An Equivalence Principle for OFDM-Based Combined Bulk/Per-Subcarrier Relay Selection Over Equally Spatially Correlated Channels

In this paper, we propose a novel relay selection scheme for orthogonal frequency-division multiplexing systems by combining conventional bulk and per-subcarrier selection schemes and analyze its outage performance over equally spatially correlated channels. Specifically, the combined selection sche...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology Vol. 66; no. 1; pp. 122 - 133
Main Authors: Shuping Dang, Coon, Justin P., Gaojie Chen
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9545, 1939-9359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a novel relay selection scheme for orthogonal frequency-division multiplexing systems by combining conventional bulk and per-subcarrier selection schemes and analyze its outage performance over equally spatially correlated channels. Specifically, the combined selection scheme selects only two relays at the first attempt and performs per-subcarrier selection over these two relays. We analyze the asymptotic outage performance of the combined selection scheme in the high signal-to-noise ratio (SNR) region and prove a generalized theorem. This theorem states that the combined selection can achieve an optimal outage probability equivalent to the per-subcarrier selection at a high SNR without using the full set of available relays for selection. This unique property is termed the equivalence principle, and it holds for all correlation conditions. To explore this principle, we consider three examples: decode-and-forward, fixed-gain amplify-and-forward (AF), and variable-gain AF relay systems. Furthermore, two extended applications, i.e., antenna selection and branch selection, are also considered to reveal the feasibility and the expandability of the equivalence principle. Our analysis is verified by Monte Carlo simulations. The proposed combined selection and the proved theorem provide a general and feasible solution to the tradeoff between system complexity and outage performance when relay selection is applied.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2016.2549564