.1145/1273496.1273571
– year: 2019
  ident: e_1_2_8_11_1
  article-title: Deep co‐training for semi‐supervised image segmentation
  publication-title: CoRR
– volume: 31
  start-page: 1532
  issue: 8
  year: 2018
  ident: e_1_2_8_55_1
  article-title: Low‐rank sparse subspace for spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: e_1_2_8_36_1
  doi: 10.1145/2623330.2623726
– ident: e_1_2_8_42_1
  doi: 10.1007/s10115-013-0702-2
– ident: e_1_2_8_25_1
  doi: 10.1109/TMM.2017.2703636
– ident: e_1_2_8_27_1
  doi: 10.1109/CVPR.2009.5206871
– ident: e_1_2_8_30_1
  doi: 10.1007/s11042-017-5272-y
– ident: e_1_2_8_2_1
  doi: 10.1023/A:1018628609742
– ident: e_1_2_8_56_1
  doi: 10.1109/MSP.2010.936015
– ident: e_1_2_8_17_1
  doi: 10.1023/B:MACH.0000033120.25363.1e
– ident: e_1_2_8_18_1
– ident: e_1_2_8_31_1
  doi: 10.1007/s11042-017-5381-7
– year: 2018
  ident: e_1_2_8_34_1
  article-title: Unsupervised feature selection by self‐paced learning regularization
  publication-title: Pattern Recognit. Lett.
– year: 2006
  ident: e_1_2_8_38_1
  article-title: Semi‐supervised learning – a statistical physics approach
  publication-title: Comput. Sci.
– ident: e_1_2_8_49_1
  doi: 10.1109/TMM.2017.2729019
– ident: e_1_2_8_54_1
  doi: 10.1007/978-3-642-40994-3_11
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ins.2014.02.067
– ident: e_1_2_8_53_1
– ident: e_1_2_8_5_1
  doi: 10.3724/SP.J.1004.2012.01335
– ident: e_1_2_8_50_1
– year: 2018
  ident: e_1_2_8_6_1
  article-title: One‐step multi‐view spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: e_1_2_8_40_1
  doi: 10.1109/TIP.2009.2038764
– volume: 3
  start-page: 130
  issue: 1
  year: 2009
  ident: e_1_2_8_10_1
  article-title: Introduction to semisupervised learning
  publication-title: Semi‐Supervised Learn.
– ident: e_1_2_8_48_1
  doi: 10.1109/TPAMI.2019.2894139
– ident: e_1_2_8_20_1
– ident: e_1_2_8_58_1
  doi: 10.1109/ICCV.2013.218
– start-page: 624
  volume-title: Regularization and semi‐supervised learning on large graphs
  year: 2004
  ident: e_1_2_8_26_1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.neucom.2018.10.027
– ident: e_1_2_8_21_1
– ident: e_1_2_8_4_1
  doi: 10.2307/2346830
– ident: e_1_2_8_35_1
  doi: 10.1016/j.knosys.2014.12.014
– ident: e_1_2_8_52_1
  doi: 10.1016/j.patcog.2016.03.020
– volume: 14
  start-page: 2151
  issue: 1
  year: 2013
  ident: e_1_2_8_24_1
  article-title: Convex and scalable weakly labeled svms
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_8_3_1
  doi: 10.1145/1039621.1039623
– ident: e_1_2_8_19_1
– ident: e_1_2_8_39_1
  doi: 10.3115/1219840.1219889
– volume: 172
  start-page: 530
  issue: 2
  year: 2006
  ident: e_1_2_8_9_1
  article-title: Semi‐supervised learning
  publication-title: J. Royal Stat. Soc.
– ident: e_1_2_8_8_1
– volume: 7
  start-page: 2399
  year: 2006
  ident: e_1_2_8_23_1
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_8_57_1
– ident: e_1_2_8_7_1
  doi: 10.1109/TKDE.2017.2763618
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neucom.2015.11.112
SSID ssj0059085
Score 2.182431
Snippet Graph-based transductive learning (GTL) is the efficient semi-supervised learning technique which is always employed in that sufficient labeled samples can not...
