Adaptive nested implicit Runge–Kutta formulas of Gauss type

This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss quadrature formulas of orders 2, 4 and 6, respectively. However, the methods under discussion have only explicit internal stages that lead to c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied numerical mathematics Ročník 59; číslo 3; s. 707 - 722
Hlavní autoři: Kulikov, G.Yu, Shindin, S.K.
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 01.03.2009
Elsevier
Témata:
ISSN:0168-9274, 1873-5460
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss quadrature formulas of orders 2, 4 and 6, respectively. However, the methods under discussion have only explicit internal stages that lead to cheap practical implementation. Some of the stage values calculated in a step of the numerical integration are of sufficiently high accuracy that allows for dense output of the same order as the Runge–Kutta formula used. On the other hand, the methods developed are A-stable, stiffly accurate and symmetric. Moreover, they are conjugate to a symplectic method up to order 6 at least. All of these make the new methods attractive for solving nonstiff and stiff ordinary differential equations, including Hamiltonian and reversible problems. For adaptivity, different strategies of error estimation are discussed and examined numerically.
AbstractList This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss quadrature formulas of orders 2, 4 and 6, respectively. However, the methods under discussion have only explicit internal stages that lead to cheap practical implementation. Some of the stage values calculated in a step of the numerical integration are of sufficiently high accuracy that allows for dense output of the same order as the Runge–Kutta formula used. On the other hand, the methods developed are A-stable, stiffly accurate and symmetric. Moreover, they are conjugate to a symplectic method up to order 6 at least. All of these make the new methods attractive for solving nonstiff and stiff ordinary differential equations, including Hamiltonian and reversible problems. For adaptivity, different strategies of error estimation are discussed and examined numerically.
Author Shindin, S.K.
Kulikov, G.Yu
Author_xml – sequence: 1
  givenname: G.Yu
  surname: Kulikov
  fullname: Kulikov, G.Yu
  email: gkulikov@cam.wits.ac.za
– sequence: 2
  givenname: S.K.
  surname: Shindin
  fullname: Shindin, S.K.
  email: sshindin@cam.wits.ac.za
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21244035$$DView record in Pascal Francis
BookMark eNp9kL9OwzAQhy1UJNrCE7BkYUy4xInjDB2qCgqiEhKC2br6D3KVJpHtVOrGO_CGPAkphYWh0y3f97u734SMmrbRhFynkKSQsttNgl3Tb5MMgCdAE0irMzJOeUnjImcwIuOB4nGVlfkFmXi_AYCiyGFMZnOFXbA7HTXaB60iu-1qK22IXvrmXX99fD71IWBkWrfta_RRa6Il9t5HYd_pS3JusPb66ndOydv93eviIV49Lx8X81UsKaUhNmtWQIZsbRRmFFjJACvG0wKU4gUvmcJybYajc26qTBUMKuRygDWDkvKcTsnNMbdDL7E2Dhtpveic3aLbiyzN8hxoMXDVkZOu9d5pI4ZPMNi2CQ5tLVIQh77ERvz0JQ59CaBiWD249J_7F3_amh0tPby_s9oJL61upFbWaRmEau1J_xvZP4g3
CODEN ANMAEL
CitedBy_id crossref_primary_10_1016_j_jfranklin_2024_106768
crossref_primary_10_1016_j_apnum_2019_08_021
crossref_primary_10_1016_j_apnum_2016_09_015
crossref_primary_10_1109_TSP_2015_2493985
crossref_primary_10_1134_S0965542518030119
crossref_primary_10_1016_j_ejcon_2014_11_003
crossref_primary_10_1016_j_cam_2013_09_064
crossref_primary_10_1016_j_cam_2013_09_071
crossref_primary_10_1134_S0965542510060084
crossref_primary_10_1109_TAC_2013_2272136
crossref_primary_10_1134_S0965542515030100
crossref_primary_10_1134_S0965542523040115
