Data-driven prediction for the number of distribution network users experiencing typhoon power outages

Typhoons have substantial impacts on power systems and may result in major power outages for distribution network users. Developing prediction models for the number of users going through typhoon power outages is a high priority to support restoration planning. This study proposes a data-driven mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET generation, transmission & distribution Jg. 14; H. 24; S. 5844 - 5850
Hauptverfasser: Hou, Hui, Yu, Jufang, Geng, Hao, Zhu, Ling, Li, Min, Huang, Yong, Li, Xianqiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 18.12.2020
Schlagworte:
ISSN:1751-8687, 1751-8695
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Typhoons have substantial impacts on power systems and may result in major power outages for distribution network users. Developing prediction models for the number of users going through typhoon power outages is a high priority to support restoration planning. This study proposes a data-driven model to predict the number of distribution network users that may experience power outages when a typhoon passes by. To improve the accuracy of the prediction model, twenty six explanatory variables from meteorological factors, geographical factors and power grid factors are considered. In addition, the authors compared the application effect of five different machine learning regression algorithms, including linear regression, support vector regression, classification and regression tree, gradient boosting decision tree and random forest (RF). It turns out that the RF algorithm shows the best performance. The simulation indicates that the accuracy of the optimal model error within ±30% can reach up to 86%. The proposed method can improve the prediction accuracy through continuous learning on the existing basis. The prediction results can provide efficient guidance for emergency preparedness during typhoon disaster, and can be used as a basis to notify the distribution network users who are likely to lose power.
AbstractList Typhoons have substantial impacts on power systems and may result in major power outages for distribution network users. Developing prediction models for the number of users going through typhoon power outages is a high priority to support restoration planning. This study proposes a data-driven model to predict the number of distribution network users that may experience power outages when a typhoon passes by. To improve the accuracy of the prediction model, twenty six explanatory variables from meteorological factors, geographical factors and power grid factors are considered. In addition, the authors compared the application effect of five different machine learning regression algorithms, including linear regression, support vector regression, classification and regression tree, gradient boosting decision tree and random forest (RF). It turns out that the RF algorithm shows the best performance. The simulation indicates that the accuracy of the optimal model error within ±30% can reach up to 86%. The proposed method can improve the prediction accuracy through continuous learning on the existing basis. The prediction results can provide efficient guidance for emergency preparedness during typhoon disaster, and can be used as a basis to notify the distribution network users who are likely to lose power.
Author Hou, Hui
Li, Min
Geng, Hao
Huang, Yong
Yu, Jufang
Zhu, Ling
Li, Xianqiang
Author_xml – sequence: 1
  givenname: Hui
  surname: Hou
  fullname: Hou, Hui
  organization: 1School of Automation, Wuhan University of Technology, Wuhan, People's Republic of China
– sequence: 2
  givenname: Jufang
  orcidid: 0000-0002-0473-4998
  surname: Yu
  fullname: Yu, Jufang
  organization: 1School of Automation, Wuhan University of Technology, Wuhan, People's Republic of China
– sequence: 3
  givenname: Hao
  surname: Geng
  fullname: Geng, Hao
  organization: 1School of Automation, Wuhan University of Technology, Wuhan, People's Republic of China
– sequence: 4
  givenname: Ling
  surname: Zhu
  fullname: Zhu, Ling
  organization: 2Guangdong Power Grid Co., Ltd. Guangzhou, People's Republic of China
– sequence: 5
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: 2Guangdong Power Grid Co., Ltd. Guangzhou, People's Republic of China
– sequence: 6
  givenname: Yong
  surname: Huang
  fullname: Huang, Yong
  organization: 3Electric Power Research Institute, Guangdong Power Grid Co., Ltd., Guangzhou, People's Republic of China
– sequence: 7
  givenname: Xianqiang
  surname: Li
  fullname: Li, Xianqiang
  email: lxq@whut.edu.cn
  organization: 1School of Automation, Wuhan University of Technology, Wuhan, People's Republic of China
BookMark eNqFkM9OAjEQhxuDiYA-gLe-wGLb_df1piBoQuIFz5tudwpFaDdtV-Tt3RXjwQOeZpL5fTOTb4QGxhpA6JaSCSVJcachROtQTxhhZEJ4nFygIc1TGvGsSAe_Pc-v0Mj7LSFpmiX5EKmZCCKqnf4AgxsHtZZBW4OVdThsAJt2X4HDVuFa--B01X6PDYSDde-49eA8hs8GnAYjtVnjcGw2tos09tCDbRBr8NfoUomdh5ufOkZv86fV9Dlavi5epg_LSMZxEkeKMU7iTKSSQ64o5EWleKayupJMMka44gTSrKihS0hWpLxiicjSmIqiooLEY5Sf9kpnvXegSqmD6F8OTuhdSUnZ6yo7XWWnq-x1lb2ujqR_yMbpvXDHs8z9iTnoHRz_B8rFasYe54QwFndwdIL72Na2znRizhz7AnorlX8
CitedBy_id crossref_primary_10_1016_j_egyr_2022_08_226
crossref_primary_10_1016_j_engappai_2024_108056
crossref_primary_10_1016_j_apenergy_2024_124903
crossref_primary_10_1155_2021_6682242
Cites_doi 10.1049/iet-gtd.2019.1733
10.1109/TPWRD.2002.804006
10.1016/j.ress.2011.10.012
10.1049/iet-gtd.2018.6971
10.1109/ACCESS.2014.2365716
10.1049/iet-gtd.2016.0872
10.3390/en12020205
10.1061/(ASCE)1076-0342(2005)11:4(258)
10.1016/j.ress.2007.03.038
10.1109/ACCESS.2018.2881949
10.1049/iet-gtd.2018.6389
10.1007/s11069-015-1908-2
10.1016/j.ijepes.2019.105711
10.1007/s11069-010-9672-9
10.1016/j.tej.2014.05.005
10.1109/TPWRS.2007.907587
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-gtd.2020.0834
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 5850
ExternalDocumentID 10_1049_iet_gtd_2020_0834
GTD2BF00223
Genre article
GrantInformation_xml – fundername: China Southern Power Grid
  grantid: GDKJXM20198441
– fundername: Guangdong Power GRID Co., Ltd., Electric Power Research Institute
  funderid: GDKJXM20198441
GroupedDBID 0R
24P
29I
4IJ
6IK
8VB
AAJGR
ABPTK
ACIWK
ALMA_UNASSIGNED_HOLDINGS
BFFAM
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IGS
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3343-f228036a5c8e7f1e79bf86f6dbc2c2208f80e569de5c8c2958b24a6531a9b1a03
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596021500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8687
IngestDate Tue Nov 18 21:32:48 EST 2025
Wed Oct 29 21:26:16 EDT 2025
Wed Jan 22 16:32:22 EST 2025
Tue Jan 05 21:44:03 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords regression tree
distribution networks
regression analysis
linear regression
random forests
meteorological factors
random forest
power system reliability
typhoon power outages
power grids
gradient methods
geographical factors
power grid factors
power system planning
pattern classification
support vector machines
distribution network users
machine learning regression algorithm
disasters
data-driven model
restoration planning
classification
power engineering computing
gradient boosting decision tree
support vector regression
decision trees
power systems
storms
data-driven prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3343-f228036a5c8e7f1e79bf86f6dbc2c2208f80e569de5c8c2958b24a6531a9b1a03
ORCID 0000-0002-0473-4998
PageCount 7
ParticipantIDs wiley_primary_10_1049_iet_gtd_2020_0834_GTD2BF00223
crossref_citationtrail_10_1049_iet_gtd_2020_0834
iet_journals_10_1049_iet_gtd_2020_0834
crossref_primary_10_1049_iet_gtd_2020_0834
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-18
PublicationDateYYYYMMDD 2020-12-18
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-18
  day: 18
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Liu, H.; Davidson, R.A.; Apanasovich, T.V. (C17) 2007; 22
Radmer, D.T.; Kuntz, P.A.; Christie, R.D. (C23) 2002; 17
Mohammad, M.H.; Masood, P. (C7) 2020; 3
Chen, Y.; Wang, S.; Chen, B. (C13) 2018; 42
Zhang, Y.; Chen, C.; Xu, L. (C26) 2011; 39
Hou, H.; Geng, H.; Xiao, X. (C32) 2019; 43
Hou, H.; Yu, S.; Wang, H. (C19) 2019; 12
Liu, H.; Davidson, R.A.; Apanasovich, T.V. (C15) 2008; 93
Xue, Y.; Wu, Y.; Xie, Y. (C18) 2013; 37
Gao, W.; Zhou, R.; Zhao, D. (C4) 2017; 11
Quiring, S.M.; Zhu, L.; Guikema, S.D. (C16) 2011; 58
Masoud, S.K.; Kamran, J.; Meghdad, T.K. (C2) 2019; 13
Xie, Y.; Xue, Y.; Wen, F. (C11) 2013; 37
Liu, H.; Davidson, R.A.; Rosowsky, D.V. (C14) 2005; 11
Sun, C.; Wang, X.; Zheng, Y. (C25) 2019; 13
Zarakas, W.P.; Sergici, S.; Bishop, H. (C1) 2014; 27
Huang, Y.; Wei, R.; Zhou, E. (C8) 2018; 42
Wu, Y.; Xue, Y.; Lu, J. (C12) 2016; 40
Xiong, J.; Lin, H.; Wang, Q. (C3) 2011; 39
Guikema, S.D.; Quiring, S.M. (C22) 2012; 99
Wanik, D.W.; Anagnostou, E.N.; Hartman, B.M. (C27) 2015; 79
Zhang, W.; Sheng, W.; Liu, Y. (C24) 2018; 42
Guikema, S.D.; Nateghi, R.; Quiring, S.M. (C21) 2014; 2
Kavousi-Fard, A.; Wang, M.; Su, W. (C6) 2018; 6
Bao, B.; Cheng, R.; Xiong, X. (C9) 2014; 42
Yin, Z.; Ji, X.; Zhang, Y. (C20) 2020; 14
Yuan, S.; Quiring, S.M.; Zhu, L. (C31) 2020; 117
Liang, J.; Chen, J.; Zhang, X. (C28) 2019; 59
Zhao, H.; Zhang, D.; Huang, S. (C34) 2019; 55
2015; 79
2002; 17
2012
2019; 55
2019; 13
2019; 12
2019; 59
2014; 27
1998
2020; 14
2011; 58
2011; 39
2018; 42
2008; 93
2012; 99
2014; 42
2018; 6
2013; 37
2020; 3
2014; 2
2019; 43
2017; 11
2020; 117
2016; 40
2015
2013
2007; 22
2005; 11
Zhao H. (e_1_2_9_35_2) 2019; 55
e_1_2_9_34_2
Liang J. (e_1_2_9_29_2) 2019; 59
e_1_2_9_11_2
e_1_2_9_32_2
Xie Y. (e_1_2_9_12_2) 2013; 37
Zhang Y. (e_1_2_9_27_2) 2011; 39
Li H. (e_1_2_9_30_2) 2012
Bao B. (e_1_2_9_10_2) 2014; 42
Mohammad M.H. (e_1_2_9_8_2) 2020; 3
Xue Y. (e_1_2_9_19_2) 2013; 37
Chen Y. (e_1_2_9_14_2) 2018; 42
Huang Y. (e_1_2_9_9_2) 2018; 42
Zhang W. (e_1_2_9_25_2) 2018; 42
e_1_2_9_16_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
Xiong J. (e_1_2_9_4_2) 2011; 39
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_3_2
e_1_2_9_2_2
Hou H. (e_1_2_9_33_2) 2019; 43
Vapnik V.N. (e_1_2_9_31_2) 1998
e_1_2_9_24_2
e_1_2_9_26_2
e_1_2_9_28_2
Wu Y. (e_1_2_9_13_2) 2016; 40
References_xml – volume: 40
  start-page: 14
  issue: 3
  year: 2016
  end-page: 20
  ident: C12
  article-title: Spatiotemporal impact of mountain fire disaster on power grid failure rate
  publication-title: Power Syst. Autom.
– volume: 11
  start-page: 258
  issue: 4
  year: 2005
  end-page: 267
  ident: C14
  article-title: Negative binomial regression of electric power outages in hurricanes
  publication-title: J. Infrastruct. Syst.
– volume: 117
  start-page: 1
  year: 2020
  end-page: 12
  ident: C31
  article-title: Development of a typhoon power outage model in Guangdong, China
  publication-title: Electr. Power Energy Syst.
– volume: 2
  start-page: 1364
  year: 2014
  end-page: 1373
  ident: C21
  article-title: Predicting hurricane power outages to support storm response planning
  publication-title: IEEE Access
– volume: 13
  start-page: 4888
  issue: 21
  year: 2019
  end-page: 4899
  ident: C25
  article-title: Early warning system for spatiotemporal prediction of fault events in a power transmission system
  publication-title: IET Gener. Transm. Distrib.
– volume: 42
  start-page: 2391
  issue: 8
  year: 2018
  end-page: 2398
  ident: C24
  article-title: Forecasting method of distribution network fault risk level considering the correlation of weather factors
  publication-title: Power Grid Technol.