Graph‐based transductive learning (GTL) is the efficient semi‐supervised learning technique which is always employed in that sufficient labeled samples can not...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 2753
SubjectTerms efficient semisupervised learning technique
feature affinity matrix
feature domain
feature information
feature relationships
feature‐to‐label alignment
fixed subject‐wise graph
graph theory
high‐dimensional feature space
iterative methods
iterative optimisation strategy
label domain
label information
learning (artificial intelligence)
matrix algebra
noise points
optimisation
pattern classification
PGSTL
progressive graph‐based subspace transductive learning
representative relation matrix
semisupervised classification
Special Section: Adversarial Learning in Image Processing
sufficient labelled samples
Title Progressive graph-based subspace transductive learning for semi-supervised classification
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.6363
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2018.6363
Volume 13
WOSCitedRecordID wos000505048400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66evDiW1xf9CAehGrTpGnnqOKiIMsivi5S2jykoOti6579Cf5Gf4mZtLuwCCuIlx7SSSgzmZmveXxDyL4EybmMI9_EWvs8lNLPbGL1RRYBcJExcMTzd1dxt5s8PEBvhpyN7sLU_BDjBTf0DBev0cGzvK5CYkGtNWKhK78YIKUnTY4EE2yWzFHKYpzaIe-NwjHW9I7crUisJy8iGG9twvGPISaS06x9PQlZXc7pLP3L1y6TxQZyeif1HFkhM7q_SpYa-Ok1zl2ukccentXCY7FD7Tki66-PT8xyyitteLE_19qrMLUhRSzKNBUnnjwLfL1SvxRWvnwfYPTBThKBOZ5EcsZfJ7ed85uzC7-pvuBLxjj4sTDWd4VQoABJASOWURnoxKgErWtMoBIqRZwnGSge5JwlmYpMkBtFEyU02yCt_mtfbxKPaiORWD7MdcBzagAsqFEShMYIEECbBCO1p7KhJscKGc-p2yLnkFr1pVZ9KaovRfW1yeG4y6Dm5ZgmfIBtjXeW0wSZM-LvQ6aXvevwtGPBdghbf-q1TRZsu6tFQcMd0qre3vUumZfDqijf9twcts_7y-43ZUX42g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gV5cn_i2B_EgVNsmTTtHX4viuiyi4kVKm4cs6LrYXc_-BH-jv8RMtrsggoJ4bSehTDIzX5rk-wB2JErOZRL7JtHa55GUfm4Lqy_yGJGLnKEjnr9tJM1meneHrTE4Gd6FGfBDjH64UWS4fE0BTj-kBwtOTiSZbd3z213i9AzTfcEEG4dJbqsN6RhEvDXMxyTqHbtrkSQoL2Ic7W3iwbcuvlSncfv6K2Z1Rade-5_PnYPZCnR6h4NZMg9jurMAtQqAelV4l4tw36LTWnQw9lV7jsr64-2d6pzySptg7PJaez0qbkQSSzaV5sSDZ6GvV-qntrUv-13KP9RIEjSns0hu-Jfgpn56fXzmV_oLvmSMo58IY6NXCIUKiRYwZnkoA50aldL4GhOoNJQiKdIcFQ8KztJcxSYojApTJTRbhonOc0evgBdqI4laPip0wIvQIFpYoyQKTTkgwFUIhn7PZEVOThoZj5nbJOeYWfdl1n0ZuS8j963C3qhJd8DM8ZPxLj2r4rP8yZC5Ufy9y-y8dRUd1S3cjnDtT622Yfrs-rKRNc6bF-swY22cMkUYbcBE76WvN2FKvvba5cuWm9CfPmT7rQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FfHiW3zbg3gQqm2Tpp2jr0VRliIqXqS0eciCrovd9exP8Df6S8xkuwsiKIjXdhLKTGbmSzP5BmBHouRcJrFvEq19HknpFzax-qKIEbkoGDri-dvLpNVK7-4wG4OT4V2YAT_E6IcbeYaL1-TguqvMYMPJiSSzrXt-u0ucnmG6L5hg4zDBYxtrid-ZZ8N4TE29Y3ctkhrKixhHZ5t48G2KL9lp3L7-illd0mnO_s_nzsFMDTq9w8EqmYcx3VmA2RqAerV7V4twn1G1FhXGvmrPUVl_vL1TnlNeZQOM3V5rr0fJjUhiSabuOfHgWejrVfqpbeWrfpfiDw2SBM2pFsmZfwlumqfXx2d-3X_Bl4xx9BNhrPcKoVAh0QLGrAhloFOjUrKvMYFKQymSMi1Q8aDkLC1UbILSqDBVQrNlaHSeO3oFvFAbSdTyUakDXoYG0cIaJVFoigEBrkIw1Hsua3Jy6pHxmLtDco65VV9u1ZeT-nJS3yrsjYZ0B8wcPwnv0rPaP6ufBJmz4u9T5ufZVXTUtHA7wrU_jdqGqeykmV-ety7WYdqKuMYUYbQBjd5LX2_CpHzttauXLbeePwHqQfsx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+graph%E2%80%90based+subspace+transductive+learning+for+semi%E2%80%90supervised+classification&rft.jtitle=IET+image+processing&rft.au=Chen%2C+Long&rft.au=Zhong%2C+Zhi&rft.date=2019-12-12&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=13&rft.issue=14&rft.spage=2753&rft.epage=2762&rft_id=info:doi/10.1049%2Fiet-ipr.2018.6363&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_ipr_2018_6363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon