Within-project and cross-project just-in-time defect prediction based on denoising autoencoder and convolutional neural network

Just-in-time defect prediction is an important and useful branch in software defect prediction. At present, deep learning is a research hotspot in the field of artificial intelligence, which can combine basic defect features into deep semantic features and make up for the shortcomings of machine lea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET software Ročník 14; číslo 3; s. 185 - 195
Hlavní autoři: Zhu, Kun, Zhang, Nana, Ying, Shi, Zhu, Dandan
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 01.06.2020
Témata:
ISSN:1751-8806, 1751-8814, 1751-8814
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Just-in-time defect prediction is an important and useful branch in software defect prediction. At present, deep learning is a research hotspot in the field of artificial intelligence, which can combine basic defect features into deep semantic features and make up for the shortcomings of machine learning algorithms. However, the mainstream deep learning techniques have not been applied yet in just-in-time defect prediction. Therefore, the authors propose a novel just-in-time defect prediction model named DAECNN-JDP based on denoising autoencoder and convolutional neural network in this study, which has three main advantages: (i) Different weights for the position vector of each dimension feature are set, which can be automatically trained by adaptive trainable vector. (ii) Through the training of denoising autoencoder, the input features that are not contaminated by noise can be obtained, thus learning more robust feature representation. (iii) The authors leverage a powerful representation-learning technique, convolution neural network, to construct the basic change features into the abstract deep semantic features. To evaluate the performance of the DAECNN-JDP model, they conduct extensive within-project and cross-project defect prediction experiments on six large open source projects. The experimental results demonstrate that the superiority of DAECNN-JDP on five evaluation metrics.
AbstractList Just‐in‐time defect prediction is an important and useful branch in software defect prediction. At present, deep learning is a research hotspot in the field of artificial intelligence, which can combine basic defect features into deep semantic features and make up for the shortcomings of machine learning algorithms. However, the mainstream deep learning techniques have not been applied yet in just‐in‐time defect prediction. Therefore, the authors propose a novel just‐in‐time defect prediction model named DAECNN‐JDP based on denoising autoencoder and convolutional neural network in this study, which has three main advantages: (i) Different weights for the position vector of each dimension feature are set, which can be automatically trained by adaptive trainable vector. (ii) Through the training of denoising autoencoder, the input features that are not contaminated by noise can be obtained, thus learning more robust feature representation. (iii) The authors leverage a powerful representation‐learning technique, convolution neural network, to construct the basic change features into the abstract deep semantic features. To evaluate the performance of the DAECNN‐JDP model, they conduct extensive within‐project and cross‐project defect prediction experiments on six large open source projects. The experimental results demonstrate that the superiority of DAECNN‐JDP on five evaluation metrics.
Just‐in‐time defect prediction is an important and useful branch in software defect prediction. At present, deep learning is a research hotspot in the field of artificial intelligence, which can combine basic defect features into deep semantic features and make up for the shortcomings of machine learning algorithms. However, the mainstream deep learning techniques have not been applied yet in just‐in‐time defect prediction. Therefore, the authors propose a novel just‐in‐time defect prediction model named DAECNN‐JDP based on denoising autoencoder and convolutional neural network in this study, which has three main advantages: (i) Different weights for the position vector of each dimension feature are set, which can be automatically trained by adaptive trainable vector. (ii) Through the training of denoising autoencoder, the input features that are not contaminated by noise can be obtained, thus learning more robust feature representation. (iii) The authors leverage a powerful representation‐learning technique, convolution neural network, to construct the basic change features into the deep semantic features. To evaluate the performance of the DAECNN‐JDP model, they conduct extensive within‐project and cross‐project defect prediction experiments on six large open source projects. The experimental results demonstrate that the superiority of DAECNN‐JDP on five evaluation metrics.