crossref_primary_10_1134_S0965542520070076
crossref_primary_10_1134_S2070048217040123
crossref_primary_10_1016_j_sigpro_2017_04_002
crossref_primary_10_1049_iet_cta_2018_5404
crossref_primary_10_1134_S1995423911030025
crossref_primary_10_1007_s40819_021_01169_1
crossref_primary_10_1016_j_jcp_2025_114146
crossref_primary_10_1134_S0965542524701690
crossref_primary_10_1002_rnc_4440
crossref_primary_10_1109_TAC_2017_2687123
crossref_primary_10_1134_S0965542520090031
crossref_primary_10_1134_S0965542517070119
Cites_doi 10.1137/0714069
10.1007/BF01947741
10.1007/BF01933734
10.1137/0714068
10.1093/imamat/20.4.425
10.1007/BF01932265
10.1137/0731047
10.1007/BF01932291
10.1093/imanum/2.2.211
10.1515/rnam.2007.029
10.1007/BF01932774
10.1145/321906.321915
10.1023/B:BITN.0000046811.70614.38
10.1007/BF01932722
10.1007/BF01933583
10.1007/BF01963532
10.1137/0727044
10.1016/S0168-9274(99)00126-9
10.1093/imamat/19.4.455
ContentType Journal Article
Conference Proceeding
Copyright 2008 IMACS
2009 INIST-CNRS
Copyright_xml – notice: 2008 IMACS
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.apnum.2008.03.019
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1873-5460
EndPage 722
ExternalDocumentID 21244035
10_1016_j_apnum_2008_03_019
S0168927408000573
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
KOM
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c333t-fb6502a6bfda2306760a968150dd85876da7bf01948f92d5609a8cfdae6073843
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263527300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-9274
IngestDate Mon Jul 21 09:16:08 EDT 2025
Tue Nov 18 22:34:35 EST 2025
Sat Nov 29 02:29:46 EST 2025
Fri Feb 23 02:32:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 65L05
65L06
Nested implicit Runge–Kutta formulas
Gauss-type methods
Ordinary differential equations
Local error estimation
Almost symplectic integration
Numerical integration
Error estimation
Differential equation
Gauss method
Runge Kutta method
Gauss formula
Nested implicit Runge-Kutta formulas
Implementation
Numerical approximation
Numerical analysis
Cubature
Applied mathematics
Quadrature formula
Hamiltonian
65L06 Ordinary differential equations
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MeetingName Selected Papers from NUMDIFF-11
MergedId FETCHMERGED-LOGICAL-c333t-fb6502a6bfda2306760a968150dd85876da7bf01948f92d5609a8cfdae6073843
PageCount 16
ParticipantIDs pascalfrancis_primary_21244035
crossref_citationtrail_10_1016_j_apnum_2008_03_019
crossref_primary_10_1016_j_apnum_2008_03_019
elsevier_sciencedirect_doi_10_1016_j_apnum_2008_03_019
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied numerical mathematics
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Butcher, Chen (bib011) 2000; 34
Berezin, Zhidkov (bib003) 1962
Nørsett, Wolfbrandt (bib031) 1977; 17
R. Alt, Methodes A-stables pour l'integration de systemes differentiels mal conditionnes, PhD thesis, Universite Paris, 1971
van Bokhoven (bib033) 1980; 20
M. Kurdi, Stable high order methods for time discretization of stiff differential equations, PhD thesis, University of California, 1974
Kulikov, Shindin (bib024) 2007; vol. 4487
P. Leone, Symplecticity and symmetry of general integration methods, Thèse, Section de Mathématiques, Université de Gèneve, 2000
Kulikov, Merkulov, Shindin (bib022) 2007; 22
Burrage (bib005) 1978; 18
Kulikov, Shindin (bib023) 2006; vol. 3991
S.P. Nørsett, Semi-explicit Runge–Kutta methods, Report No. 6/74 (1974), Dept. of Math., University of Trondheim, Norway
Cash (bib012) 1975; 22
Burrage, Butcher, Chipman (bib006) 1980; 20
