StyleBlend: Enhancing Style‐Specific Content Creation in Text‐to‐Image Diffusion Models

Synthesizing visually impressive images that seamlessly align both text prompts and specific artistic styles remains a significant challenge in Text‐to‐Image (T2I) diffusion models. This paper introduces StyleBlend, a method designed to learn and apply style representations from a limited set of ref...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 44; číslo 2
Hlavní autoři: Chen, Zichong, Wang, Shijin, Zhou, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.05.2025
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Synthesizing visually impressive images that seamlessly align both text prompts and specific artistic styles remains a significant challenge in Text‐to‐Image (T2I) diffusion models. This paper introduces StyleBlend, a method designed to learn and apply style representations from a limited set of reference images, enabling content synthesis of both text‐aligned and stylistically coherent. Our approach uniquely decomposes style into two components, composition and texture, each learned through different strategies. We then leverage two synthesis branches, each focusing on a corresponding style component, to facilitate effective style blending through shared features without affecting content generation. StyleBlend addresses the common issues of text misalignment and weak style representation that previous methods have struggled with. Extensive qualitative and quantitative comparisons demonstrate the superiority of our approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.70034