Author Zhu, Dandan
Ying, Shi
Zhu, Kun
Zhang, Nana
Author_xml – sequence: 1
  givenname: Kun
  surname: Zhu
  fullname: Zhu, Kun
  organization: 1School of Computer Science, Wuhan University, No.299 Bayi Road, Wuhan, People's Republic of China
– sequence: 2
  givenname: Nana
  surname: Zhang
  fullname: Zhang, Nana
  organization: 1School of Computer Science, Wuhan University, No.299 Bayi Road, Wuhan, People's Republic of China
– sequence: 3
  givenname: Shi
  surname: Ying
  fullname: Ying, Shi
  email: yingshl@whu.edu.cn
  organization: 1School of Computer Science, Wuhan University, No.299 Bayi Road, Wuhan, People's Republic of China
– sequence: 4
  givenname: Dandan
  surname: Zhu
  fullname: Zhu, Dandan
  organization: 2Artificial Intelligence Institute, Shanghai Jiaotong University, No.800 Dongchuan Road, Shanghai, People's Republic of China
BookMark eNqFkMtOwzAQRS1UJErhA9jlB1L8iPNgBxUFpEosAHUZufEEHFK7sh2qrvh1nAZ1waKsZjS6Zzw-52ikjQaErgieEpwU1wp87EBPKSbFFNMsP0FjknES5zlJRocep2fo3LkGY845K8boe6n8h9LxxpoGKh8JLaPKGucOk6ZzPg4Jr9YQSaj72caCVJVXRkcr4UBGoZGgjXJKv0ei8wZ0ZSTYYZ_RX6bt-rhoIw2d3Re_NfbzAp3WonVw-Vsn6G1-_zp7jBfPD0-z20VcMZYksWCM06KWSU4TRigAzSQPjUjSAnJY1XnGMyA4LTivixRoSmXGBKtTmmYEKjZB2bB3_zkLdVkpL_qTvBWqLQkue49l8FgGj2Xvsew9BpL8ITdWrYXdHWVuBmarWtj9D5Qv8yW9m2NM8yTA8QD3scZ0NlhzRx77ARrrnjs
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108852
crossref_primary_10_1002_spe_3274
crossref_primary_10_1007_s11227_021_04113_8
crossref_primary_10_1007_s40747_022_00676_y
crossref_primary_10_1007_s10515_022_00344_y
crossref_primary_10_1007_s11831_022_09787_8
crossref_primary_10_1007_s10844_023_00793_1
crossref_primary_10_1016_j_ins_2021_11_029
crossref_primary_10_1007_s11432_023_4127_5
crossref_primary_10_1109_ACCESS_2024_3388489
crossref_primary_10_1007_s10664_023_10335_6
crossref_primary_10_3390_aerospace11050393
crossref_primary_10_1016_j_jss_2022_111537
crossref_primary_10_1145_3567550
crossref_primary_10_1007_s10515_024_00465_6
crossref_primary_10_1371_journal_pone_0299585
crossref_primary_10_1109_TSE_2022_3173346
crossref_primary_10_1016_j_infsof_2021_106588
crossref_primary_10_1109_TSE_2022_3150153
crossref_primary_10_1145_3664607
crossref_primary_10_3390_su17146284
crossref_primary_10_1142_S0218194025500226
crossref_primary_10_1007_s00521_024_10937_1
crossref_primary_10_1007_s42979_023_01906_x
crossref_primary_10_1049_2024_5358773
crossref_primary_10_1016_j_ins_2021_05_008
crossref_primary_10_1109_ACCESS_2023_3343329
crossref_primary_10_1155_2022_5058461
crossref_primary_10_1007_s10664_024_10495_z
crossref_primary_10_1016_j_ins_2024_120595
crossref_primary_10_1016_j_jss_2024_112214
crossref_primary_10_1049_sfw2_12029
crossref_primary_10_1007_s00521_024_09930_5
Cites_doi 10.1145/2970276.2970357
10.1145/3106237.3106257
10.1109/ICSE.2017.9
10.1109/TSE.2008.90
10.1109/ICSE.2009.5070510
10.1007/s10664-015-9400-x
10.1109/32.859533
10.1145/1390156.1390294
10.1145/2597073.2597075
10.1109/TR.2016.2588139
10.1007/s10664-018-9661-2
10.1145/1134285.1134349
10.1109/ICASSP.2017.7953077
10.1145/2884781.2884804
10.1613/jair.953
10.1109/MSR.2019.00016
10.1162/NECO_a_00142
10.1109/TSE.2012.70
10.1145/2025113.2025121
10.1145/2950290.2950353
10.1002/bltj.2229
10.1007/s11063-018-9831-7
10.1007/s10664-017-9522-4
10.1016/j.neunet.2018.04.016
10.1007/s10664-012-9228-6
10.1016/j.neucom.2014.08.092
10.1145/1062455.1062514
10.1109/TSE.2010.81
10.1145/2950290.2950334
10.1145/2567948.2577348
10.1016/j.infsof.2017.03.007
10.1109/CVPR.2015.7298932
10.1109/QRS.2015.14
10.1109/ASE.2015.73
10.1145/2393596.2393670
10.1109/TSE.2005.74
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-sen.2019.0278
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1751-8814
EndPage 195
ExternalDocumentID 10_1049_iet_sen_2019_0278
SFW2BF00284
Genre article
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 61672392
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 61373038
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 61672392
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 61373038
GroupedDBID 0R
24P
29I
3V.
