Optimal flux-weakening control of a new five-phase FT-IPM motor based on DTC and SVPWM for electric vehicle applications

This study proposes two flux-weakening control strategies for a new five-phase fault-tolerant interior-permanent-magnet (FT-IPM) motor, in which direct torque flux-weakening control (DTFWC) and space vector pulse width modulation (SVPWM)-based vector flux-weakening control (SVMFWC) are adopted. To a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET electric power applications Ročník 13; číslo 1; s. 73 - 80
Hlavní autori: Zhang, Li, Zhu, Xiaoyong, Fan, Ying, Li, Chenxue
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 01.01.2019
Predmet:
ISSN:1751-8660, 1751-8679, 1751-8679
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study proposes two flux-weakening control strategies for a new five-phase fault-tolerant interior-permanent-magnet (FT-IPM) motor, in which direct torque flux-weakening control (DTFWC) and space vector pulse width modulation (SVPWM)-based vector flux-weakening control (SVMFWC) are adopted. To achieve the reduced computation and the good operating performance such as minimised copper loss, improved dynamic response performance, and constant power operation in FW region, the multi-objective optimisation without complex non-linear optimisation algorithms for the DTFWC and SVMFWC are developed. In addition, the two proposed strategies have the same control objective but realised with two different ways. The reducing copper loss is obtained in DTFWC by reducing flux-weakening current with the full utilisation of DC-link voltage, while the reducing copper loss is gained in SVMFWC by decreasing the required current amplitude with maximum output torque per ampere current. Furthermore, the effectiveness of the proposed DTFWC and SVMFWC strategies is verified by simulation and experimental results.
AbstractList This study proposes two flux‐weakening control strategies for a new five‐phase fault‐tolerant interior‐permanent‐magnet (FT‐IPM) motor, in which direct torque flux‐weakening control (DTFWC) and space vector pulse width modulation (SVPWM)‐based vector flux‐weakening control (SVMFWC) are adopted. To achieve the reduced computation and the good operating performance such as minimised copper loss, improved dynamic response performance, and constant power operation in FW region, the multi‐objective optimisation without complex non‐linear optimisation algorithms for the DTFWC and SVMFWC are developed. In addition, the two proposed strategies have the same control objective but realised with two different ways. The reducing copper loss is obtained in DTFWC by reducing flux‐weakening current with the full utilisation of DC‐link voltage, while the reducing copper loss is gained in SVMFWC by decreasing the required current amplitude with maximum output torque per ampere current. Furthermore, the effectiveness of the proposed DTFWC and SVMFWC strategies is verified by simulation and experimental results.
Author Li, Chenxue
Fan, Ying
Zhu, Xiaoyong
Zhang, Li
Author_xml – sequence: 1
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: 1School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
– sequence: 2
  givenname: Xiaoyong
  surname: Zhu
  fullname: Zhu, Xiaoyong
  email: zxyff@ujs.edu.cn
  organization: 1School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
– sequence: 3
  givenname: Ying
  surname: Fan
  fullname: Fan, Ying
  organization: 2School of Electrical Engineering, Southeast University, Nanjing 210096, People's Republic of China