Butcher (bib008) 1976; 16
Nørsett (bib030) 1976; 16
Cash (bib014) 1977; 20
Hairer, Nørsett, Wanner (bib020) 1993
Dahlquist (bib017) 1963; 3
Sanz-Serna, Calvo (bib032) 1994
M. Crouzeix, Sur l'approximation ds equations differentielles operationnelles lineaires par de methodes de Runge–Kutta, PhD thesis, Universite Paris, 1975
Kværnø (bib026) 2004; 44
Hairer, Lubich, Wanner (bib019) 2002
Butcher, Cash (bib010) 1990; 27
Hairer, Wanner (bib021) 1996
Cash (bib013) 1977; 19
Bickart (bib004) 1977; 14
Muir, Enright (bib028) 1987; 27
Alexander (bib001) 1977; 14
Dekker, Verwer (bib018) 1984
Butcher (bib009) 2003
Cash, Singhal (bib015) 1982; 2
Burrage, Chipman, Muir (bib007) 1994; 31
10.1016/j.apnum.2008.03.019_bib002
Cash (10.1016/j.apnum.2008.03.019_bib013) 1977; 19
10.1016/j.apnum.2008.03.019_bib025
10.1016/j.apnum.2008.03.019_bib027
Burrage (10.1016/j.apnum.2008.03.019_bib007) 1994; 31
10.1016/j.apnum.2008.03.019_bib029
Butcher (10.1016/j.apnum.2008.03.019_bib008) 1976; 16
van Bokhoven (10.1016/j.apnum.2008.03.019_bib033) 1980; 20
Kværnø (10.1016/j.apnum.2008.03.019_bib026) 2004; 44
Butcher (10.1016/j.apnum.2008.03.019_bib009) 2003
Burrage (10.1016/j.apnum.2008.03.019_bib005) 1978; 18
Bickart (10.1016/j.apnum.2008.03.019_bib004) 1977; 14
Butcher (10.1016/j.apnum.2008.03.019_bib010) 1990; 27
Hairer (10.1016/j.apnum.2008.03.019_bib020) 1993
Kulikov (10.1016/j.apnum.2008.03.019_bib022) 2007; 22
Berezin (10.1016/j.apnum.2008.03.019_bib003) 1962
10.1016/j.apnum.2008.03.019_bib016
Hairer (10.1016/j.apnum.2008.03.019_bib019) 2002
Muir (10.1016/j.apnum.2008.03.019_bib028) 1987; 27
Cash (10.1016/j.apnum.2008.03.019_bib015) 1982; 2
Kulikov (10.1016/j.apnum.2008.03.019_bib023) 2006; vol. 3991
Cash (10.1016/j.apnum.2008.03.019_bib012) 1975; 22
Kulikov (10.1016/j.apnum.2008.03.019_bib024) 2007; vol. 4487
Sanz-Serna (10.1016/j.apnum.2008.03.019_bib032) 1994
Butcher (10.1016/j.apnum.2008.03.019_bib011) 2000; 34
Burrage (10.1016/j.apnum.2008.03.019_bib006) 1980; 20
Dahlquist (10.1016/j.apnum.2008.03.019_bib017) 1963; 3
Alexander (10.1016/j.apnum.2008.03.019_bib001) 1977; 14
Cash (10.1016/j.apnum.2008.03.019_bib014) 1977; 20
Hairer (10.1016/j.apnum.2008.03.019_bib021) 1996
Nørsett (10.1016/j.apnum.2008.03.019_bib030) 1976; 16
Nørsett (10.1016/j.apnum.2008.03.019_bib031) 1977; 17
Dekker (10.1016/j.apnum.2008.03.019_bib018) 1984
References_xml – year: 2003
  ident: bib009
  article-title: Numerical Methods for Ordinary Differential Equations
– volume: 27
  start-page: 753
  year: 1990
  end-page: 761
  ident: bib010
  article-title: Towards efficient Runge–Kutta methods for stiff systems
  publication-title: SIAM J. Numer. Anal.
– volume: 14
  start-page: 1022
  year: 1977
  end-page: 1027
  ident: bib004
  article-title: An efficient solution process for implicit Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
– volume: 3
  start-page: 27
  year: 1963
  end-page: 43
  ident: bib017
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT
– volume: 31
  start-page: 876
  year: 1994
  end-page: 891
  ident: bib007
  article-title: Order results for mono-implicit Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
– volume: 27
  start-page: 403
  year: 1987
  end-page: 423
  ident: bib028
  article-title: Relations amogn some classes of implicit Runge–Kutta methods and their stability functions
  publication-title: BIT
– volume: 14
  start-page: 1006
  year: 1977
  end-page: 1024
  ident: bib001
  article-title: Diagonally implicit Runge–Kutta methods for stiff ODEs
  publication-title: SIAM J. Numer. Anal.