4.4
4IJ
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACDCL
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
2QL
96U
AAHJG
AAMMB
ABMDY
ABQXS
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEFGJ
AEGXH
AFAZI
AGXDD
AIDQK
AIDYY
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
IDLOA
ITC
K1G
MCNEO
MS~
OK1
PHGZM
PHGZT
PQGLB
PUEGO
WIN
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c3344-a33529fd4824312ee27d5312a469e8ebf8757e106955f96e262d73a3f62671ec3
IEDL.DBID 24P
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000585778800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8806
1751-8814
IngestDate Wed Oct 29 21:13:20 EDT 2025
Tue Nov 18 22:00:25 EST 2025
Tue Sep 09 05:10:10 EDT 2025
Tue Jan 05 21:44:07 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords mainstream deep learning techniques
just-in-time defect prediction model
cross-project defect prediction experiments
denoising autoencoder
basic defect features
learning (artificial intelligence)
autoencoder convolutional neural network
neural nets
software defect prediction
convolution neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3344-a33529fd4824312ee27d5312a469e8ebf8757e106955f96e262d73a3f62671ec3
PageCount 11
ParticipantIDs wiley_primary_10_1049_iet_sen_2019_0278_SFW2BF00284
iet_journals_10_1049_iet_sen_2019_0278
crossref_citationtrail_10_1049_iet_sen_2019_0278
crossref_primary_10_1049_iet_sen_2019_0278
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20200600
June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationTitle IET software
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Wang, M.; Wu, Z.; Sun, X. (C18) 2019; 49
Huang, Q.; Xia, X.; Lo, D. (C2) 2018; 24
Kamei, Y.; Fukushima, T.; Mcintosh, S. (C1) 2016; 21
Kamei, Y.; Shihab, E.; Adams, B. (C4) 2013; 39
Huang, Q.; Shihab, E.; Xia, X. (C38) 2017; 23
Shin, Y.; Meneely, A.; Williams, L. (C32) 2011; 37
Yang, X.; Lo, D.; Xia, X. (C3) 2017; 87
Ferles, C.; Papanikolaou, Y.; Naidoo, K.J. (C16) 2018; 105
Xia, X.; Lo, D.; Wang, X. (C37) 2016; 65
Vincent, P. (C17) 2011; 23
Chawla, N.V.; Bowyer, K.W.; Hall, L.O. (C34) 2002; 16
Shiha, E.; Ihara, A.; Kamei, Y. (C39) 2013; 18
Purushothaman, R.; Perry, D.E. (C30) 2005; 31
Mockus, A.; Weiss, D.M. (C10) 2000; 5
Koru, A.G.; Zhang, D.; Emam, K.E. (C29) 2009; 35
Li, J.; Struzik, Z.; Zhang, L. (C15) 2015; 165
Graves, T.L.; Karr, A.F.; Marron, J.S. (C31) 2000; 26
2002; 16
2012
2000; 5
2018; 105
2000; 26
2011
2017; 87
2015; 165
2017; 23
2009
2008
2006
2005
2011; 37
2018; 24
2013; 18
2009; 35
2013; 39
2016; 21
2016; 65
2019
2019; 49
2005; 31
2017
2016
2015
2011; 23
2014
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 87
  start-page: 206
  year: 2017
  end-page: 220
  ident: C3
  article-title: TLEL: a two-layer ensemble learning approach for just-in-time defect prediction
  publication-title: Inf. Softw. Technol.
– volume: 39
  start-page: 757
  issue: 6
  year: 2013
  end-page: 773
  ident: C4
  article-title: A large-scale empirical study of just-in-time quality assurance
  publication-title: IEEE Trans. Softw. Eng.
