Adaptive nested implicit Runge–Kutta formulas of Gauss type
This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss quadrature formulas of orders 2, 4 and 6, respectively. However, the methods under discussion have only explicit internal stages that lead to c...
Uloženo v:
| Vydáno v: | Applied numerical mathematics Ročník 59; číslo 3; s. 707 - 722 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier B.V
01.03.2009
Elsevier |
| Témata: | |
| ISSN: | 0168-9274, 1873-5460 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss quadrature formulas of orders 2, 4 and 6, respectively. However, the methods under discussion have only explicit internal stages that lead to cheap practical implementation. Some of the stage values calculated in a step of the numerical integration are of sufficiently high accuracy that allows for dense output of the same order as the Runge–Kutta formula used. On the other hand, the methods developed are
A-stable, stiffly accurate and symmetric. Moreover, they are conjugate to a symplectic method up to order 6 at least. All of these make the new methods attractive for solving nonstiff and stiff ordinary differential equations, including Hamiltonian and reversible problems. For adaptivity, different strategies of error estimation are discussed and examined numerically. |
|---|---|
| AbstractList | This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss quadrature formulas of orders 2, 4 and 6, respectively. However, the methods under discussion have only explicit internal stages that lead to cheap practical implementation. Some of the stage values calculated in a step of the numerical integration are of sufficiently high accuracy that allows for dense output of the same order as the Runge–Kutta formula used. On the other hand, the methods developed are
A-stable, stiffly accurate and symmetric. Moreover, they are conjugate to a symplectic method up to order 6 at least. All of these make the new methods attractive for solving nonstiff and stiff ordinary differential equations, including Hamiltonian and reversible problems. For adaptivity, different strategies of error estimation are discussed and examined numerically. |
| Author | Shindin, S.K. Kulikov, G.Yu |
| Author_xml | – sequence: 1 givenname: G.Yu surname: Kulikov fullname: Kulikov, G.Yu email: gkulikov@cam.wits.ac.za – sequence: 2 givenname: S.K. surname: Shindin fullname: Shindin, S.K. email: sshindin@cam.wits.ac.za |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21244035$$DView record in Pascal Francis |
| BookMark | eNp9kL9OwzAQhy1UJNrCE7BkYUy4xInjDB2qCgqiEhKC2br6D3KVJpHtVOrGO_CGPAkphYWh0y3f97u734SMmrbRhFynkKSQsttNgl3Tb5MMgCdAE0irMzJOeUnjImcwIuOB4nGVlfkFmXi_AYCiyGFMZnOFXbA7HTXaB60iu-1qK22IXvrmXX99fD71IWBkWrfta_RRa6Il9t5HYd_pS3JusPb66ndOydv93eviIV49Lx8X81UsKaUhNmtWQIZsbRRmFFjJACvG0wKU4gUvmcJybYajc26qTBUMKuRygDWDkvKcTsnNMbdDL7E2Dhtpveic3aLbiyzN8hxoMXDVkZOu9d5pI4ZPMNi2CQ5tLVIQh77ERvz0JQ59CaBiWD249J_7F3_amh0tPby_s9oJL61upFbWaRmEau1J_xvZP4g3 |
| CODEN | ANMAEL |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2024_106768 crossref_primary_10_1016_j_apnum_2019_08_021 crossref_primary_10_1016_j_apnum_2016_09_015 crossref_primary_10_1109_TSP_2015_2493985 crossref_primary_10_1134_S0965542518030119 crossref_primary_10_1016_j_ejcon_2014_11_003 crossref_primary_10_1016_j_cam_2013_09_064 crossref_primary_10_1016_j_cam_2013_09_071 crossref_primary_10_1134_S0965542510060084 crossref_primary_10_1109_TAC_2013_2272136 crossref_primary_10_1134_S0965542515030100 crossref_primary_10_1134_S0965542523040115 crossref_primary_10_1134_S0965542520070076 crossref_primary_10_1134_S2070048217040123 crossref_primary_10_1016_j_sigpro_2017_04_002 crossref_primary_10_1049_iet_cta_2018_5404 crossref_primary_10_1134_S1995423911030025 crossref_primary_10_1007_s40819_021_01169_1 crossref_primary_10_1016_j_jcp_2025_114146 crossref_primary_10_1134_S0965542524701690 crossref_primary_10_1002_rnc_4440 crossref_primary_10_1109_TAC_2017_2687123 crossref_primary_10_1134_S0965542520090031 crossref_primary_10_1134_S0965542517070119 |
| Cites_doi | 10.1137/0714069 10.1007/BF01947741 10.1007/BF01933734 10.1137/0714068 10.1093/imamat/20.4.425 10.1007/BF01932265 10.1137/0731047 10.1007/BF01932291 10.1093/imanum/2.2.211 10.1515/rnam.2007.029 10.1007/BF01932774 10.1145/321906.321915 10.1023/B:BITN.0000046811.70614.38 10.1007/BF01932722 10.1007/BF01933583 10.1007/BF01963532 10.1137/0727044 10.1016/S0168-9274(99)00126-9 10.1093/imamat/19.4.455 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2008 IMACS 2009 INIST-CNRS |
| Copyright_xml | – notice: 2008 IMACS – notice: 2009 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.apnum.2008.03.019 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1873-5460 |
| EndPage | 722 |
| ExternalDocumentID | 21244035 10_1016_j_apnum_2008_03_019 S0168927408000573 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMJ HVGLF HZ~ IHE J1W KOM M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SME SPC SPCBC SSW SSZ T5K TN5 VH1 VOH WH7 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c333t-fb6502a6bfda2306760a968150dd85876da7bf01948f92d5609a8cfdae6073843 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263527300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-9274 |
| IngestDate | Mon Jul 21 09:16:08 EDT 2025 Tue Nov 18 22:34:35 EST 2025 Sat Nov 29 02:29:46 EST 2025 Fri Feb 23 02:32:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 65L05 65L06 Nested implicit Runge–Kutta formulas Gauss-type methods Ordinary differential equations Local error estimation Almost symplectic integration Numerical integration Error estimation Differential equation Gauss method Runge Kutta method Gauss formula Nested implicit Runge-Kutta formulas Implementation Numerical approximation Numerical analysis Cubature Applied mathematics Quadrature formula Hamiltonian 65L06 Ordinary differential equations |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MeetingName | Selected Papers from NUMDIFF-11 |
| MergedId | FETCHMERGED-LOGICAL-c333t-fb6502a6bfda2306760a968150dd85876da7bf01948f92d5609a8cfdae6073843 |
| PageCount | 16 |
| ParticipantIDs | pascalfrancis_primary_21244035 crossref_citationtrail_10_1016_j_apnum_2008_03_019 crossref_primary_10_1016_j_apnum_2008_03_019 elsevier_sciencedirect_doi_10_1016_j_apnum_2008_03_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-03-01 |
| PublicationDateYYYYMMDD | 2009-03-01 |
| PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Applied numerical mathematics |
| PublicationYear | 2009 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Butcher, Chen (bib011) 2000; 34 Berezin, Zhidkov (bib003) 1962 Nørsett, Wolfbrandt (bib031) 1977; 17 R. Alt, Methodes A-stables pour l'integration de systemes differentiels mal conditionnes, PhD thesis, Universite Paris, 1971 van Bokhoven (bib033) 1980; 20 M. Kurdi, Stable high order methods for time discretization of stiff differential equations, PhD thesis, University of California, 1974 Kulikov, Shindin (bib024) 2007; vol. 4487 P. Leone, Symplecticity and symmetry of general integration methods, Thèse, Section de Mathématiques, Université de Gèneve, 2000 Kulikov, Merkulov, Shindin (bib022) 2007; 22 Burrage (bib005) 1978; 18 Kulikov, Shindin (bib023) 2006; vol. 3991 S.P. Nørsett, Semi-explicit Runge–Kutta methods, Report No. 6/74 (1974), Dept. of Math., University of Trondheim, Norway Cash (bib012) 1975; 22 Burrage, Butcher, Chipman (bib006) 1980; 20 Butcher (bib008) 1976; 16 Nørsett (bib030) 1976; 16 Cash (bib014) 1977; 20 Hairer, Nørsett, Wanner (bib020) 1993 Dahlquist (bib017) 1963; 3 Sanz-Serna, Calvo (bib032) 1994 M. Crouzeix, Sur l'approximation ds equations differentielles operationnelles lineaires par de methodes de Runge–Kutta, PhD thesis, Universite Paris, 1975 Kværnø (bib026) 2004; 44 Hairer, Lubich, Wanner (bib019) 2002 Butcher, Cash (bib010) 1990; 27 Hairer, Wanner (bib021) 1996 Cash (bib013) 1977; 19 Bickart (bib004) 1977; 14 Muir, Enright (bib028) 1987; 27 Alexander (bib001) 1977; 14 Dekker, Verwer (bib018) 1984 Butcher (bib009) 2003 Cash, Singhal (bib015) 1982; 2 Burrage, Chipman, Muir (bib007) 1994; 31 10.1016/j.apnum.2008.03.019_bib002 Cash (10.1016/j.apnum.2008.03.019_bib013) 1977; 19 10.1016/j.apnum.2008.03.019_bib025 10.1016/j.apnum.2008.03.019_bib027 Burrage (10.1016/j.apnum.2008.03.019_bib007) 1994; 31 10.1016/j.apnum.2008.03.019_bib029 Butcher (10.1016/j.apnum.2008.03.019_bib008) 1976; 16 van Bokhoven (10.1016/j.apnum.2008.03.019_bib033) 1980; 20 Kværnø (10.1016/j.apnum.2008.03.019_bib026) 2004; 44 Butcher (10.1016/j.apnum.2008.03.019_bib009) 2003 Burrage (10.1016/j.apnum.2008.03.019_bib005) 1978; 18 Bickart (10.1016/j.apnum.2008.03.019_bib004) 1977; 14 Butcher (10.1016/j.apnum.2008.03.019_bib010) 1990; 27 Hairer (10.1016/j.apnum.2008.03.019_bib020) 1993 Kulikov (10.1016/j.apnum.2008.03.019_bib022) 2007; 22 Berezin (10.1016/j.apnum.2008.03.019_bib003) 1962 10.1016/j.apnum.2008.03.019_bib016 Hairer (10.1016/j.apnum.2008.03.019_bib019) 2002 Muir (10.1016/j.apnum.2008.03.019_bib028) 1987; 27 Cash (10.1016/j.apnum.2008.03.019_bib015) 1982; 2 Kulikov (10.1016/j.apnum.2008.03.019_bib023) 2006; vol. 3991 Cash (10.1016/j.apnum.2008.03.019_bib012) 1975; 22 Kulikov (10.1016/j.apnum.2008.03.019_bib024) 2007; vol. 4487 Sanz-Serna (10.1016/j.apnum.2008.03.019_bib032) 1994 Butcher (10.1016/j.apnum.2008.03.019_bib011) 2000; 34 Burrage (10.1016/j.apnum.2008.03.019_bib006) 1980; 20 Dahlquist (10.1016/j.apnum.2008.03.019_bib017) 1963; 3 Alexander (10.1016/j.apnum.2008.03.019_bib001) 1977; 14 Cash (10.1016/j.apnum.2008.03.019_bib014) 1977; 20 Hairer (10.1016/j.apnum.2008.03.019_bib021) 1996 Nørsett (10.1016/j.apnum.2008.03.019_bib030) 1976; 16 Nørsett (10.1016/j.apnum.2008.03.019_bib031) 1977; 17 Dekker (10.1016/j.apnum.2008.03.019_bib018) 1984 |
| References_xml | – year: 2003 ident: bib009 article-title: Numerical Methods for Ordinary Differential Equations – volume: 27 start-page: 753 year: 1990 end-page: 761 ident: bib010 article-title: Towards efficient Runge–Kutta methods for stiff systems publication-title: SIAM J. Numer. Anal. – volume: 14 start-page: 1022 year: 1977 end-page: 1027 ident: bib004 article-title: An efficient solution process for implicit Runge–Kutta methods publication-title: SIAM J. Numer. Anal. – volume: 3 start-page: 27 year: 1963 end-page: 43 ident: bib017 article-title: A special stability problem for linear multistep methods publication-title: BIT – volume: 31 start-page: 876 year: 1994 end-page: 891 ident: bib007 article-title: Order results for mono-implicit Runge–Kutta methods publication-title: SIAM J. Numer. Anal. – volume: 27 start-page: 403 year: 1987 end-page: 423 ident: bib028 article-title: Relations amogn some classes of implicit Runge–Kutta methods and their stability functions publication-title: BIT – volume: 14 start-page: 1006 year: 1977 end-page: 1024 ident: bib001 article-title: Diagonally implicit Runge–Kutta methods for stiff ODEs publication-title: SIAM J. Numer. Anal. – volume: 44 start-page: 489 year: 2004 end-page: 502 ident: bib026 article-title: Singly diagonally implicit Runge–Kutta methods with an explicit first stage publication-title: BIT – reference: R. Alt, Methodes A-stables pour l'integration de systemes differentiels mal conditionnes, PhD thesis, Universite Paris, 1971 – year: 1996 ident: bib021 article-title: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems – volume: vol. 3991 start-page: 781 year: 2006 end-page: 785 ident: bib023 article-title: On a family of cheap symmetric one-step methods of order four publication-title: Computational Science – ICCS 2006, Proceedings, Part I – year: 2002 ident: bib019 article-title: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations – volume: 20 start-page: 34 year: 1980 end-page: 43 ident: bib033 article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations publication-title: BIT – volume: vol. 4487 start-page: 136 year: 2007 end-page: 143 ident: bib024 article-title: Numerical tests with Gauss-type nested implicit Runge–Kutta formulas publication-title: Computational Science — ICCS 2007, Proceedings, Part I – volume: 18 start-page: 22 year: 1978 end-page: 41 ident: bib005 article-title: A special family of Runge–Kutta methods for solving stiff differential equations publication-title: BIT – reference: P. Leone, Symplecticity and symmetry of general integration methods, Thèse, Section de Mathématiques, Université de Gèneve, 2000 – volume: 2 start-page: 211 year: 1982 end-page: 227 ident: bib015 article-title: Mono-implicit Runge–Kutta formulae for the numerical integration of stiff differential systems publication-title: IMA J. Numer. Anal. – year: 1994 ident: bib032 article-title: Numerical Hamilton Problems – volume: 20 start-page: 326 year: 1980 end-page: 340 ident: bib006 article-title: An implementation of singly implicit Runge–Kutta methods publication-title: BIT – volume: 20 start-page: 425 year: 1977 end-page: 441 ident: bib014 article-title: On a note of the computational aspects of a class of implicit Runge–Kutta procedures publication-title: J. Inst. Math. Appl. – volume: 17 start-page: 200 year: 1977 end-page: 208 ident: bib031 article-title: Attainable order of rational approximations to the exponential function with only real poles publication-title: BIT – reference: M. Crouzeix, Sur l'approximation ds equations differentielles operationnelles lineaires par de methodes de Runge–Kutta, PhD thesis, Universite Paris, 1975 – volume: 22 start-page: 567 year: 2007 end-page: 590 ident: bib022 article-title: Asymptotic error estimate for general Newton-type methods and its application to differential equations publication-title: Russian J. Numer. Anal. Math. Model. – year: 1993 ident: bib020 article-title: Solving Ordinary Differential Equations I: Nonstiff Problems – reference: S.P. Nørsett, Semi-explicit Runge–Kutta methods, Report No. 6/74 (1974), Dept. of Math., University of Trondheim, Norway – volume: 22 start-page: 504 year: 1975 end-page: 511 ident: bib012 article-title: A class of implicit Runge–Kutta methods for the numerical solution of stiff ordinary differential equations publication-title: J. Assoc. Comput. Mach. – volume: 16 start-page: 237 year: 1976 end-page: 240 ident: bib008 article-title: On the implementation of implicit Runge–Kutta methods publication-title: BIT – volume: 16 start-page: 388 year: 1976 end-page: 393 ident: bib030 article-title: Runge–Kutta methods with multiple real eigenvalue only publication-title: BIT – volume: 34 start-page: 179 year: 2000 end-page: 188 ident: bib011 article-title: A new type of singly implicit Runge–Kutta methods publication-title: Appl. Numer. Math. – volume: 19 start-page: 455 year: 1977 end-page: 470 ident: bib013 article-title: On a class of implicit Runge–Kutta procedures publication-title: J. Inst. Math. Appl. – reference: M. Kurdi, Stable high order methods for time discretization of stiff differential equations, PhD thesis, University of California, 1974 – year: 1962 ident: bib003 article-title: Computing Methods – year: 1984 ident: bib018 article-title: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations – volume: 14 start-page: 1022 year: 1977 ident: 10.1016/j.apnum.2008.03.019_bib004 article-title: An efficient solution process for implicit Runge–Kutta methods publication-title: SIAM J. Numer. Anal. doi: 10.1137/0714069 – volume: 18 start-page: 22 year: 1978 ident: 10.1016/j.apnum.2008.03.019_bib005 article-title: A special family of Runge–Kutta methods for solving stiff differential equations publication-title: BIT doi: 10.1007/BF01947741 – ident: 10.1016/j.apnum.2008.03.019_bib002 – year: 2002 ident: 10.1016/j.apnum.2008.03.019_bib019 – year: 1994 ident: 10.1016/j.apnum.2008.03.019_bib032 – volume: 27 start-page: 403 year: 1987 ident: 10.1016/j.apnum.2008.03.019_bib028 article-title: Relations amogn some classes of implicit Runge–Kutta methods and their stability functions publication-title: BIT doi: 10.1007/BF01933734 – year: 2003 ident: 10.1016/j.apnum.2008.03.019_bib009 – year: 1996 ident: 10.1016/j.apnum.2008.03.019_bib021 – volume: 14 start-page: 1006 year: 1977 ident: 10.1016/j.apnum.2008.03.019_bib001 article-title: Diagonally implicit Runge–Kutta methods for stiff ODEs publication-title: SIAM J. Numer. Anal. doi: 10.1137/0714068 – ident: 10.1016/j.apnum.2008.03.019_bib025 – volume: 20 start-page: 425 year: 1977 ident: 10.1016/j.apnum.2008.03.019_bib014 article-title: On a note of the computational aspects of a class of implicit Runge–Kutta procedures publication-title: J. Inst. Math. Appl. doi: 10.1093/imamat/20.4.425 – year: 1984 ident: 10.1016/j.apnum.2008.03.019_bib018 – ident: 10.1016/j.apnum.2008.03.019_bib027 – volume: 16 start-page: 237 year: 1976 ident: 10.1016/j.apnum.2008.03.019_bib008 article-title: On the implementation of implicit Runge–Kutta methods publication-title: BIT doi: 10.1007/BF01932265 – ident: 10.1016/j.apnum.2008.03.019_bib029 – volume: 31 start-page: 876 year: 1994 ident: 10.1016/j.apnum.2008.03.019_bib007 article-title: Order results for mono-implicit Runge–Kutta methods publication-title: SIAM J. Numer. Anal. doi: 10.1137/0731047 – volume: vol. 3991 start-page: 781 year: 2006 ident: 10.1016/j.apnum.2008.03.019_bib023 article-title: On a family of cheap symmetric one-step methods of order four – volume: 17 start-page: 200 year: 1977 ident: 10.1016/j.apnum.2008.03.019_bib031 article-title: Attainable order of rational approximations to the exponential function with only real poles publication-title: BIT doi: 10.1007/BF01932291 – year: 1962 ident: 10.1016/j.apnum.2008.03.019_bib003 – volume: 2 start-page: 211 year: 1982 ident: 10.1016/j.apnum.2008.03.019_bib015 article-title: Mono-implicit Runge–Kutta formulae for the numerical integration of stiff differential systems publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/2.2.211 – volume: 22 start-page: 567 year: 2007 ident: 10.1016/j.apnum.2008.03.019_bib022 article-title: Asymptotic error estimate for general Newton-type methods and its application to differential equations publication-title: Russian J. Numer. Anal. Math. Model. doi: 10.1515/rnam.2007.029 – volume: 20 start-page: 326 year: 1980 ident: 10.1016/j.apnum.2008.03.019_bib006 article-title: An implementation of singly implicit Runge–Kutta methods publication-title: BIT doi: 10.1007/BF01932774 – volume: 22 start-page: 504 year: 1975 ident: 10.1016/j.apnum.2008.03.019_bib012 article-title: A class of implicit Runge–Kutta methods for the numerical solution of stiff ordinary differential equations publication-title: J. Assoc. Comput. Mach. doi: 10.1145/321906.321915 – volume: 44 start-page: 489 year: 2004 ident: 10.1016/j.apnum.2008.03.019_bib026 article-title: Singly diagonally implicit Runge–Kutta methods with an explicit first stage publication-title: BIT doi: 10.1023/B:BITN.0000046811.70614.38 – volume: vol. 4487 start-page: 136 year: 2007 ident: 10.1016/j.apnum.2008.03.019_bib024 article-title: Numerical tests with Gauss-type nested implicit Runge–Kutta formulas – volume: 16 start-page: 388 year: 1976 ident: 10.1016/j.apnum.2008.03.019_bib030 article-title: Runge–Kutta methods with multiple real eigenvalue only publication-title: BIT doi: 10.1007/BF01932722 – ident: 10.1016/j.apnum.2008.03.019_bib016 – volume: 20 start-page: 34 year: 1980 ident: 10.1016/j.apnum.2008.03.019_bib033 article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations publication-title: BIT doi: 10.1007/BF01933583 – volume: 3 start-page: 27 year: 1963 ident: 10.1016/j.apnum.2008.03.019_bib017 article-title: A special stability problem for linear multistep methods publication-title: BIT doi: 10.1007/BF01963532 – volume: 27 start-page: 753 year: 1990 ident: 10.1016/j.apnum.2008.03.019_bib010 article-title: Towards efficient Runge–Kutta methods for stiff systems publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727044 – volume: 34 start-page: 179 year: 2000 ident: 10.1016/j.apnum.2008.03.019_bib011 article-title: A new type of singly implicit Runge–Kutta methods publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(99)00126-9 – year: 1993 ident: 10.1016/j.apnum.2008.03.019_bib020 – volume: 19 start-page: 455 year: 1977 ident: 10.1016/j.apnum.2008.03.019_bib013 article-title: On a class of implicit Runge–Kutta procedures publication-title: J. Inst. Math. Appl. doi: 10.1093/imamat/19.4.455 |
| SSID | ssj0005540 |
| Score | 2.0094492 |
| Snippet | This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 707 |
| SubjectTerms | Almost symplectic integration Approximations and expansions Exact sciences and technology Gauss-type methods Local error estimation Mathematical analysis Mathematics Measure and integration Nested implicit Runge–Kutta formulas Numerical analysis Numerical analysis. Scientific computation Numerical approximation Ordinary differential equations Real functions Sciences and techniques of general use |
| Title | Adaptive nested implicit Runge–Kutta formulas of Gauss type |
| URI | https://dx.doi.org/10.1016/j.apnum.2008.03.019 |
| Volume | 59 |
| WOSCitedRecordID | wos000263527300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-5460 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005540 issn: 0168-9274 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMICRhDjMuUB95KqiZOHFs8TTBYGJQJNlSeIseOpU4hi9Zk2s_nxJekpTDEAy9RFTm14s_9zvHXc0HoZTClkkcY-4IzOKDEivm5iKUvg6RQgaQyYko3m0hmMzqfs5PRKHW5MFdlUlX0-prV_xVquAdgd6mz_wB3_6VwAz4D6HAF2OG6Cfxv7Y_zLKvW_B1Tjn_0xVmXq3vkQPJahw5VWvXsUibLhVg04y9AAYV_3DYN1-mNbcl1yMd73gIxdrJtT9RnH9Pjz9-0vD4Zf297xeYonb1NdQzB14nVUp24wIboKqN4WfO8KkASIMjQdNZxDGprei_WsnYMISamp621rYnJQd6gbaMgnE94DStjA1zxZGrJdK1I9i_Gqw8pDDtHZYrjW2g7xITCOXz7ID2cfxjifWKdHdu_gCtBpYP9Nib-k5tyr-ZLwE2ZricrrsjpA7Q7JGl6Jz38D9GoqHbQfYu9Zzl7uYPufhrAf4ReO8w9g7nnMPdWMPcc5t6F8jTmXof5Ljp7d3j65si3DTR8gTFufJWD_x1ykivJu6NmQqacEQpnAClpDHZQ8iRX8LYRVSyU4PwyTgUMLggwP43wY7RVXVTFE-SFeU5IxKgsYhEFecATJRSVMspFoIhI9lDo1isTtrp81-SkzFwY4XmmF9n2PcUZTLuHXvUP1aa4ys3DiQMis_6h8fsy2Ec3P7i_Bls_mds0T_824Bm6M_w8nqOt5rItXqDb4qpZLC_37Vb7CVd5jh8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Applied+numerical+mathematics&rft.atitle=Adaptive+nested+implicit+Runge-Kutta+formulas+of+Gauss+type&rft.au=KULIKOV%2C+G.+Yu&rft.au=SHINDIN%2C+S.+K&rft.date=2009-03-01&rft.pub=Elsevier&rft.issn=0168-9274&rft.volume=59&rft.issue=3-4&rft.spage=707&rft.epage=722&rft_id=info:doi/10.1016%2Fj.apnum.2008.03.019&rft.externalDBID=n%2Fa&rft.externalDocID=21244035 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9274&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9274&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9274&client=summon |