Hybrid deep learning and machine learning approach for passive image forensic

Image forgery detection using traditional algorithms takes much time to find forgeries. The new emerging methods for the detection of image forgery use a deep neural network algorithm. A hybrid deep learning (DL) and machine learning-based approach is used in this study for passive image forgery det...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 14; číslo 10; s. 1952 - 1959
Hlavní autoři: Thakur, Abhishek, Jindal, Neeru
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 21.08.2020
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Image forgery detection using traditional algorithms takes much time to find forgeries. The new emerging methods for the detection of image forgery use a deep neural network algorithm. A hybrid deep learning (DL) and machine learning-based approach is used in this study for passive image forgery detection. A DL algorithm classifies images into the forged and not forged categories, whereas colour illumination localises forgery. The simulated results are compared to other algorithms on public datasets. The simulated results achieved 99% accuracy for CASIA1.0, 98% accuracy for CASIA2.0, 98% accuracy for BSDS300, 97% accuracy for DVMM, and 99% accuracy for CMFD image manipulation dataset.
ISSN:1751-9659
1751-9667
DOI:10.1049/iet-ipr.2019.1291