– volume: 27
  start-page: 31
  issue: 5
  year: 2014
  end-page: 41
  ident: C1
  article-title: Utility investments in resiliency: balancing benefits with cost in an uncertain environment
  publication-title: Electr. J.
– volume: 93
  start-page: 897
  issue: 6
  year: 2008
  end-page: 912
  ident: C15
  article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms
  publication-title: Rel. Eng. Syst. Saf.
– volume: 59
  start-page: 523
  issue: 7
  year: 2019
  end-page: 529
  ident: C28
  article-title: Anomaly detection based on one-hot encoding and convolutional neural network
  publication-title: J. Tsinghua Univ., Nat. Sci. Ed.
– volume: 39
  start-page: 1
  issue: 8
  year: 2011
  end-page: 5
  ident: C26
  article-title: Power system reliability original parameter estimation based on fuzzy clustering and similarity
  publication-title: Power Syst. Prot. Control
– volume: 43
  start-page: 1948
  issue: 6
  year: 2019
  end-page: 1954
  ident: C32
  article-title: Forecast and evaluation of power outage areas of distribution network users under typhoon disasters
  publication-title: Power Grid Technol.
– volume: 55
  start-page: 186
  issue: 8
  year: 2019
  end-page: 192
  ident: C34
  article-title: Analysis of the relationship between ground flash density and lightning strike failure in Hainan province based on Pearson correlation coefficient
  publication-title: High Volt. Electr. Appl.
– volume: 12
  start-page: 1
  issue: 2
  year: 2019
  end-page: 23
  ident: C19
  article-title: Risk assessment and its visualization of power tower under typhoon disaster based on machine learning algorithms
  publication-title: Energies
– volume: 37
  start-page: 32
  issue: 18
  year: 2013
  end-page: 41
  ident: C11
  article-title: Spatio-temporal assessment of the impact of ice disaster on transmission line failure rate
  publication-title: Power Syst. Autom.
– volume: 3
  start-page: 144
  issue: 2
  year: 2020
  end-page: 152
  ident: C7
  article-title: Quantifying impacts of automation on resilience of distribution systems
  publication-title: IET Gener. Transm. Distrib.
– volume: 37
  start-page: 1
  issue: 16
  year: 2013
  end-page: 9
  ident: C18
  article-title: The extension of power failure prevention framework to early warning of natural disasters
  publication-title: Power Syst. Autom.
– volume: 22
  start-page: 2270
  issue: 4
  year: 2007
  end-page: 2279
  ident: C17
  article-title: Statistical forecasting of electric power restoration times in hurricanes and ice storms
  publication-title: IEEE Trans. Power Syst.
– volume: 14
  start-page: 2450
  issue: 13
  year: 2020
  end-page: 2463
  ident: C20
  article-title: Data-driven approach for real-time distribution network reconfiguration
  publication-title: IET Gener. Transm. Distrib.
– volume: 42
  start-page: 79
  issue: 14
  year: 2014
  end-page: 86
  ident: C9
  article-title: A warning method for transmission line typhoon risk taking into account micro-topography correction
  publication-title: Power Syst. Prot. Control
– volume: 58
  start-page: 365
  year: 2011
  end-page: 390
  ident: C16
  article-title: Importance of soil and elevation characteristics for modeling hurricane-induced power outages
  publication-title: Nat. Hazard
– volume: 13
  start-page: 3302
  issue: 15
  year: 2019
  end-page: 3310
  ident: C2
  article-title: Bi-level network reconfiguration model to improve the resilience of distribution systems against extreme weather events
  publication-title: IET Gener. Transm. Distrib.
– volume: 39
  start-page: 1248
  issue: 8
  year: 2011
  end-page: 1252
  ident: C3
  article-title: Research on GIS-based early warning model of wind disaster in regional power grid
  publication-title: East China Electr. Power
– volume: 99
  start-page: 178
  year: 2012
  end-page: 182
  ident: C22
  article-title: Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data
  publication-title: Reliablity Eng. Sys. Saf.
– volume: 11
  start-page: 935
  issue: 4
  year: 2017
  end-page: 942
  ident: C4
  article-title: Heuristic failure prediction model of transmission line under natural disasters
  publication-title: IET Gener. Transm. Distrib.
– volume: 17
  start-page: 1170
  issue: 4
  year: 2002
  end-page: 1175
  ident: C23
  article-title: Predicting vegetation-related failure rates for overhead distribution feeders
  publication-title: IEEE Trans. Power Deliv.
– volume: 79
  start-page: 1359
  issue: 2
  year: 2015
  end-page: 1384
  ident: C27
  article-title: Storm outage modeling for an electric distribution network in northeastern USA
  publication-title: Nat. Hazards
– volume: 6
  start-page: 72311
  year: 2018
  end-page: 72326
  ident: C6
  article-title: Stochastic resilient post-hurricane power system recovery based on Mobile emergency resources and reconfigurable networked microgrids
  publication-title: IEEE Access
– volume: 42
  start-page: 2295
  issue: 7
  year: 2018
  end-page: 2302
  ident: C13
  article-title: Failure probability assessment method of transmission channel structure considering geographic elevation information in typhoon environment
  publication-title: Power Grid Technol.
– volume: 42
  start-page: 142
  issue: 23
  year: 2018
  end-page: 150
  ident: C8
  article-title: Early warning method of transmission line damage under typhoon disaster
  publication-title: Power Syst. Autom.
– volume: 13
  start-page: 3302
  issue: 15
  year: 2019
  end-page: 3310
  article-title: Bi‐level network reconfiguration model to improve the resilience of distribution systems against extreme weather events
  publication-title: IET Gener. Transm. Distrib.
– volume: 3
  start-page: 144
  issue: 2
  year: 2020
  end-page: 152
  article-title: Quantifying impacts of automation on resilience of distribution systems
  publication-title: IET Gener. Transm. Distrib.
– volume: 13
  start-page: 4888
  issue: 21
  year: 2019
  end-page: 4899
  article-title: Early warning system for spatiotemporal prediction of fault events in a power transmission system
  publication-title: IET Gener. Transm. Distrib.
– volume: 55
  start-page: 186
  issue: 8
  year: 2019
  end-page: 192
  article-title: Analysis of the relationship between ground flash density and lightning strike failure in Hainan province based on Pearson correlation coefficient
  publication-title: High Volt. Electr. Appl.
– volume: 17
  start-page: 1170
  issue: 4
  year: 2002
  end-page: 1175
  article-title: Predicting vegetation‐related failure rates for overhead distribution feeders
  publication-title: IEEE Trans. Power Deliv.
– volume: 117
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Development of a typhoon power outage model in Guangdong, China
  publication-title: Electr. Power Energy Syst.
– volume: 14
  start-page: 2450
  issue: 13
  year: 2020
  end-page: 2463
  article-title: Data‐driven approach for real‐time distribution network reconfiguration
  publication-title: IET Gener. Transm. Distrib.
– volume: 2
  start-page: 1364
  year: 2014
  end-page: 1373
  article-title: Predicting hurricane power outages to support storm response planning
  publication-title: IEEE Access
– volume: 59
  start-page: 523
  issue: 7
  year: 2019
  end-page: 529
  article-title: Anomaly detection based on one‐hot encoding and convolutional neural network
  publication-title: J. Tsinghua Univ., Nat. Sci. Ed.
– volume: 37
  start-page: 1
  issue: 16
  year: 2013
  end-page: 9
  article-title: The extension of power failure prevention framework to early warning of natural disasters
  publication-title: Power Syst. Autom.
– volume: 6
  start-page: 72311
  year: 2018
  end-page: 72326
  article-title: Stochastic resilient post‐hurricane power system recovery based on Mobile emergency resources and reconfigurable networked microgrids
  publication-title: IEEE Access
– volume: 40
  start-page: 14
  issue: 3
  year: 2016
  end-page: 20
  article-title: Spatiotemporal impact of mountain fire disaster on power grid failure rate
  publication-title: Power Syst. Autom.
– volume: 12
  start-page: 1
  issue: 2
  year: 2019
  end-page: 23
  article-title: Risk assessment and its visualization of power tower under typhoon disaster based on machine learning algorithms
  publication-title: Energies
– volume: 22
  start-page: 2270
  issue: 4
  year: 2007
  end-page: 2279
  article-title: Statistical forecasting of electric power restoration times in hurricanes and ice storms
  publication-title: IEEE Trans. Power Syst.
– volume: 79
  start-page: 1359
  issue: 2
  year: 2015
  end-page: 1384
  article-title: Storm outage modeling for an electric distribution network in northeastern USA
  publication-title: Nat. Hazards
– year: 1998
– year: 2012
– volume: 11
  start-page: 935
  issue: 4
  year: 2017
  end-page: 942
  article-title: Heuristic failure prediction model of transmission line under natural disasters
  publication-title: IET Gener. Transm. Distrib.