– volume: 44
  start-page: 489
  year: 2004
  end-page: 502
  ident: bib026
  article-title: Singly diagonally implicit Runge–Kutta methods with an explicit first stage
  publication-title: BIT
– reference: R. Alt, Methodes A-stables pour l'integration de systemes differentiels mal conditionnes, PhD thesis, Universite Paris, 1971
– year: 1996
  ident: bib021
  article-title: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
– volume: vol. 3991
  start-page: 781
  year: 2006
  end-page: 785
  ident: bib023
  article-title: On a family of cheap symmetric one-step methods of order four
  publication-title: Computational Science – ICCS 2006, Proceedings, Part I
– year: 2002
  ident: bib019
  article-title: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations
– volume: 20
  start-page: 34
  year: 1980
  end-page: 43
  ident: bib033
  article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations
  publication-title: BIT
– volume: vol. 4487
  start-page: 136
  year: 2007
  end-page: 143
  ident: bib024
  article-title: Numerical tests with Gauss-type nested implicit Runge–Kutta formulas
  publication-title: Computational Science — ICCS 2007, Proceedings, Part I
– volume: 18
  start-page: 22
  year: 1978
  end-page: 41
  ident: bib005
  article-title: A special family of Runge–Kutta methods for solving stiff differential equations
  publication-title: BIT
– reference: P. Leone, Symplecticity and symmetry of general integration methods, Thèse, Section de Mathématiques, Université de Gèneve, 2000
– volume: 2
  start-page: 211
  year: 1982
  end-page: 227
  ident: bib015
  article-title: Mono-implicit Runge–Kutta formulae for the numerical integration of stiff differential systems
  publication-title: IMA J. Numer. Anal.
– year: 1994
  ident: bib032
  article-title: Numerical Hamilton Problems
– volume: 20
  start-page: 326
  year: 1980
  end-page: 340
  ident: bib006
  article-title: An implementation of singly implicit Runge–Kutta methods
  publication-title: BIT
– volume: 20
  start-page: 425
  year: 1977
  end-page: 441
  ident: bib014
  article-title: On a note of the computational aspects of a class of implicit Runge–Kutta procedures
  publication-title: J. Inst. Math. Appl.
– volume: 17
  start-page: 200
  year: 1977
  end-page: 208
  ident: bib031
  article-title: Attainable order of rational approximations to the exponential function with only real poles
  publication-title: BIT
– reference: M. Crouzeix, Sur l'approximation ds equations differentielles operationnelles lineaires par de methodes de Runge–Kutta, PhD thesis, Universite Paris, 1975
– volume: 22
  start-page: 567
  year: 2007
  end-page: 590
  ident: bib022
  article-title: Asymptotic error estimate for general Newton-type methods and its application to differential equations
  publication-title: Russian J. Numer. Anal. Math. Model.
– year: 1993
  ident: bib020
  article-title: Solving Ordinary Differential Equations I: Nonstiff Problems
– reference: S.P. Nørsett, Semi-explicit Runge–Kutta methods, Report No. 6/74 (1974), Dept. of Math., University of Trondheim, Norway
– volume: 22
  start-page: 504
  year: 1975
  end-page: 511
  ident: bib012
  article-title: A class of implicit Runge–Kutta methods for the numerical solution of stiff ordinary differential equations
  publication-title: J. Assoc. Comput. Mach.
– volume: 16
  start-page: 237
  year: 1976
  end-page: 240
  ident: bib008
  article-title: On the implementation of implicit Runge–Kutta methods
  publication-title: BIT
– volume: 16
  start-page: 388
  year: 1976
  end-page: 393
  ident: bib030
  article-title: Runge–Kutta methods with multiple real eigenvalue only
  publication-title: BIT
– volume: 34
  start-page: 179
  year: 2000
  end-page: 188
  ident: bib011
  article-title: A new type of singly implicit Runge–Kutta methods
  publication-title: Appl. Numer. Math.
– volume: 19
  start-page: 455
  year: 1977
  end-page: 470
  ident: bib013
  article-title: On a class of implicit Runge–Kutta procedures
  publication-title: J. Inst. Math. Appl.
– reference: M. Kurdi, Stable high order methods for time discretization of stiff differential equations, PhD thesis, University of California, 1974
– year: 1962
  ident: bib003
  article-title: Computing Methods
– year: 1984
  ident: bib018
  article-title: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations
– volume: 14
  start-page: 1022
  year: 1977
  ident: 10.1016/j.apnum.2008.03.019_bib004
  article-title: An efficient solution process for implicit Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0714069
– volume: 18
  start-page: 22
  year: 1978
  ident: 10.1016/j.apnum.2008.03.019_bib005
  article-title: A special family of Runge–Kutta methods for solving stiff differential equations
  publication-title: BIT
  doi: 10.1007/BF01947741
– ident: 10.1016/j.apnum.2008.03.019_bib002
– year: 2002
  ident: 10.1016/j.apnum.2008.03.019_bib019
– year: 1994
  ident: 10.1016/j.apnum.2008.03.019_bib032
– volume: 27
  start-page: 403
  year: 1987
  ident: 10.1016/j.apnum.2008.03.019_bib028
  article-title: Relations amogn some classes of implicit Runge–Kutta methods and their stability functions
  publication-title: BIT
  doi: 10.1007/BF01933734
– year: 2003
  ident: 10.1016/j.apnum.2008.03.019_bib009
– year: 1996
  ident: 10.1016/j.apnum.2008.03.019_bib021
– volume: 14
  start-page: 1006
  year: 1977
  ident: 10.1016/j.apnum.2008.03.019_bib001
  article-title: Diagonally implicit Runge–Kutta methods for stiff ODEs
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0714068
– ident: 10.1016/j.apnum.2008.03.019_bib025
– volume: 20
  start-page: 425
  year: 1977
  ident: 10.1016/j.apnum.2008.03.019_bib014
  article-title: On a note of the computational aspects of a class of implicit Runge–Kutta procedures
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/20.4.425
– year: 1984
  ident: 10.1016/j.apnum.2008.03.019_bib018
– ident: 10.1016/j.apnum.2008.03.019_bib027
– volume: 16
  start-page: 237
  year: 1976
  ident: 10.1016/j.apnum.2008.03.019_bib008
  article-title: On the implementation of implicit Runge–Kutta methods
  publication-title: BIT
  doi: 10.1007/BF01932265
– ident: 10.1016/j.apnum.2008.03.019_bib029
– volume: 31
  start-page: 876
  year: 1994
  ident: 10.1016/j.apnum.2008.03.019_bib007
  article-title: Order results for mono-implicit Runge–Kutta methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0731047
– volume: vol. 3991
  start-page: 781
  year: 2006
  ident: 10.1016/j.apnum.2008.03.019_bib023
  article-title: On a family of cheap symmetric one-step methods of order four
– volume: 17
  start-page: 200
  year: 1977
  ident: 10.1016/j.apnum.2008.03.019_bib031
  article-title: Attainable order of rational approximations to the exponential function with only real poles
  publication-title: BIT
  doi: 10.1007/BF01932291
– year: 1962
  ident: 10.1016/j.apnum.2008.03.019_bib003
– volume: 2
  start-page: 211
  year: 1982
  ident: 10.1016/j.apnum.2008.03.019_bib015
  article-title: Mono-implicit Runge–Kutta formulae for the numerical integration of stiff differential systems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/2.2.211
– volume: 22
  start-page: 567
  year: 2007
  ident: 10.1016/j.apnum.2008.03.019_bib022
  article-title: Asymptotic error estimate for general Newton-type methods and its application to differential equations
  publication-title: Russian J. Numer. Anal. Math. Model.
  doi: 10.1515/rnam.2007.029
– volume: 20
  start-page: 326
  year: 1980
  ident: 10.1016/j.apnum.2008.03.019_bib006
  article-title: An implementation of singly implicit Runge–Kutta methods
  publication-title: BIT
  doi: 10.1007/BF01932774
– volume: 22
  start-page: 504
  year: 1975
  ident: 10.1016/j.apnum.2008.03.019_bib012
  article-title: A class of implicit Runge–Kutta methods for the numerical solution of stiff ordinary differential equations
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/321906.321915
– volume: 44
  start-page: 489
  year: 2004
  ident: 10.1016/j.apnum.2008.03.019_bib026
  article-title: Singly diagonally implicit Runge–Kutta methods with an explicit first stage
  publication-title: BIT
  doi: 10.1023/B:BITN.0000046811.70614.38
– volume: vol. 4487
  start-page: 136
  year: 2007
  ident: 10.1016/j.apnum.2008.03.019_bib024
  article-title: Numerical tests with Gauss-type nested implicit Runge–Kutta formulas
– volume: 16
  start-page: 388
  year: 1976
  ident: 10.1016/j.apnum.2008.03.019_bib030
  article-title: Runge–Kutta methods with multiple real eigenvalue only
  publication-title: BIT
  doi: 10.1007/BF01932722
– ident: 10.1016/j.apnum.2008.03.019_bib016
– volume: 20
  start-page: 34
  year: 1980
  ident: 10.1016/j.apnum.2008.03.019_bib033
  article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations
  publication-title: BIT
  doi: 10.1007/BF01933583
– volume: 3
  start-page: 27
  year: 1963
  ident: 10.1016/j.apnum.2008.03.019_bib017
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT
  doi: 10.1007/BF01963532
– volume: 27
  start-page: 753
  year: 1990
  ident: 10.1016/j.apnum.2008.03.019_bib010
  article-title: Towards efficient Runge–Kutta methods for stiff systems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727044
– volume: 34
  start-page: 179
  year: 2000
  ident: 10.1016/j.apnum.2008.03.019_bib011
  article-title: A new type of singly implicit Runge–Kutta methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(99)00126-9
– year: 1993
  ident: 10.1016/j.apnum.2008.03.019_bib020
– volume: 19
  start-page: 455
  year: 1977
  ident: 10.1016/j.apnum.2008.03.019_bib013
  article-title: On a class of implicit Runge–Kutta procedures
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/19.4.455
SSID ssj0005540
Score 2.0094492
Snippet This paper deals with a special family of implicit Runge–Kutta formulas of orders 2, 4 and 6. These methods are of Gauss type; i.e., they are based on Gauss...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 707
SubjectTerms Almost symplectic integration
Approximations and expansions
Exact sciences and technology
Gauss-type methods
Local error estimation
Mathematical analysis
Mathematics
Measure and integration
Nested implicit Runge–Kutta formulas
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Ordinary differential equations
Real functions
Sciences and techniques of general use
Title Adaptive nested implicit Runge–Kutta formulas of Gauss type
URI https://dx.doi.org/10.1016/j.apnum.2008.03.019
Volume 59
WOSCitedRecordID wos000263527300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005540
  issn: 0168-9274
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMICSitKI_KB25LViFObEecKig0tCwVtNVyiuw8pK1CGnWTqj-fiV_ZZaGIAxcriuxY8ed8M57MA6FXb2guOWXUk4XP4YAifY-HGTQZgc885JFUZTrPj9l0ymez-GQ0SmwszHXF6prf3MTNf4Ua7gHYfejsP8DtHgo34BpAhxZgh3Yd-N_KH6tZ1p3-HVONf7jkrIvlPbKfi0a5DtXK6tmHTFbzbN6OvwIFFN5R17ZChTd2lVAuHx9FB8TYm20dUZ8dJ0dfzpV5fTL-3jmLzWEyfZ8oH4JvE2NLtcaFePCu0hYvI56XDZAUCDLQlXUsg5qc3vOVqB1NiEzXtDWylekY5DXa1haEi4loYGWMgyuZ-IZMV5Jk_yK8nEth0CsqPonuoM2AUA7n8M395GD2afD3iVR0rHsBm4JKOfutTfwnNeVBIxaAW6mrniypIqeP0PYQpIlPHPyP0aiot9BDgz02nL3YQvc_D-A_QW8t5lhjji3meAlzbDHHlyVWmOMe82109uHg9N2hZwpoeBkhpPVKCfp3IKgsc9EfNRn1RUw5nAHynEcgB3PBZAlvG_IyDnJQfmPBM-hcUGB-HpIdtFFf1sVThENWwALLMI-YBA06gGERE72XJ-dhKcUuCux6pZnJLt8XOalS60Z4kapFNnVPSQrT7qLXblCjk6vc3p1aIFKjH2q9L4V9dPvAvRXY3GR20zz7W4fn6N7webxAG-1VV7xEd7Prdr642jNb7Se__Yzq
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Applied+numerical+mathematics&rft.atitle=Adaptive+nested+implicit+Runge-Kutta+formulas+of+Gauss+type&rft.au=KULIKOV%2C+G.+Yu&rft.au=SHINDIN%2C+S.+K&rft.date=2009-03-01&rft.pub=Elsevier&rft.issn=0168-9274&rft.volume=59&rft.issue=3-4&rft.spage=707&rft.epage=722&rft_id=info:doi/10.1016%2Fj.apnum.2008.03.019&rft.externalDBID=n%2Fa&rft.externalDocID=21244035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9274&client=summon