– sequence: 4
  givenname: Chenxue
  surname: Li
  fullname: Li, Chenxue
  organization: 3CYG SUNRI CO., Ltd, Nanjing 211100, People's Republic of China
BookMark eNqFkM1OAyEQgInRRK0-gDdegArL_rDetFpt0sYmVj1uEAZLRdiw21bf3q01HjzUExNmvvn5jtG-Dx4QOmO0z2hanltoCdSyn1Am-llC0z10xIqMEZEX5f5vnNNDdNw0C0qzLE_zI_RxX7f2XTps3PKDrEG-gbf-Favg2xgcDgZL7GGNjV0BqeeyATyckdF0gt9DGyJ-6X40Dh5fzwZYeo0fnqbPE2y6FDhQbbQKr2BulQMs69pZJVsbfHOCDox0DZz-vD30OLyZDe7I-P52NLgcE8V5yslLkQkhS1amFEpmcq7TjOks5VTLUgnIpCiMVqVImJEpF0bngukSQHOeKFbwHmLbviqGpolgqjp2B8fPitFqo67q1FWdumqjrtqo65jiD6Ns-712G6V1O8mLLbm2Dj7_H1XdjKfJ1ZDSnPMOJlt4U7YIy-g7MTuGfQED6Zjd
CitedBy_id crossref_primary_10_1177_09544070211058258
crossref_primary_10_1049_tje2_12112
crossref_primary_10_1109_TIA_2022_3228510
crossref_primary_10_1109_TPEL_2021_3092259
crossref_primary_10_1109_TTE_2020_2977204
crossref_primary_10_1109_TIE_2021_3100997
crossref_primary_10_1109_TIE_2021_3106012
Cites_doi 10.1109/TVT.2017.2760980
10.1109/TIA.2006.880910
10.1109/TIE.2011.2164771
10.1049/iet-epa.2017.0319
10.1109/63.867677
10.1109/TIA.2017.2685359
10.1109/TMECH.2015.2469096
10.1109/TIA.2012.2227134
10.1109/TVT.2017.2743246
10.1109/TVT.2013.2293707
10.1109/TPEL.2003.813751
10.1109/TIE.2014.2386798
10.1109/TIE.2017.2750620
10.1109/ICIT.2015.7125434
10.1049/iet-epa.2017.0228
10.1109/TIA.2015.2417128
10.1109/TPEL.2016.2611532
10.1109/IEMDC.2005.195920
10.1049/iet-epa.2009.0216
10.1109/TIE.2017.2777408
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-epa.2018.5204
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8679
EndPage 80
ExternalDocumentID 10_1049_iet_epa_2018_5204
ELP2BF00633
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51477069
– fundername: National Natural Science Foundation of China
  grantid: 51177065
– fundername: NSFC
  funderid: 51177065; 51477069
GroupedDBID 0R
24P
29I
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
ESX
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
LOTEE
LXI
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
U5U
UNMZH
UNR
ZL0
ZZ
.DC
0R~
0ZK
1OC
2QL
6OB
96U
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
K1G
MCNEO
MS~
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3343-b7588a91940e91f63d451d5430da9c8e5a87fdc9821fa438fd681d9eed332c173
IEDL.DBID 24P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457705300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8660
1751-8679
IngestDate Wed Oct 29 21:08:47 EDT 2025
Tue Nov 18 22:00:25 EST 2025
Wed Jan 22 16:30:59 EST 2025
Tue Jan 05 21:44:24 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords magnetic flux
control objective
machine control
fault tolerance
electric vehicles
DTFWC
torque
SVMFWC
torque control
five-phase FT-IPM motor
five-phase fault-tolerant interior-permanent-magnet motor
neurocontrollers
flux-weakening control strategies
reducing copper loss
dynamic response
permanent magnet motors
optimal flux-weakening control
motor drives
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3343-b7588a91940e91f63d451d5430da9c8e5a87fdc9821fa438fd681d9eed332c173
PageCount 8
ParticipantIDs iet_journals_10_1049_iet_epa_2018_5204
wiley_primary_10_1049_iet_epa_2018_5204_ELP2BF00633
crossref_primary_10_1049_iet_epa_2018_5204
crossref_citationtrail_10_1049_iet_epa_2018_5204
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20190100
January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 1
  year: 2019
  text: 20190100
PublicationDecade 2010
PublicationTitle IET electric power applications
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Chen, J.J.; Chin, K.P. (C5) 2000; 15
Xinan, Z.; Foo, G.H.B. (C12) 2016; 21
Wided, Z.; Lahoucine, I.; Eric, M. (C1) 2018; 12
Jeong, Y.; Sul, S.K.; Hiti, S. (C8) 2006; 42
Ayman, S.; Abdel, K.; Ahmed, M. (C17) 2018; 12
Zhu, X.Y.; Xiang, Z.X.; Quan, L. (C2) 2018; 65
Xinan, Z.; Foo, G.H.B.; Vilathgamuwa, D.M. (C11) 2015; 62
Zhang, L.; Fan, Y.; Lorenz, R.D. (C18) 2018; 67
Inoue, Y.; Morimoto, S.; Sanada, M. (C10) 2012; 48
Jung, S.Y.; Mi, C.C.; Nam, K. (C7) 2015; 62
Arafat, A.K.M.; Choi, S. (C14) 2018; 65
Zhang, L.; Fan, Y.; Lorenz, R.D. (C15) 2017; 53
Sadeghi, S.; Guo, L.; Toliyat, H. (C19) 2012; 59
Wang, W.; Cheng, M.; Wang, Y. (C4) 2014; 63
Barcaro, M.; Faggion, A.; Sgarbossa, L. (C3) 2010; 4
Tian, B.; An, Q.T.; Duan, J.D. (C13) 2017; 32
Inoue, T.; Inoue, Y.; Morimoto, S. (C9) 2015; 51
Chen, J.J.; Chin, K.P. (C6) 2003; 18
Zhang, L.; Fan, Y.; Cui, R.H. (C16) 2018; 67
2017; 53
December 2005
2006; 42
2000; 15
2015; 62
2015; 51
2017; 32
2016; 21
2003; 18
May 2005
2012; 48
2012; 59
2018; 12
2014; 63
2018; 67
March 2015
2018; 65
2010; 4
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
Jung S.Y. (e_1_2_7_8_1) 2015; 62
References_xml – volume: 63
  start-page: 2578
  issue: 6
  year: 2014
  end-page: 2588
  ident: C4
  article-title: A novel energy management strategy of onboard supercapacitor for subway applications with permanent-magnet traction system
  publication-title: IEEE Trans. Veh. Technol.
– volume: 65
  start-page: 2915
  issue: 4
  year: 2018
  end-page: 2924
  ident: C14
  article-title: Optimal phase advance under fault-tolerant control of a five-phase permanent magnet assisted synchronous reluctance motor
  publication-title: IEEE Trans. Ind. Electron.
– volume: 12
  start-page: 347
  issue: 3
  year: 2018
  end-page: 356
  ident: C1
  article-title: Optimisation of HF signal injection parameters for EV applications based on sensorless IPMSM drives
  publication-title: IET Electr. Power. Appl.
– volume: 67
  start-page: 910
  issue: 2
  year: 2018
  end-page: 919
  ident: C16
  article-title: Fault-tolerant direct torque control of five-phase FTFSCW-IPM motor based on analogous three-phase SVPWM for electric vehicle applications
  publication-title: IEEE Trans. Veh. Technol.
– volume: 15
  start-page: 881
  issue: 5
  year: 2000
  end-page: 890
  ident: C5
  article-title: Automatic flux-weakening control of permanent magnet synchronous motors using a reduced-order controller
  publication-title: IEEE Trans. Power. Electron.
– volume: 21
  start-page: 765
  issue: 2
  year: 2016
  end-page: 773
  ident: C12
  article-title: A robust field-weakening algorithm based on duty ratio regulation for direct torque controlled synchronous reluctance motor
  publication-title: IEEE Trans. Mechatron.
– volume: 62
  start-page: 3380
  issue: 6
  year: 2015
  end-page: 3387
  ident: C7
  article-title: Torque control of IPMSM in the field-weakening region with improved DC-link voltage utilization
  publication-title: IEEE Trans. Ind. Electron.
– volume: 32
  start-page: 5473
  issue: 7
  year: 2017
  end-page: 5486
  ident: C13
  article-title: Decoupled modeling and nonlinear speed control for five-phase PM motor under single-phase open fault
  publication-title: IEEE Trans. Power Electron.
– volume: 62
  start-page: 3255
  issue: 5
  year: 2015
  end-page: 3264
  ident: C11
  article-title: An improved robust field-weakening algorithm for direct-torque-controlled synchronous-reluctance-motor drives
  publication-title: IEEE Trans. Ind. Electron.
– volume: 12
  start-page: 124
  issue: 1
  year: 2018
  end-page: 134
  ident: C17
  article-title: ‘Interior permanent magnet motor-based isolated on-board integrated battery charger for electric vehicles
  publication-title: IET Electr. Power Appl.
– volume: 18
  start-page: 929
  issue: 4
  year: 2003
  end-page: 936
  ident: C6
  article-title: Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors
  publication-title: IEEE Trans. Power. Electron.
– volume: 59
  start-page: 2621
  issue: 6
  year: 2012
  end-page: 2631
  ident: C19
  article-title: Wide operational speed range of five-phase permanent magnet machines by using different stator winding configurations
  publication-title: IEEE Trans. Ind. Electron.
– volume: 48
  start-page: 2382
  issue: 6
  year: 2012
  end-page: 2389
  ident: C10
  article-title: Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region
  publication-title: IEEE Trans. Ind. Appl.
– volume: 67
  start-page: 385
  issue: 1
  year: 2018
  end-page: 396
  ident: C18
  article-title: Design and comparison of three-phase and five-phase FTFSCW-IPM motor open-end winding drive systems for electric vehicles applications
  publication-title: IEEE Trans. Veh. Technol.
– volume: 42
  start-page: 1222
  issue: 5
  year: 2006
  end-page: 1229
  ident: C8
  article-title: Online minimum copper loss control of an interior permanent magnet synchronous machine for automotive applications
  publication-title: IEEE Trans. Ind. Appl.
– volume: 53
  start-page: 3428
  issue: 4
  year: 2017
  end-page: 3437
  ident: C15
  article-title: Design and analysis of a new five-phase brushless hybrid-excitation fault-tolerant motor for electric vehicles
  publication-title: IEEE Trans. Ind. Appl.
– volume: 51
  start-page: 3620
  issue: 5
  year: 2015
  end-page: 3628
  ident: C9
  article-title: Mathematical model for MTPA control of permanent-magnet synchronous motor in stator flux linkage synchronous frame
  publication-title: IEEE Trans. Ind. Appl.
– volume: 4
  start-page: 539
  issue: 7
  year: 2010
  end-page: 546
  ident: C3
  article-title: Performance evaluation of an integrated starter alternator using an interior permanent magnet machine
  publication-title: IET Electr. Power. Appl.
– volume: 65
  start-page: 5353
  issue: 7
  year: 2018
  end-page: 5366
  ident: C2
  article-title: Multi-mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles
  publication-title: IEEE Trans. Ind. Electron.
– volume: 67
  start-page: 385
  issue: 1
  year: 2018
  end-page: 396
  article-title: Design and comparison of three‐phase and five‐phase FTFSCW‐IPM motor open‐end winding drive systems for electric vehicles applications
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1507
  year: May 2005
  end-page: 1512
– volume: 59
  start-page: 2621
  issue: 6
  year: 2012
  end-page: 2631
  article-title: Wide operational speed range of five‐phase permanent magnet machines by using different stator winding configurations
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 2281
  year: March 2015
  end-page: 2287
– volume: 21
  start-page: 765
  issue: 2
  year: 2016
  end-page: 773
  article-title: A robust field‐weakening algorithm based on duty ratio regulation for direct torque controlled synchronous reluctance motor
  publication-title: IEEE Trans. Mechatron.
– volume: 42
  start-page: 1222
  issue: 5
  year: 2006
  end-page: 1229
  article-title: Online minimum copper loss control of an interior permanent magnet synchronous machine for automotive applications
  publication-title: IEEE Trans. Ind. Appl.
– volume: 12
  start-page: 124
  issue: 1
  year: 2018
  end-page: 134
  article-title: ‘Interior permanent magnet motor‐based isolated on‐board integrated battery charger for electric vehicles
  publication-title: IET Electr. Power Appl.
– volume: 15
  start-page: 881
  issue: 5
  year: 2000
  end-page: 890
  article-title: Automatic flux‐weakening control of permanent magnet synchronous motors using a reduced‐order controller
  publication-title: IEEE Trans. Power. Electron.
– volume: 12
  start-page: 347
  issue: 3
  year: 2018
  end-page: 356
  article-title: Optimisation of HF signal injection parameters for EV applications based on sensorless IPMSM drives
  publication-title: IET Electr. Power. Appl.
– volume: 48
  start-page: 2382
  issue: 6
  year: 2012
  end-page: 2389
  article-title: Comparative study of PMSM drive systems based on current control and direct torque control in flux‐weakening control region
  publication-title: IEEE Trans. Ind. Appl.
– volume: 51
  start-page: 3620
  issue: 5
  year: 2015
  end-page: 3628
  article-title: Mathematical model for MTPA control of permanent‐magnet synchronous motor in stator flux linkage synchronous frame
  publication-title: IEEE Trans. Ind. Appl.
– volume: 32
  start-page: 5473
  issue: 7
  year: 2017
  end-page: 5486
  article-title: Decoupled modeling and nonlinear speed control for five‐phase PM motor under single‐phase open fault
  publication-title: IEEE Trans. Power Electron.
– volume: 62
  start-page: 3255
  issue: 5
  year: 2015
  end-page: 3264
  article-title: An improved robust field‐weakening algorithm for direct‐torque‐controlled synchronous‐reluctance‐motor drives
  publication-title: IEEE Trans. Ind. Electron.
– volume: 18
  start-page: 929
  issue: 4
  year: 2003
  end-page: 936
  article-title: Minimum copper loss flux‐weakening control of surface mounted permanent magnet synchronous motors
  publication-title: IEEE Trans. Power. Electron.
– volume: 65
  start-page: 5353
  issue: 7
  year: 2018
  end-page: 5366
  article-title: Multi‐mode optimization design methodology for a flux‐controllable stator permanent magnet memory motor considering driving cycles
  publication-title: IEEE Trans. Ind. Electron.
– volume: 4
  start-page: 539
  issue: 7
  year: 2010
  end-page: 546
  article-title: Performance evaluation of an integrated starter alternator using an interior permanent magnet machine
  publication-title: IET Electr. Power. Appl.
– volume: 62
  start-page: 3380
  issue: 6
  year: 2015
  end-page: 3387
  article-title: Torque control of IPMSM in the field‐weakening region with improved DC‐link voltage utilization
  publication-title: IEEE Trans. Ind. Electron.
– volume: 53
  start-page: 3428
  issue: 4
  year: 2017
  end-page: 3437
  article-title: Design and analysis of a new five‐phase brushless hybrid‐excitation fault‐tolerant motor for electric vehicles
  publication-title: IEEE Trans. Ind. Appl.
– volume: 65
  start-page: 2915
  issue: 4
  year: 2018
  end-page: 2924
  article-title: Optimal phase advance under fault‐tolerant control of a five‐phase permanent magnet assisted synchronous reluctance motor
  publication-title: IEEE Trans. Ind. Electron.
– volume: 63
  start-page: 2578
  issue: 6
  year: 2014
  end-page: 2588
  article-title: A novel energy management strategy of onboard supercapacitor for subway applications with permanent‐magnet traction system
  publication-title: IEEE Trans. Veh. Technol.
– volume: 67
  start-page: 910
  issue: 2
  year: 2018
  end-page: 919
  article-title: Fault‐tolerant direct torque control of five‐phase FTFSCW‐IPM motor based on analogous three‐phase SVPWM for electric vehicle applications
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1401
  year: December 2005
  end-page: 1406
– ident: e_1_2_7_17_1
  doi: 10.1109/TVT.2017.2760980
– ident: e_1_2_7_9_1
  doi: 10.1109/TIA.2006.880910
– ident: e_1_2_7_20_1
  doi: 10.1109/TIE.2011.2164771
– ident: e_1_2_7_18_1
  doi: 10.1049/iet-epa.2017.0319
– ident: e_1_2_7_6_1
  doi: 10.1109/63.867677
– ident: e_1_2_7_16_1
  doi: 10.1109/TIA.2017.2685359
– ident: e_1_2_7_13_1
  doi: 10.1109/TMECH.2015.2469096
– ident: e_1_2_7_11_1
  doi: 10.1109/TIA.2012.2227134
– ident: e_1_2_7_19_1
  doi: 10.1109/TVT.2017.2743246
– ident: e_1_2_7_5_1
  doi: 10.1109/TVT.2013.2293707
– ident: e_1_2_7_7_1
  doi: 10.1109/TPEL.2003.813751
– ident: e_1_2_7_12_1
  doi: 10.1109/TIE.2014.2386798
– ident: e_1_2_7_15_1
  doi: 10.1109/TIE.2017.2750620
– ident: e_1_2_7_21_1
  doi: 10.1109/ICIT.2015.7125434
– ident: e_1_2_7_2_1
  doi: 10.1049/iet-epa.2017.0228
– ident: e_1_2_7_10_1
  doi: 10.1109/TIA.2015.2417128
– ident: e_1_2_7_14_1
  doi: 10.1109/TPEL.2016.2611532
– ident: e_1_2_7_22_1
  doi: 10.1109/IEMDC.2005.195920
– volume: 62
  start-page: 3380
  issue: 6
  year: 2015
  ident: e_1_2_7_8_1
  article-title: Torque control of IPMSM in the field‐weakening region with improved DC‐link voltage utilization
  publication-title: IEEE Trans. Ind. Electron.
– ident: e_1_2_7_4_1
  doi: 10.1049/iet-epa.2009.0216
– ident: e_1_2_7_23_1
– ident: e_1_2_7_3_1
  doi: 10.1109/TIE.2017.2777408
SSID ssj0055646
Score 2.2976165
Snippet This study proposes two flux-weakening control strategies for a new five-phase fault-tolerant interior-permanent-magnet (FT-IPM) motor, in which direct torque...
This study proposes two flux‐weakening control strategies for a new five‐phase fault‐tolerant interior‐permanent‐magnet (FT‐IPM) motor, in which direct torque...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 73
SubjectTerms control objective
DTFWC
dynamic response
electric vehicles
fault tolerance
five‐phase fault‐tolerant interior‐permanent‐magnet motor
five‐phase FT‐IPM motor
flux‐weakening control strategies
machine control
magnetic flux
motor drives
neurocontrollers
optimal flux‐weakening control
permanent magnet motors
reducing copper loss
Research Article
SVMFWC
torque
torque control
Title Optimal flux-weakening control of a new five-phase FT-IPM motor based on DTC and SVPWM for electric vehicle applications
URI http://digital-library.theiet.org/content/journals/10.1049/iet-epa.2018.5204
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-epa.2018.5204
Volume 13
WOSCitedRecordID wos000457705300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055646
  issn: 1751-8660
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055646
  issn: 1751-8660
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZK4UAPvBF9gOaAOCAZ4oyT2EdYuqJSu0RiaXuLHD_UFSVbbbeFE-In9DfySzpOsqtWSEVCXKLIGVvWjD3zxY9vGHup6lrJujDc5cJxiSbhxhQ5t0nQKGwqs5aJaX-3GI3U4aEuV9hgcRem44dYLrjFmdH66zjBTd1lISFQS0ac-Dknjx1PZ6k3WRo5QW8LgUU815XKcuGOsyzvrhgVmeCRXW65tanf_tHEteB0iz5fh6xtzBne_y-9fcDu9ZAT3nVj5CFb8c0jtnaFiPAx-_mJPMc3EgrHZz9-_7r47s1XH1dMoD_KDtMABgiCQyD3SBInRxT-YDim151yD8jg0xnEkOhg2sCH8QBM4-DzfnmwB4SLoUu3M7Fw7o9iN-DqzvkT9mW4PR585H1mBm4RJfKa_jKU0ULLxGsRcnQyEy6TmDijrfKZUUVwVqtUBCNRBZcTLtYUjxFTKwp8ylabaeOfMRBYK2O8lTp4mSCS8zWpL1ArZ4QxuM6ShUkq29OWx-wZx1W7fS51RaqtSLVVVG0VVbvOXi-rnHScHTcJv4pl_cw9vUkQWwP_vclqe7dM3w8j-sONf6q1ye5Sue6WerbY6nx25p-zO_Z8PjmdvWjHNz0PdkaXcmAAdg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKQQIOvBHlOQfEAck0zjiJfYS2q67YXVZiaXuLHD_UFSVbbbeFE-In8Bv5JYyT7KoVUpEQt8gZW9Z4Xp6xPzP2UlWVklVhuMuF4xJNwo0pcm6ToFHYVGYNEtPeoBiN1MGBHq-x7eVdmBYfYpVwi5rR2Ouo4DEh3W44ZQTJnPoFJ5Mdj2epN1kaQUGvylyqKNv7_dHSHmdZ3t4xKjLBI7zcqrapN_8Y4oJ3ukK_L8asjdPp3f4_073DbnVBJ7xtpeQuW_P1PXbzHBThffb9A9mOL0QUjk6__frx86s3n33MmUB3mB1mAQxQEA6BDCRRHB-SA4TehD774yHQks_mEJ2ig1kN25MtMLWDj3vj_SFQZAztgztTC2f-ME4DztfOH7BPvZ3J1i7v3mbgFlEir2ifoYwWWiZei5Cjk5lwmcTEGW2Vz4wqgrNapSIYiSq4nCJjTR4ZMbWiwIdsvZ7V_hEDgZUyxlupg5cJIplfk_oCtXJGGIMbLFmuSWk74PL4fsZR2RTQpS6JtSWxtoysLSNrN9jrVZfjFrXjMuJXsa3T3ZPLCLFZ4b8PWe4Mxum7Xoz_8PE_9XrBru9OhoNy0B-9f8JuEI1uEz9P2fpifuqfsWv2bDE9mT9vhP03ZXUDyA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKQQgOvFHLcw6IA1JonHES-wjdRlRsl0gspbfI8UNd0WZX223hhPgJ_EZ-CeMku2qFVCTELXLGI2tsz3we258ZeyHrWoo615HNuI0E6jjSOs8iE3uF3CQibZmY9of5aCQPDlS5xgbLuzAdP8Qq4RZmRuuvwwR3M-u7BacIJJkTt4jIZYfjWfJ1mgRS0KukOg4HuxJRLv1xmmbdHaM85VGgl1vtbaqtP1RciE5X6PdFzNoGneL2_2nuHXarB53wphsld9maa-6xm-eoCO-z7x_IdxyTkD86_fbrx8-vTn9xIWcC_WF2mHrQQCAcPDlIkpgdUgCEYkyfu-UeUJdP5xCCooVpA4PxNujGwsf98vMeEDKG7sGdiYEzdxiaAef3zh-wT8XOePtd1L_NEBlEgVFN6wypFVcidor7DK1IuU0FxlYrI12qZe6tUTLhXguU3maEjBVFZMTE8BwfsvVm2rgNBhxrqbUzQnknYkRyvzpxOSppNdcaN1m87JPK9MTl4f2Mo6rdQBeqItNWZNoqmLYKpt1kr1ZVZh1rx2XCL0NZP3dPLhPEtof_rrLaGZbJ2yLgP3z0T7Wes-vloKiGu6P3j9kNElFd3ucJW1_MT91Tds2cLSYn82ftWP8NNOQCzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+flux%E2%80%90weakening+control+of+a+new+five%E2%80%90phase+FT%E2%80%90IPM+motor+based+on+DTC+and+SVPWM+for+electric+vehicle+applications&rft.jtitle=IET+electric+power+applications&rft.au=Zhang%2C+Li&rft.au=Zhu%2C+Xiaoyong&rft.au=Fan%2C+Ying&rft.au=Li%2C+Chenxue&rft.date=2019-01-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8679&rft.eissn=1751-8679&rft.volume=13&rft.issue=1&rft.spage=73&rft.epage=80&rft_id=info:doi/10.1049%2Fiet-epa.2018.5204&rft.externalDBID=10.1049%252Fiet-epa.2018.5204&rft.externalDocID=ELP2BF00633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8660&client=summon