– volume: 35
  start-page: 293
  issue: 2
  year: 2009
  end-page: 304
  ident: C29
  article-title: An investigation into the functional form of the size-defect relationship for software modules
  publication-title: IEEE Trans. Softw. Eng.
– volume: 37
  start-page: 772
  issue: 6
  year: 2011
  end-page: 787
  ident: C32
  article-title: Evaluating complexity, code churn, and developer activity metrics as indicators of software vulnerabilities
  publication-title: IEEE Trans. Softw. Eng.
– volume: 49
  start-page: 835
  issue: 2
  year: 2019
  end-page: 849
  ident: C18
  article-title: Trust-aware collaborative filtering with a denoising autoencoder
  publication-title: Neural Process. Lett.
– volume: 26
  start-page: 653
  issue: 7
  year: 2000
  end-page: 661
  ident: C31
  article-title: Predicting fault incidence using software change history
  publication-title: IEEE Trans. Softw. Eng.
– volume: 21
  start-page: 2072
  issue: 5
  year: 2016
  end-page: 2106
  ident: C1
  article-title: Studying just-in-time defect prediction using cross-project models
  publication-title: Empir. Softw. Eng.
– volume: 18
  start-page: 1005
  issue: 5
  year: 2013
  end-page: 1042
  ident: C39
  article-title: Studying re-opened bugs in open source software
  publication-title: Empir. Softw. Eng.
– volume: 23
  start-page: 1661
  issue: 7
  year: 2011
  end-page: 1674
  ident: C17
  article-title: A connection between score matching and denoising autoencoders
  publication-title: Neural Comput.
– volume: 23
  start-page: 418
  year: 2017
  end-page: 451
  ident: C38
  article-title: Identifying self-admitted technical debt in open source projects using text mining
  publication-title: Empir. Softw. Eng.
– volume: 24
  start-page: 2823
  issue: 5
  year: 2018
  end-page: 2862
  ident: C2
  article-title: Revisiting supervised and unsupervised models for effort-aware just-in-time defect prediction
  publication-title: Empir. Softw. Eng.
– volume: 105
  start-page: 112
  year: 2018
  end-page: 131
  ident: C16
  article-title: Denoising autoencoder self-organizing map (DASOM)
  publication-title: Neural Netw.
– volume: 65
  start-page: 1
  issue: 4
  year: 2016
  end-page: 20
  ident: C37
  article-title: Collective personalized change classification with multiobjective search
  publication-title: IEEE Trans. Reliab.
– volume: 5
  start-page: 169
  issue: 2
  year: 2000
  end-page: 180
  ident: C10
  article-title: Predicting risk of software changes
  publication-title: Bell Labs Tech. J.
– volume: 31
  start-page: 511
  issue: 6
  year: 2005
  end-page: 526
  ident: C30
  article-title: Toward understanding the rhetoric of small source code changes
  publication-title: IEEE Trans. Softw. Eng.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: C34
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 165
  start-page: 23
  year: 2015
  end-page: 31
  ident: C15
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
– year: 2016
  article-title: Effort-aware just-in-time defect prediction: simple unsupervised models could be better than supervised models
– year: 2014
  article-title: A convolutional neural network for modelling sentences
– volume: 105
  start-page: 112
  year: 2018
  end-page: 131
  article-title: Denoising autoencoder self-organizing map (DASOM)
  publication-title: Neural Netw.
– year: 2017
  article-title: Revisiting unsupervised learning for defect prediction
– volume: 21
  start-page: 2072
  issue: 5
  year: 2016
  end-page: 2106
  article-title: Studying just-in-time defect prediction using cross-project models
  publication-title: Empir. Softw. Eng.
– volume: 23
  start-page: 1661
  issue: 7
  year: 2011
  end-page: 1674
  article-title: A connection between score matching and denoising autoencoders
  publication-title: Neural Comput.
– year: 2016
  article-title: Automatically learning semantic features for defect prediction
– year: 2005
  article-title: Use of relative code churn measures to predict system defect density
– volume: 87
  start-page: 206
  year: 2017
  end-page: 220
  article-title: TLEL: a two-layer ensemble learning approach for just-in-time defect prediction
  publication-title: Inf. Softw. Technol.
– volume: 39
  start-page: 757
  issue: 6
  year: 2013
  end-page: 773
  article-title: A large-scale empirical study of just-in-time quality assurance
  publication-title: IEEE Trans. Softw. Eng.
– year: 2019
  article-title: Code churn: a neglected metric in effort-aware just-in-time defect prediction
– volume: 26
  start-page: 653
  issue: 7
  year: 2000
  end-page: 661
  article-title: Predicting fault incidence using software change history
  publication-title: IEEE Trans. Softw. Eng.
– volume: 65
  start-page: 1
  issue: 4
  year: 2016
  end-page: 20
  article-title: Collective personalized change classification with multiobjective search
  publication-title: IEEE Trans. Reliab.
– volume: 35
  start-page: 293
  issue: 2
  year: 2009
  end-page: 304
  article-title: An investigation into the functional form of the size-defect relationship for software modules
  publication-title: IEEE Trans. Softw. Eng.
– volume: 31
  start-page: 511
  issue: 6
  year: 2005
  end-page: 526
  article-title: Toward understanding the rhetoric of small source code changes
  publication-title: IEEE Trans. Softw. Eng.
– year: 2006
  article-title: Mining metrics to predict component failures
– year: 2015
  article-title: Deep visual-semantic alignments for generating image descriptions
– year: 2012
  article-title: An industrial study on the risk of software changes
– year: 2017
  article-title: Very deep convolutional networks for end-to-end speech recognition
– year: 2008
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 165
  start-page: 23
  year: 2015
  end-page: 31
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
– year: 2015
  article-title: Combining deep learning with information retrieval to localize buggy files for bug reports
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– year: 2014
  article-title: An empirical study of just-in-time defect prediction using cross-project models
– year: 2015
  article-title: Deep learning for just-in-time defect prediction
– year: 2014
  article-title: Learning semantic representations using convolutional neural networks for web search
– year: 2016
  article-title: Learning unified features from natural and programming languages for locating buggy source code
– year: 2009
  article-title: Predicting faults using the complexity of code changes
– volume: 18
  start-page: 1005
  issue: 5
  year: 2013
  end-page: 1042
  article-title: Studying re-opened bugs in open source software
  publication-title: Empir. Softw. Eng.
– volume: 37
  start-page: 772
  issue: 6
  year: 2011
  end-page: 787
  article-title: Evaluating complexity, code churn, and developer activity metrics as indicators of software vulnerabilities
  publication-title: IEEE Trans. Softw. Eng.
– year: 2016
  article-title: Deep API learning
– volume: 49
  start-page: 835
  issue: 2
  year: 2019
  end-page: 849
  article-title: Trust-aware collaborative filtering with a denoising autoencoder
  publication-title: Neural Process. Lett.
– volume: 23
  start-page: 418
  year: 2017
  end-page: 451
  article-title: Identifying self-admitted technical debt in open source projects using text mining
  publication-title: Empir. Softw. Eng.
– year: 2019
  article-title: DeepJIT: an end-to-end deep learning framework for just-in-time defect prediction
– year: 2017
  article-title: Semantically enhanced software traceability using deep learning techniques
– volume: 24
  start-page: 2823
  issue: 5
  year: 2018
  end-page: 2862
  article-title: Revisiting supervised and unsupervised models for effort-aware just-in-time defect prediction
  publication-title: Empir. Softw. Eng.
– year: 2016
  article-title: Predicting semantically linkable knowledge in developer online forums via convolutional neural network
– year: 2011
  article-title: How do fixes become bugs?
– year: 2017
  article-title: Domain adaptation for test report classification in crowdsourced testing
– volume: 5
  start-page: 169
  issue: 2
  year: 2000
  end-page: 180
  article-title: Predicting risk of software changes
  publication-title: Bell Labs Tech. J.
