Distributed event-triggered algorithm for unconstrained convex optimisation over weight-balanced directed networks

In this study, the authors propose a distributed discrete-time algorithm for unconstrained optimisation with event-triggered communication over weight-balanced directed networks. They consider a multi-agent system where each agent has a state and an auxiliary variable for the estimates of the optima...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 14; číslo 2; s. 253 - 261
Hlavní autoři: Hayashi, Naoki, Sugiura, Tomohiro, Kajiyama, Yuichi, Takai, Shigemasa
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 29.01.2020
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, the authors propose a distributed discrete-time algorithm for unconstrained optimisation with event-triggered communication over weight-balanced directed networks. They consider a multi-agent system where each agent has a state and an auxiliary variable for the estimates of the optimal solution and the average gradient of the entire cost function. Agents send the states and auxiliary variables to their neighbours when their trigger errors exceed thresholds. They derive a convergence rate of the proposed algorithm which shows faster convergence to the optimal solution compared to the subgradient-based method.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2019.0377