– volume: 42
  start-page: 79
  issue: 14
  year: 2014
  end-page: 86
  article-title: A warning method for transmission line typhoon risk taking into account micro‐topography correction
  publication-title: Power Syst. Prot. Control
– volume: 37
  start-page: 32
  issue: 18
  year: 2013
  end-page: 41
  article-title: Spatio‐temporal assessment of the impact of ice disaster on transmission line failure rate
  publication-title: Power Syst. Autom.
– volume: 43
  start-page: 1948
  issue: 6
  year: 2019
  end-page: 1954
  article-title: Forecast and evaluation of power outage areas of distribution network users under typhoon disasters
  publication-title: Power Grid Technol.
– volume: 42
  start-page: 142
  issue: 23
  year: 2018
  end-page: 150
  article-title: Early warning method of transmission line damage under typhoon disaster
  publication-title: Power Syst. Autom.
– volume: 11
  start-page: 258
  issue: 4
  year: 2005
  end-page: 267
  article-title: Negative binomial regression of electric power outages in hurricanes
  publication-title: J. Infrastruct. Syst.
– volume: 93
  start-page: 897
  issue: 6
  year: 2008
  end-page: 912
  article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms
  publication-title: Rel. Eng. Syst. Saf.
– volume: 99
  start-page: 178
  year: 2012
  end-page: 182
  article-title: Hybrid data mining‐regression for infrastructure risk assessment based on zero‐inflated data
  publication-title: Reliablity Eng. Sys. Saf.
– volume: 42
  start-page: 2391
  issue: 8
  year: 2018
  end-page: 2398
  article-title: Forecasting method of distribution network fault risk level considering the correlation of weather factors
  publication-title: Power Grid Technol.
– volume: 27
  start-page: 31
  issue: 5
  year: 2014
  end-page: 41
  article-title: Utility investments in resiliency: balancing benefits with cost in an uncertain environment
  publication-title: Electr. J.
– volume: 58
  start-page: 365
  year: 2011
  end-page: 390
  article-title: Importance of soil and elevation characteristics for modeling hurricane‐induced power outages
  publication-title: Nat. Hazard
– volume: 42
  start-page: 2295
  issue: 7
  year: 2018
  end-page: 2302
  article-title: Failure probability assessment method of transmission channel structure considering geographic elevation information in typhoon environment
  publication-title: Power Grid Technol.
– year: 2015
– volume: 39
  start-page: 1
  issue: 8
  year: 2011
  end-page: 5
  article-title: Power system reliability original parameter estimation based on fuzzy clustering and similarity
  publication-title: Power Syst. Prot. Control
– volume: 39
  start-page: 1248
  issue: 8
  year: 2011
  end-page: 1252
  article-title: Research on GIS‐based early warning model of wind disaster in regional power grid
  publication-title: East China Electr. Power
– year: 2013
– volume: 39
  start-page: 1
  issue: 8
  year: 2011
  ident: e_1_2_9_27_2
  article-title: Power system reliability original parameter estimation based on fuzzy clustering and similarity
  publication-title: Power Syst. Prot. Control
– volume: 42
  start-page: 142
  issue: 23
  year: 2018
  ident: e_1_2_9_9_2
  article-title: Early warning method of transmission line damage under typhoon disaster
  publication-title: Power Syst. Autom.
– ident: e_1_2_9_21_2
  doi: 10.1049/iet-gtd.2019.1733
– ident: e_1_2_9_24_2
  doi: 10.1109/TPWRD.2002.804006
– volume: 37
  start-page: 32
  issue: 18
  year: 2013
  ident: e_1_2_9_12_2
  article-title: Spatio‐temporal assessment of the impact of ice disaster on transmission line failure rate
  publication-title: Power Syst. Autom.
– ident: e_1_2_9_23_2
  doi: 10.1016/j.ress.2011.10.012
– ident: e_1_2_9_3_2
  doi: 10.1049/iet-gtd.2018.6971
– volume: 39
  start-page: 1248
  issue: 8
  year: 2011
  ident: e_1_2_9_4_2
  article-title: Research on GIS‐based early warning model of wind disaster in regional power grid
  publication-title: East China Electr. Power
– volume: 43
  start-page: 1948
  issue: 6
  year: 2019
  ident: e_1_2_9_33_2
  article-title: Forecast and evaluation of power outage areas of distribution network users under typhoon disasters
  publication-title: Power Grid Technol.
– ident: e_1_2_9_22_2
  doi: 10.1109/ACCESS.2014.2365716
– ident: e_1_2_9_5_2
  doi: 10.1049/iet-gtd.2016.0872
– ident: e_1_2_9_20_2
  doi: 10.3390/en12020205
– volume-title: Statistical learning theory
  year: 1998
  ident: e_1_2_9_31_2
– ident: e_1_2_9_34_2
– volume: 59
  start-page: 523
  issue: 7
  year: 2019
  ident: e_1_2_9_29_2
  article-title: Anomaly detection based on one‐hot encoding and convolutional neural network
  publication-title: J. Tsinghua Univ., Nat. Sci. Ed.
– ident: e_1_2_9_15_2
  doi: 10.1061/(ASCE)1076-0342(2005)11:4(258)
– volume: 37
  start-page: 1
  issue: 16
  year: 2013
  ident: e_1_2_9_19_2
  article-title: The extension of power failure prevention framework to early warning of natural disasters
  publication-title: Power Syst. Autom.
– volume: 40
  start-page: 14
  issue: 3
  year: 2016
  ident: e_1_2_9_13_2
  article-title: Spatiotemporal impact of mountain fire disaster on power grid failure rate
  publication-title: Power Syst. Autom.
– volume-title: Statistical learning method
  year: 2012
  ident: e_1_2_9_30_2
– ident: e_1_2_9_11_2
– ident: e_1_2_9_16_2
  doi: 10.1016/j.ress.2007.03.038
– ident: e_1_2_9_6_2
– ident: e_1_2_9_7_2
  doi: 10.1109/ACCESS.2018.2881949
– ident: e_1_2_9_26_2
  doi: 10.1049/iet-gtd.2018.6389
– ident: e_1_2_9_28_2
  doi: 10.1007/s11069-015-1908-2
– ident: e_1_2_9_32_2
  doi: 10.1016/j.ijepes.2019.105711
– volume: 42
  start-page: 2391
  issue: 8
  year: 2018
  ident: e_1_2_9_25_2
  article-title: Forecasting method of distribution network fault risk level considering the correlation of weather factors
  publication-title: Power Grid Technol.
– ident: e_1_2_9_17_2
  doi: 10.1007/s11069-010-9672-9
– volume: 55
  start-page: 186
  issue: 8
  year: 2019
  ident: e_1_2_9_35_2
  article-title: Analysis of the relationship between ground flash density and lightning strike failure in Hainan province based on Pearson correlation coefficient
  publication-title: High Volt. Electr. Appl.
– volume: 42
  start-page: 2295
  issue: 7
  year: 2018
  ident: e_1_2_9_14_2
  article-title: Failure probability assessment method of transmission channel structure considering geographic elevation information in typhoon environment
  publication-title: Power Grid Technol.
– volume: 3
  start-page: 144
  issue: 2
  year: 2020
  ident: e_1_2_9_8_2
  article-title: Quantifying impacts of automation on resilience of distribution systems
  publication-title: IET Gener. Transm. Distrib.
– ident: e_1_2_9_2_2
  doi: 10.1016/j.tej.2014.05.005
– ident: e_1_2_9_18_2
  doi: 10.1109/TPWRS.2007.907587
– volume: 42
  start-page: 79
  issue: 14
  year: 2014
  ident: e_1_2_9_10_2
  article-title: A warning method for transmission line typhoon risk taking into account micro‐topography correction
  publication-title: Power Syst. Prot. Control
SSID ssj0055647
Score 2.3211665
Snippet Typhoons have substantial impacts on power systems and may result in major power outages for distribution network users. Developing prediction models for the...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 5844
SubjectTerms classification
data‐driven model
data‐driven prediction
decision trees
disasters
distribution network users
distribution networks
geographical factors
gradient boosting decision tree
gradient methods
linear regression
machine learning regression algorithm
meteorological factors
pattern classification
power engineering computing
power grid factors
power grids
power system planning
power system reliability
power systems
random forest
random forests
regression analysis
regression tree
restoration planning
Special Issue: Advanced Data-Analytics for Power System Operation, Control and Enhanced Situational Awareness
storms
support vector machines
support vector regression
typhoon power outages
Title Data-driven prediction for the number of distribution network users experiencing typhoon power outages
URI http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2020.0834
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2020.0834
Volume 14
WOSCitedRecordID wos000596021500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Open Access Collection
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA2-FrrwLb7JQlwI0TZJm2Tpa9TN4ELRXUnTRAWZGWaq4M5P8Bv9Eu9tO4MiKIibLtKbUG5yb07zOIeQHSOsF1pJZmViGa4xMOtNzoJ2QZkksdy5SmxCtdv69tZcjpHj4V2Ymh9itOCGkVHlawxwm9cqJABqoRMffMnuSiT75NE-AAk5TibjWCgc2lxeDtNxkqSVyhhMkzHTqVajrU1z8K2JL5PTOLz-ClmrOac19y9fO09mG8hJD-sxskDGfGeRzHwiIlwi9ye2tO-vb0Ufkx_t9XH7BruMAqalgBFprRxCu4EWSLXbqGTRTn2KnOJax4D6IW8yNErLl959F0x6qMNGu08lZK7BMrlunV4dn7NGg4E5IaRgAelyRGoTp70KsVcmDzoNaZE77jiPdNCRT1JTeLBw3CQ659KmENnW5LGNxAqZ6HQ7fpXQHH4lC2m5FWkhBTeWK8CmUvJgvAmqWCPR0PmZawjKUSfjMas2yqXJwIkZODFDJ2boxDWyN6rSq9k5fjLexbImRgc_GYqqK39vMju7OuFHLQRCYv1PtTbINJbjAZlYb5KJsv_kt8iUey4fBv3taiTD8-ai_QEc-vlN
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXrwLb7NQTwI0W6StslRXVdFXTys4K2kaaKC7C67VfDmT_A3-kvMtN1FERTEazsJZZJ5ZCb9PoAdxbXlMhZUi1BTrDFQbVVKnTQuVmGomTEF2UTcbMrbW3U9AvXBvzAlPsSw4IaWUfhrNHAsSJcHToEgmQ82p3c5on2yYN9nEmIUxoWPNshjwMT1wB-HYVTQjPk4WaMykvGwt6kOvk3xJTqN-tdfc9Yi6DRm_-dz52CmSjrJYblL5mHEthdg-hMU4SLc13Wu31_fsh66P9LtYQMHF434rJb4LJGU3CGk40iGYLsVTxZpl_fICVY7-sQOkJP9pCR_6d53vEgXmdhI5yn3vqu_BDeNk9bxGa1YGKjhXHDqEDCHRzo00sauZmOVOhm5KEsNM4wF0snAhpHKrJcwTIUyZUJH3ra1Sms64Msw1u607QqQ1B8mM6GZ5lEmOFOaxT47FYI5ZZWLs1UIBtpPTAVRjkwZj0nRKhcq8UpMvBITVGKCSlyFveGQbonP8ZPwLj6rrLT_kyAv1vL3KZPTVp0dNTAV4mt_GrUNk2etq8vk8rx5sQ5TKIPXZWpyA8by3pPdhAnznD_0e1vFtv4A_yT8IA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3BghAcaCkgtrTUh4oDktusPxL72HZZQFSrPYDELXIcu4uEdqPdgMSNn8Bv5JfgSbIrUCWQENdkbEVjz_jZ47wH8F1z47hKBDVCGopnDNQ4nVGvrE-0lIZZW4lNJP2-urjQgwXozv6Fqfkh5gduGBlVvsYAd0Xu6w2nQJLMS1fSfyWyfbLoR0ASYhGWhAy5FvmdxWCWj6WMK5mxsE52qIpVMq9t6p__dfFsdVoMr59j1mrR6X14n8_9COsN6CS_6lmyAQtu9AnWnlARbsKwa0rzcHefTzD9kWKCBRwcNBJQLQkokdTaIWTsSY5ku41OFhnV98gJnnZMiZsxJ4dOSXlbDMfBpEAlNjK-LkPumm7Bee_w7M8xbVQYqOVccOqRMIfHRlrlEt9xic68in2cZ5ZZxiLlVeRkrHMXLCzTUmVMmDjEttFZx0R8G1qj8cjtAMnCZjIXhhke54IzbVgS0KkQzGunfZK3IZp5P7UNRTkqZVylValc6DQ4MQ1OTNGJKTqxDQfzJkXNz_GS8T4-a6J0-pIhr8by9S7To7Mu-91DKMQ_v6nVN1gZdHvp35P-6S6sognelumoL9AqJ9fuKyzbm_JyOtmrZvUjqdv7pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+prediction+for+the+number+of+distribution+network+users+experiencing+typhoon+power+outages&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Hou%2C+Hui&rft.au=Yu%2C+Jufang&rft.au=Geng%2C+Hao&rft.au=Zhu%2C+Ling&rft.date=2020-12-18&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=14&rft.issue=24&rft.spage=5844&rft.epage=5850&rft_id=info:doi/10.1049%2Fiet-gtd.2020.0834&rft.externalDocID=10_1049_iet_gtd_2020_0834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon