End-to-End Deep Learning of Optical Fiber Communications

In this paper, we implement an optical fiber communication system as an end-to-end deep neural network, including the complete chain of transmitter, channel model, and receiver. This approach enables the optimization of the transceiver in a single end-to-end process. We illustrate the benefits of th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of lightwave technology Ročník 36; číslo 20; s. 4843 - 4855
Hlavní autoři: Karanov, Boris, Chagnon, Mathieu, Thouin, Felix, Eriksson, Tobias A., Bulow, Henning, Lavery, Domanic, Bayvel, Polina, Schmalen, Laurent
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0733-8724, 1558-2213
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we implement an optical fiber communication system as an end-to-end deep neural network, including the complete chain of transmitter, channel model, and receiver. This approach enables the optimization of the transceiver in a single end-to-end process. We illustrate the benefits of this method by applying it to intensity modulation/direct detection (IM/DD) systems and show that we can achieve bit error rates below the 6.7% hard-decision forward error correction (HD-FEC) threshold. We model all componentry of the transmitter and receiver, as well as the fiber channel, and apply deep learning to find transmitter and receiver configurations minimizing the symbol error rate. We propose and verify in simulations a training method that yields robust and flexible transceivers that allow-without reconfiguration-reliable transmission over a large range of link dispersions. The results from end-to-end deep learning are successfully verified for the first time in an experiment. In particular, we achieve information rates of 42 Gb/s below the HD-FEC threshold at distances beyond 40 km. We find that our results outperform conventional IM/DD solutions based on two- and four-level pulse amplitude modulation with feedforward equalization at the receiver. Our study is the first step toward end-to-end deep learning based optimization of optical fiber communication systems.
AbstractList In this paper, we implement an optical fiber communication system as an end-to-end deep neural network, including the complete chain of transmitter, channel model, and receiver. This approach enables the optimization of the transceiver in a single end-to-end process. We illustrate the benefits of this method by applying it to intensity modulation/direct detection (IM/DD) systems and show that we can achieve bit error rates below the 6.7% hard-decision forward error correction (HD-FEC) threshold. We model all componentry of the transmitter and receiver, as well as the fiber channel, and apply deep learning to find transmitter and receiver configurations minimizing the symbol error rate. We propose and verify in simulations a training method that yields robust and flexible transceivers that allow-without reconfiguration-reliable transmission over a large range of link dispersions. The results from end-to-end deep learning are successfully verified for the first time in an experiment. In particular, we achieve information rates of 42 Gb/s below the HD-FEC threshold at distances beyond 40 km. We find that our results outperform conventional IM/DD solutions based on two- and four-level pulse amplitude modulation with feedforward equalization at the receiver. Our study is the first step toward end-to-end deep learning based optimization of optical fiber communication systems.
Author Karanov, Boris
Schmalen, Laurent
Bulow, Henning
Thouin, Felix
Lavery, Domanic
Chagnon, Mathieu
Eriksson, Tobias A.
Bayvel, Polina
Author_xml – sequence: 1
  givenname: Boris
  surname: Karanov
  fullname: Karanov, Boris
  email: boris.karanov.16@ucl.ac.uk
  organization: Nokia Bell Labs., Stuttgart, Germany
– sequence: 2
  givenname: Mathieu
  surname: Chagnon
  fullname: Chagnon, Mathieu
  organization: Nokia Bell Labs., Stuttgart, Germany
– sequence: 3
  givenname: Felix
  surname: Thouin
  fullname: Thouin, Felix
  organization: Sch. of Phys., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 4
  givenname: Tobias A.
  surname: Eriksson
  fullname: Eriksson, Tobias A.
  organization: Quantum ICT Adv. Dev. Center, Nat. Inst. of Inf. & Commun. Technol., Tokyo, Japan
– sequence: 5
  givenname: Henning
  surname: Bulow
  fullname: Bulow, Henning
  organization: Nokia Bell Labs., Stuttgart, Germany
– sequence: 6
  givenname: Domanic
  surname: Lavery
  fullname: Lavery, Domanic
  organization: Dept. of Electron. & Electr. Eng., Univ. Coll. London, London, UK
– sequence: 7
  givenname: Polina
  surname: Bayvel
  fullname: Bayvel, Polina
  organization: Dept. of Electron. & Electr. Eng., Univ. Coll. London, London, UK
– sequence: 8
  givenname: Laurent
  surname: Schmalen
  fullname: Schmalen, Laurent
  organization: Nokia Bell Labs., Stuttgart, Germany
BookMark eNp9kD1PwzAQhi1UJNrCjsQSiTnFH3Fsj6i0fChSlzJbTnJBrlo7OO7Av8clFQMD00mv3ufu9MzQxHkHCN0SvCAEq4e3arugmMgFlSVPwQWaEs5lTilhEzTFgrFcClpcodkw7DAmRSHFFMmVa_Po8zSyJ4A-q8AEZ91H5rts00fbmH22tjWEbOkPh6NLQbTeDdfosjP7AW7Oc47e16vt8iWvNs-vy8cqbxhjMe9qTCgnAEbwligQhGJgNW8UGAqloh1WLTG1EJ2oa1k3hKqGt0qlquGlYXN0P-7tg_88whD1zh-DSyc1pZxzgcuCp1Y5tprghyFApxsbfx6Nwdi9JlifLOlkSZ8s6bOlBOI_YB_swYSv_5C7EbEA8FuXBWNScfYN1mhy6Q
CODEN JLTEDG
CitedBy_id crossref_primary_10_1109_JLT_2019_2919713
crossref_primary_10_1109_JLT_2021_3138998
crossref_primary_10_1002_lpor_202400234
crossref_primary_10_1109_LPT_2019_2950189
crossref_primary_10_3390_app11041363
crossref_primary_10_3390_mi13010031
crossref_primary_10_1109_JLT_2021_3139167
crossref_primary_10_1109_JSAC_2020_3036950
crossref_primary_10_1088_1361_6463_abd4a6
crossref_primary_10_1117_1_OE_64_4_048103
crossref_primary_10_1109_JLT_2021_3086301
crossref_primary_10_1109_JLT_2023_3265308
crossref_primary_10_1364_PRJ_551798
crossref_primary_10_1109_JLT_2022_3216591
crossref_primary_10_1109_JLT_2024_3486561
crossref_primary_10_1109_JLT_2024_3521642
crossref_primary_10_1109_TWC_2020_2976004
crossref_primary_10_1109_TCOMM_2021_3114682
crossref_primary_10_3390_rs14184487
crossref_primary_10_1109_TCOMM_2022_3228648
crossref_primary_10_1088_1742_6596_2086_1_012163
crossref_primary_10_1109_JLT_2019_2897313
crossref_primary_10_1109_JLT_2024_3403129
crossref_primary_10_1364_JOCN_532742
crossref_primary_10_1109_JLT_2022_3213519
crossref_primary_10_1109_JLT_2023_3318295
crossref_primary_10_3390_photonics9010030
crossref_primary_10_1109_TCCN_2020_2985371
crossref_primary_10_1109_ACCESS_2019_2936796
crossref_primary_10_1088_2515_7647_ab437b
crossref_primary_10_1364_JOCN_403500
crossref_primary_10_1109_JLT_2023_3276300
crossref_primary_10_1109_JLT_2023_3251660
crossref_primary_10_1109_JLT_2021_3133723
crossref_primary_10_1109_JSTQE_2022_3163474
crossref_primary_10_1364_JOCN_492770
crossref_primary_10_3390_electronics12204234
crossref_primary_10_1016_j_optlastec_2024_112090
crossref_primary_10_1364_AO_441357
crossref_primary_10_1002_lpor_202400097
crossref_primary_10_1109_ACCESS_2023_3245330
crossref_primary_10_1109_TCCN_2019_2943455
crossref_primary_10_1109_JPHOT_2023_3335398
crossref_primary_10_1364_JOCN_522761
crossref_primary_10_3390_photonics9080529
crossref_primary_10_3390_s23104618
crossref_primary_10_1109_ACCESS_2025_3569559
crossref_primary_10_1016_j_yofte_2025_104369
crossref_primary_10_1109_JLT_2023_3236400
crossref_primary_10_1109_JLT_2022_3149574
crossref_primary_10_1002_lpor_202100399
crossref_primary_10_1007_s11432_022_3643_y
crossref_primary_10_1109_JSTQE_2022_3155990
crossref_primary_10_1364_OE_572940
crossref_primary_10_1109_LCOMM_2024_3387286
crossref_primary_10_1109_JPHOT_2020_3038534
crossref_primary_10_1109_JLT_2021_3117687
crossref_primary_10_1109_TWC_2021_3101364
crossref_primary_10_1109_JLT_2020_3031363
crossref_primary_10_1109_JLT_2022_3219639
crossref_primary_10_33317_ssurj_634
crossref_primary_10_1109_ACCESS_2025_3565502
crossref_primary_10_1109_TWC_2019_2950026
crossref_primary_10_1016_j_optlastec_2024_110935
crossref_primary_10_1109_JLT_2023_3282791
crossref_primary_10_3390_photonics12010039
crossref_primary_10_1088_1742_6596_1775_1_012005
crossref_primary_10_1070_QEL17656
crossref_primary_10_1364_JOCN_500500
crossref_primary_10_1038_s41467_024_50307_y
crossref_primary_10_1109_TCOMM_2024_3454026
crossref_primary_10_1016_j_neucom_2022_09_088
crossref_primary_10_1007_s11082_025_08326_6
crossref_primary_10_1364_OE_563856
crossref_primary_10_1007_s00500_022_07181_x
crossref_primary_10_1109_JLT_2023_3311716
crossref_primary_10_1016_j_iopt_2025_100009
crossref_primary_10_1109_JLT_2020_3015586
crossref_primary_10_1109_TCCN_2018_2881442
crossref_primary_10_3390_electronics11071138
crossref_primary_10_1109_JLT_2020_2983229
crossref_primary_10_1109_JLT_2025_3550277
crossref_primary_10_1109_TCOMM_2020_3025363
crossref_primary_10_1109_JPHOT_2021_3128420
crossref_primary_10_1364_PRJ_547255
crossref_primary_10_3390_photonics10030294
crossref_primary_10_1016_j_yofte_2024_104069
crossref_primary_10_1109_JLT_2022_3141222
crossref_primary_10_1109_JLT_2025_3528542
crossref_primary_10_1109_TCOMM_2020_3002915
crossref_primary_10_1016_j_phycom_2022_101903
crossref_primary_10_1002_adpr_202400123
crossref_primary_10_1109_ACCESS_2019_2903130
crossref_primary_10_1109_JLT_2020_2989210
crossref_primary_10_1109_JLT_2024_3487204
crossref_primary_10_1109_ACCESS_2021_3068162
crossref_primary_10_1007_s11801_025_4064_2
crossref_primary_10_1109_TCSII_2022_3152051
crossref_primary_10_1109_JLT_2020_2993271
crossref_primary_10_1109_JLT_2020_3034692
crossref_primary_10_1109_JLT_2025_3555756
crossref_primary_10_1109_JPHOT_2023_3277129
crossref_primary_10_1515_nanoph_2021_0578
crossref_primary_10_1109_JLT_2021_3057473
crossref_primary_10_1515_joc_2020_0270
crossref_primary_10_3103_S1068335622130103
crossref_primary_10_1007_s12596_022_00907_y
crossref_primary_10_1109_LPT_2021_3067666
crossref_primary_10_1109_TCCN_2022_3161936
crossref_primary_10_1109_JLT_2023_3341495
crossref_primary_10_3103_S1068335624601602
crossref_primary_10_1016_j_infrared_2025_105724
crossref_primary_10_1109_JLT_2022_3148270
crossref_primary_10_1109_JPHOT_2023_3321736
crossref_primary_10_1109_JPHOT_2024_3370191
crossref_primary_10_1109_JLT_2024_3446573
crossref_primary_10_1109_JSEN_2022_3150240
crossref_primary_10_1109_JPHOT_2019_2938231
crossref_primary_10_1016_j_jneumeth_2021_109073
crossref_primary_10_1109_JLT_2021_3103339
crossref_primary_10_1109_JLT_2022_3169993
crossref_primary_10_1109_LCOMM_2020_3006921
crossref_primary_10_1109_JSTSP_2021_3098478
crossref_primary_10_1007_s11432_022_3734_0
crossref_primary_10_1109_TWC_2022_3157467
crossref_primary_10_1016_j_optcom_2023_129938
crossref_primary_10_3390_photonics10090993
crossref_primary_10_1016_j_exphem_2024_104166
crossref_primary_10_1109_JLT_2024_3454021
crossref_primary_10_1109_TCOMM_2019_2957482
crossref_primary_10_1109_TWC_2023_3241841
crossref_primary_10_1109_JLT_2019_2946572
crossref_primary_10_1109_JLT_2019_2922629
crossref_primary_10_1016_j_optlastec_2024_110729
crossref_primary_10_1088_2040_8986_ad261f
crossref_primary_10_3390_photonics11080702
crossref_primary_10_1016_j_optlastec_2025_113358
crossref_primary_10_1016_j_yofte_2024_104047
crossref_primary_10_1007_s41683_022_00095_8
crossref_primary_10_1109_JLT_2020_2976479
crossref_primary_10_1109_JLT_2020_2991028
crossref_primary_10_1109_JLT_2021_3109852
crossref_primary_10_1109_JSTQE_2023_3309692
crossref_primary_10_3390_photonics11080781
crossref_primary_10_1016_j_photonics_2020_100787
crossref_primary_10_1103_PhysRevResearch_3_013200
crossref_primary_10_1016_j_neucom_2019_11_066
crossref_primary_10_1364_OL_553826
crossref_primary_10_1016_j_optlastec_2025_113597
crossref_primary_10_1109_JPHOT_2023_3344184
crossref_primary_10_3390_photonics11121178
crossref_primary_10_1109_TETCI_2022_3182765
crossref_primary_10_3390_telecom4040035
crossref_primary_10_3788_COL202422_040604
crossref_primary_10_4018_IJCINI_355767
crossref_primary_10_1109_JLT_2020_3007919
crossref_primary_10_1109_ACCESS_2019_2923321
crossref_primary_10_1109_TCOMM_2022_3213284
crossref_primary_10_1109_ACCESS_2019_2907752
crossref_primary_10_1016_j_camwa_2024_06_012
crossref_primary_10_3390_math13172792
crossref_primary_10_1109_TCOMM_2019_2951563
crossref_primary_10_1007_s11432_020_2873_x
crossref_primary_10_1109_ACCESS_2021_3087136
crossref_primary_10_1016_j_yofte_2025_104218
crossref_primary_10_1109_JLT_2021_3139377
crossref_primary_10_1109_JLT_2020_2973232
crossref_primary_10_1109_JLT_2020_3033624
crossref_primary_10_1109_ACCESS_2020_2984218
crossref_primary_10_1109_JLT_2023_3282999
crossref_primary_10_1109_JLT_2024_3505415
crossref_primary_10_3390_photonics11100943
crossref_primary_10_1109_JLT_2023_3259929
crossref_primary_10_1109_JLT_2024_3466977
crossref_primary_10_3390_photonics11070613
crossref_primary_10_1038_s41598_025_07521_5
crossref_primary_10_1109_JLT_2024_3519360
crossref_primary_10_1109_JLT_2025_3591140
crossref_primary_10_1016_j_matpr_2022_07_183
crossref_primary_10_1109_JLT_2019_2901201
crossref_primary_10_1109_JLT_2023_3335394
crossref_primary_10_1007_s13369_025_10370_z
crossref_primary_10_1016_j_optcom_2021_126843
crossref_primary_10_1007_s42484_024_00150_7
crossref_primary_10_1109_JLT_2020_3034047
Cites_doi 10.1109/LPT.2014.2375960
10.1038/323533a0
10.1109/JLT.2016.2590989
10.1109/JLT.2009.2039464
10.1109/TSMCC.2009.2038279
10.1002/9780470918524
10.1016/S0165-1684(00)00030-X
10.1109/JLT.2015.2508502
10.1109/LPT.2017.2755663
10.1109/MWC.2016.1500356WC
10.1016/0893-6080(89)90020-8
10.1109/JLT.2008.927791
10.1364/OL.40.005113
10.1109/JLT.2017.2729603
10.1109/JSTSP.2017.2784180
10.1109/TCCN.2017.2758370
10.1364/OE.20.012422
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2018.2865109
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 4855
ExternalDocumentID 10_1109_JLT_2018_2865109
8433895
Genre orig-research
GrantInformation_xml – fundername: German Academic Exchange Council
– fundername: DAAD-RISE Professional scholarship
– fundername: EU Marie Skłodowska-Curie project COIN
  grantid: 676448/H2020-MSCA-ITN-2015
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c333t-fb01251eea75d19e7120e3b5c9ea2e692f09d1ab77f7bb8bc129c5d999e7a56a3
IEDL.DBID RIE
ISICitedReferencesCount 293
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444561700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8724
IngestDate Mon Jun 30 10:22:14 EDT 2025
Sat Nov 29 02:11:19 EST 2025
Tue Nov 18 22:07:53 EST 2025
Wed Aug 27 02:47:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/3.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-fb01251eea75d19e7120e3b5c9ea2e692f09d1ab77f7bb8bc129c5d999e7a56a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5357-4292
0000-0002-1459-9128
0000-0002-8508-7234
0000-0003-2977-7713
0000-0002-8983-5818
0000-0003-4494-4786
0000-0003-1657-8109
OpenAccessLink https://ieeexplore.ieee.org/document/8433895
PQID 2255570645
PQPubID 85485
PageCount 13
ParticipantIDs proquest_journals_2255570645
crossref_citationtrail_10_1109_JLT_2018_2865109
ieee_primary_8433895
crossref_primary_10_1109_JLT_2018_2865109
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
ref10
häger (ref14) 0
grassl (ref29) 2018
ref1
nair (ref21) 0
ref19
(ref24) 2018
ref18
rumelhart (ref22) 1986; 323
goodfellow (ref13) 2016
gaiarin (ref16) 0
estarán (ref17) 0
eiselt (ref20) 0
ref26
ref25
kingma (ref23) 2014
ref8
ref7
ref9
van der maaten (ref28) 2008; 9
ref4
ref3
ref6
ref5
pearson (ref27) 2011
khan (ref2) 0
References_xml – ident: ref10
  doi: 10.1109/LPT.2014.2375960
– volume: 323
  start-page: 533
  year: 1986
  ident: ref22
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref3
  doi: 10.1109/JLT.2016.2590989
– ident: ref6
  doi: 10.1109/JLT.2009.2039464
– year: 2018
  ident: ref29
  article-title: Bounds on the minimum distance of linear codes and quantum codes
– ident: ref8
  doi: 10.1109/TSMCC.2009.2038279
– ident: ref25
  doi: 10.1002/9780470918524
– year: 2016
  ident: ref13
  publication-title: Deep Learning
– ident: ref9
  doi: 10.1016/S0165-1684(00)00030-X
– ident: ref4
  doi: 10.1109/JLT.2015.2508502
– start-page: 807
  year: 0
  ident: ref21
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc Int Conf Mach Learn
– ident: ref12
  doi: 10.1109/LPT.2017.2755663
– start-page: 106
  year: 0
  ident: ref17
  article-title: Artificial neural networks for linear and non-linear impairment mitigation in high-baudrate IM/DD systems
  publication-title: Proc 42nd Eur Conf Opt Commun
– ident: ref1
  doi: 10.1109/MWC.2016.1500356WC
– year: 2018
  ident: ref24
– ident: ref7
  doi: 10.1016/0893-6080(89)90020-8
– year: 0
  ident: ref2
  article-title: Machine learning methods for optical communication systems
  publication-title: Proc Adv Photon IPR NOMA Sensors Netw SPPCom PS OSA Tech Dig
– year: 2011
  ident: ref27
  article-title: High-speed, analog-to-digital converter basics
– year: 2014
  ident: ref23
  article-title: Adam: A method for stochastic optimization
– ident: ref15
  doi: 10.1109/JLT.2008.927791
– ident: ref11
  doi: 10.1364/OL.40.005113
– year: 0
  ident: ref14
  article-title: Nonlinear interference mitigation via deep neural networks
  publication-title: Proc Tech Dig Opt Fiber Commun Conf
– ident: ref26
  doi: 10.1109/JLT.2017.2729603
– ident: ref19
  doi: 10.1109/JSTSP.2017.2784180
– ident: ref18
  doi: 10.1109/TCCN.2017.2758370
– ident: ref5
  doi: 10.1364/OE.20.012422
– year: 0
  ident: ref20
  article-title: Direct detection solutions for 100G and beyond
  publication-title: Proc Opt Fiber Commun Conf
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref28
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 0
  ident: ref16
  article-title: High speed PAM-8 optical interconnects with digital equalization based on neural network
  publication-title: Proc Asia Commun Photon Conf
SSID ssj0014487
Score 2.686158
Snippet In this paper, we implement an optical fiber communication system as an end-to-end deep neural network, including the complete chain of transmitter, channel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4843
SubjectTerms Artificial neural networks
Communication systems
Communications systems
Computer networks
Computer simulation
Deep learning
detection
Equalization
Error correction
Machine learning
modulation
neural networks
Optical communication
optical fiber communication
Optical fibers
Optical transmitters
Optimization
Pulse amplitude modulation
Receivers
Reconfiguration
Training
Transceivers
Transmitters
Title End-to-End Deep Learning of Optical Fiber Communications
URI https://ieeexplore.ieee.org/document/8433895
https://www.proquest.com/docview/2255570645
Volume 36
WOSCitedRecordID wos000444561700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2213
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014487
  issn: 0733-8724
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MoeDF6aY4nZKDF8FuXbM0yVF0Q2RMDxN2K23yJoK0Y938-02yrCiK4Kk9JKX8Xl7e93sAV2GIkRBSWQpgYIdtBynGYcCUjhSLbCjOUXrMJxMxm8nnGtxUtTCI6JLPsGtfXSxfF2ptXWU9MTAGlWQ7sMM539RqVREDY2a40mhOqeHwaLANSYay9zie2hwu0bVVmC718IsIcjNVflzETrqMGv_7r0M48Fokud2Q_QhqmDeh4TVK4vm1bMKeS_BUZQvEMNfBqgjMg9wjLohvrPpKijl5WjiPNhnZ9BHyrWakPIaX0XB69xD4qQmBopSugnkWWqUFMeVM9yXyfhQizZiSmEYYy2geSt1PM87nPMtEpozEV0wbRRF5yuKUnkA9L3I8BUIpl7EWMrVOD-ZCgCrS2liAgmmjq7WhtwUyUb6luJ1s8Z440yKUiYE-sdAnHvo2XFc7Fpt2Gn-sbVmoq3Ue5TZ0trRKPL-VibmVbC-xeMDOft91Dvv221bq9FkH6qvlGi9gV32s3srlpTtKnwdlwqk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58ohfrE-szBy-Ca3eTzSY5irb4qNVDBW_LbjIVQdrSrf5-kzQtiiJ42j0k7PJNJvOeATiJY6RSKu0ogJEbth0VmMUR14ZqTl0ozlO6LTod-fysHufgbFYLg4g--QzP3auP5ZuBfneusoZMrUGl-Dws8jSlyaRaaxYzsIaGL44WjFkep-k0KBmrxm2767K45Lmrw_TJh1-EkJ-q8uMq9vKlVfvfn63DWtAjycWE8Bswh_1NqAWdkgSOrTZh2ad46moLZLNvovEgsg9yhTgkobXqCxn0yMPQ-7RJyyWQkG9VI9U2PLWa3cvrKMxNiDRjbBz1ytipLYiF4CZRKBIaIyu5VlhQzBTtxcokRSlET5SlLLWV-ZobqyqiKHhWsB1Y6A_6uAuEMaEyI1Xh3B7cBwE1NcbagJIbq63VoTEFMtehqbibbfGWe-MiVrmFPnfQ5wH6OpzOdgwnDTX-WLvloJ6tCyjX4WBKqzxwXJXbe8l1E8tSvvf7rmNYue7et_P2TeduH1bdd5wMSvgBLIxH73gIS_pj_FqNjvyx-gRVlMXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-End+Deep+Learning+of+Optical+Fiber+Communications&rft.jtitle=Journal+of+lightwave+technology&rft.au=Karanov%2C+Boris&rft.au=Chagnon%2C+Mathieu&rft.au=Thouin%2C+Felix&rft.au=Eriksson%2C+Tobias+A&rft.date=2018-10-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=36&rft.issue=20&rft.spage=4843&rft_id=info:doi/10.1109%2FJLT.2018.2865109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon