Partially-coupled least squares based iterative parameter estimation for multi-variable output-error-like autoregressive moving average systems

This study considers the parameter estimation of a multi-variable output-error-like system with autoregressive moving average noise. In order to solve the problem of the information vector containing unknown variables, a least squares-based iterative algorithm is proposed by using the iterative sear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 13; číslo 18; s. 3040 - 3051
Hlavní autoři: Ma, Hao, Pan, Jian, Ding, Feng, Xu, Ling, Ding, Wenfang
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 17.12.2019
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study considers the parameter estimation of a multi-variable output-error-like system with autoregressive moving average noise. In order to solve the problem of the information vector containing unknown variables, a least squares-based iterative algorithm is proposed by using the iterative search. The original system is divided into several subsystems by using the decomposition technique. However, the subsystems contain the same parameter vector, which poses a challenge for the identification problem, the approach taken here is to use the coupling identification concept to cut down the redundant parameter estimates. In addition, the recursive least squares algorithm is provided for comparison. The simulation results indicate that the proposed algorithms are effective.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2019.0112