– ident: e_1_2_10_25_1
  doi: 10.1145/2970276.2970357
– ident: e_1_2_10_36_1
  doi: 10.1145/3106237.3106257
– ident: e_1_2_10_26_1
  doi: 10.1109/ICSE.2017.9
– ident: e_1_2_10_30_1
  doi: 10.1109/TSE.2008.90
– ident: e_1_2_10_28_1
  doi: 10.1109/ICSE.2009.5070510
– ident: e_1_2_10_2_1
  doi: 10.1007/s10664-015-9400-x
– ident: e_1_2_10_32_1
  doi: 10.1109/32.859533
– ident: e_1_2_10_10_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_10_13_1
  doi: 10.1145/2597073.2597075
– ident: e_1_2_10_38_1
  doi: 10.1109/TR.2016.2588139
– ident: e_1_2_10_3_1
  doi: 10.1007/s10664-018-9661-2
– ident: e_1_2_10_27_1
  doi: 10.1145/1134285.1134349
– ident: e_1_2_10_6_1
  doi: 10.1109/ICASSP.2017.7953077
– ident: e_1_2_10_20_1
  doi: 10.1145/2884781.2884804
– ident: e_1_2_10_35_1
  doi: 10.1613/jair.953
– ident: e_1_2_10_15_1
  doi: 10.1109/MSR.2019.00016
– ident: e_1_2_10_18_1
  doi: 10.1162/NECO_a_00142
– ident: e_1_2_10_5_1
  doi: 10.1109/TSE.2012.70
– ident: e_1_2_10_24_1
– ident: e_1_2_10_8_1
– ident: e_1_2_10_34_1
  doi: 10.1145/2025113.2025121
– ident: e_1_2_10_41_1
  doi: 10.1145/2950290.2950353
– ident: e_1_2_10_11_1
  doi: 10.1002/bltj.2229
– ident: e_1_2_10_19_1
  doi: 10.1007/s11063-018-9831-7
– ident: e_1_2_10_37_1
– ident: e_1_2_10_39_1
  doi: 10.1007/s10664-017-9522-4
– ident: e_1_2_10_17_1
  doi: 10.1016/j.neunet.2018.04.016
– ident: e_1_2_10_40_1
  doi: 10.1007/s10664-012-9228-6
– ident: e_1_2_10_16_1
  doi: 10.1016/j.neucom.2014.08.092
– ident: e_1_2_10_29_1
  doi: 10.1145/1062455.1062514
– ident: e_1_2_10_33_1
  doi: 10.1109/TSE.2010.81
– ident: e_1_2_10_23_1
  doi: 10.1145/2950290.2950334
– ident: e_1_2_10_9_1
  doi: 10.1145/2567948.2577348
– ident: e_1_2_10_4_1
  doi: 10.1016/j.infsof.2017.03.007
– ident: e_1_2_10_7_1
  doi: 10.1109/CVPR.2015.7298932
– ident: e_1_2_10_12_1
  doi: 10.1109/QRS.2015.14
– ident: e_1_2_10_21_1
  doi: 10.1109/ASE.2015.73
– ident: e_1_2_10_22_1
– ident: e_1_2_10_14_1
  doi: 10.1145/2393596.2393670
– ident: e_1_2_10_31_1
  doi: 10.1109/TSE.2005.74
SSID ssj0055539
Score 2.439142
Snippet Just-in-time defect prediction is an important and useful branch in software defect prediction. At present, deep learning is a research hotspot in the field of...
Just‐in‐time defect prediction is an important and useful branch in software defect prediction. At present, deep learning is a research hotspot in the field of...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms autoencoder convolutional neural network
basic defect features
convolution neural network
cross-project defect prediction experiments
denoising autoencoder
just-in-time defect prediction model
learning (artificial intelligence)
mainstream deep learning techniques
neural nets
software defect prediction
Special Issue: Knowledge Discovery for Software Development (KDSD)
Title Within-project and cross-project just-in-time defect prediction based on denoising autoencoder and convolutional neural network
URI http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2019.0278
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2019.0278
Volume 14
WOSCitedRecordID wos000585778800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8814
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055539
  issn: 1751-8806
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8814
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055539
  issn: 1751-8806
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS8MwGA9zevDifOJ8kYN4EKprkq7pUYdDQcZAZbuVtEmxIu3Yup29efVv9C_x-7JuOIQJ4qWPNEnDl3yvPH4fIadCJ5oblzlx4gXgoETKUSKSjva15FIwlhgL4nrvdzqy3w-6FdKanYWZ4kPMJ9yQM6y8RgZX0TQKCRi10ImpKZyRQQhTN7jA9bMVsuq6XGL8Bia6M3HseZ4NJwZq0nWkdMV8aTO4_FHFgnJagc-LJqvVOe3av7R2k2yUJie9mo6RLVIx2TapzcI50JK7d8h7Ly2e0-zz7aOcnqEq09S29Fvay3hUwKvNh4HpqTa4I4QOhrjkg91MUTNqCg8g0_IUJyOoGhc5QmZq-KGtNc8m5aCHpiGopr3ZLem75Kl989i6dco4DU7MuRCOwnNbQaKFZGCOMGOYr4G1mQLX20gTJQiab8D3DDwvCZqGNZn2ueIJOFO-a2K-R6pZnpl9QnUiwEFr-D7XEYgWpWLPj7QGm056iHFeJ41ZB4VxCWKOsTReQ7uYLoIQCB0CoUMkdIiErpPzeZHBFMFjWeYzTCv5eLQsI7fd_XuV4UO7x67b6NyKgz-VOiTrDL18O_dzRKrFcGyOyVo8KdLR8MSOdrj27jpf2EIJlg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gV58i29zEA9CdZukNj36WhTXRVBZbyVtUqxIV3a7nr159Tf6S5zJdhdFUBBPbdM0DZNM5pV8A7AtTWaE9bmXZkGEBkqiPS0T5ZnQKKEk55l1IK6NsNlUd3fR1QicDM7C9PEhhg434gy3XhODk0O6b3BKAsnMbel1LWGY-tEeBdBGYVyiwkEJHFrnzcF6HASByyeGctL3lPLlMLYZ7X9r4ot0GsXXX3VWJ3TqM__T3VmYrpROdtifJXMwYot5mBkkdGAVfy_Aaysv7_Pi_eWtctAwXRjmuvqp7KHXLfHR1aPU9MxY2hPCnjoU9KGBZiQbDcMbXNXaObkjmO6VbQLNNPhD12q7eK6mPXaNYDXdxW1KX4Tb-unN8ZlXZWrwUiGk9DSd3IoyIxVHhYRby0ODzM01Gt9W2SQj2HyL1mcUBFl0YPkBN6HQIkNzKvRtKpZgrGgXdhmYySSaaLUwFCbBxUXrNAgTY1CrUwGhnK9AbTBCcVrBmFM2jcfYhdNlFCOhYyR0TISOidArsDv85KmP4fFT5R0qqzi5-1NF4cb79ybj63qLH9XJvJWrf_pqCybPbi4bceO8ebEGU5xsfucJWoexstOzGzCRPpd5t7Pppv4H-YsM3w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH_axoR2YTBAG1_zAe0wKbD4o3aOwIhAm6pKMLW3yIltkWlKqzbtmRvX_Y37S3jPTSumSUNCnJI4jmPZfh8_f_wewFvpghM-5UkVVIYApbSJlaVJnHZGGMl58JHE9Vz3-2Y0ygYbcLo6C7Pkh1hPuJFkRH1NAu4nLiwBpySSzNq3ycwTh2mavaMFtE14IJVOaWxzOVjpY6VUjCeGdjJNjEnlem0ze3-niFvWaRNf3_ZZo9HJd_9PdR_Do87pZB-Wo-QJbPhmD3ZXAR1YJ99P4dewbn_Uzc3P626ChtnGsVjVP9Iu57MWH2M-Ck3PnKc9IWwypUUf6mhGttExvEGtNq5pOoLZeTsm0kyHP4yljptFN-yxakSrGS9xU_ozuMg_f__0JekiNSSVEFImlk5uZcFJw9Eh4d5z7VC4uUXw7Y0vA9Hme0SfmVIh63ne404LKwLCKZ36SjyHrWbc-H1gLkiEaCdaC1eicrG2Urp0Dr06o4jl_ABOVj1UVB2NOUXTuCricrrMCmzoAhu6oIYuqKEP4Hj9yWTJ4XFf5iNK6yR5dl9GEfv770UW3_Ih_5gTvJUv_umrQ3g4OM2L86_9s5ewwwnyx4mgV7DVTuf-NWxXi7aeTd_Ekf8b8FcL9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Within-project+and+cross-project+just-in-time+defect+prediction+based+on+denoising+autoencoder+and+convolutional+neural+network&rft.jtitle=IET+software&rft.au=Zhu%2C+Kun&rft.au=Zhang%2C+Nana&rft.au=Ying%2C+Shi&rft.au=Zhu%2C+Dandan&rft.date=2020-06-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8806&rft.eissn=1751-8814&rft.volume=14&rft.issue=3&rft.spage=185&rft.epage=195&rft_id=info:doi/10.1049%2Fiet-sen.2019.0278&rft.externalDocID=10_1049_iet_sen_2019_0278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon