Flow and heat transfer in cross-stream type T-junctions: A computational study

•The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration subject to temperature-dependent fluid property conditions by Hirota et al. (2010).•Preliminary, a quasi two-dimensional configuration with cons...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of heat and fluid flow Vol. 71; pp. 179 - 188
Main Authors: Krumbein, B., Termini, V., Jakirlić, S., Tropea, C.
Format: Journal Article
Language:English
Published: Elsevier Inc 01.06.2018
Subjects:
ISSN:0142-727X, 1879-2278
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration subject to temperature-dependent fluid property conditions by Hirota et al. (2010).•Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014) is simulated.•The applied computational model is based on the VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014) applying an elliptic-relaxation eddy viscosity model as sub-scale model.•In addition, RANS (Reynolds averaged Navier–Stokes) computations employing the elliptic-relaxation-based eddy-viscosity model of Hanjalić et al. (2004), representing the constituent of the present VLES modelling scheme, are performed for the sake of a comparative assessment.•Very good agreement with the reference data is obtained in terms of mean flow and thermal fields as well as second moments for the quasi two-dimensional case, while the results of the 3D configuration suggest a more intensive mixing compared to the experiment. The present computational study is concerned with the thermal mixing of flow-crossing streams in a T-shaped junction, focussing primarily on a configuration subjected to temperature-dependent fluid property conditions. The reference experimental investigation is conducted by Hirota et al. (2010). Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014), is simulated. The presently applied computational model is based on a VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014). The residual turbulence is modeled employing the appropriately modified RANS-based (Reynolds-Averaged Navier–Stokes) elliptic-relaxation eddy-viscosity model of Hanjalić et al. (2004). In addition to the VLES, both flow configurations are computed applying the background RANS model representing the constituent of the present VLES method. Whereas the eddy viscosity model describes fully-modeled turbulence in the RANS framework, it relates to the unresolved sub-scale turbulence within the VLES methodology. Unlike the RANS method, the VLES method is capable of capturing the spectral dynamics of turbulence to an extent complying with the underlying grid resolution. The latter model feature contributes decisively to an appropriately intensified turbulence activity in the separated shear layer regions and, consequently, to an enhanced mixing process. The results obtained with the present VLES model follow closely the reference DNS data in the Hattori et al. (2014) case with respect to velocity and temperature fields as well as the fields of associated turbulent quantities in all characteristic regions of the flow domain: main and branch streams’ merging zone, flow-reversal and post-reattachment regions. In the more complex Hirota et al. (2010) configuration, the flow field is captured reasonably well, while the computationally obtained thermal fields suggest a somewhat more intensive mixing relative to the reference experiment.
AbstractList •The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration subject to temperature-dependent fluid property conditions by Hirota et al. (2010).•Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014) is simulated.•The applied computational model is based on the VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014) applying an elliptic-relaxation eddy viscosity model as sub-scale model.•In addition, RANS (Reynolds averaged Navier–Stokes) computations employing the elliptic-relaxation-based eddy-viscosity model of Hanjalić et al. (2004), representing the constituent of the present VLES modelling scheme, are performed for the sake of a comparative assessment.•Very good agreement with the reference data is obtained in terms of mean flow and thermal fields as well as second moments for the quasi two-dimensional case, while the results of the 3D configuration suggest a more intensive mixing compared to the experiment. The present computational study is concerned with the thermal mixing of flow-crossing streams in a T-shaped junction, focussing primarily on a configuration subjected to temperature-dependent fluid property conditions. The reference experimental investigation is conducted by Hirota et al. (2010). Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014), is simulated. The presently applied computational model is based on a VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014). The residual turbulence is modeled employing the appropriately modified RANS-based (Reynolds-Averaged Navier–Stokes) elliptic-relaxation eddy-viscosity model of Hanjalić et al. (2004). In addition to the VLES, both flow configurations are computed applying the background RANS model representing the constituent of the present VLES method. Whereas the eddy viscosity model describes fully-modeled turbulence in the RANS framework, it relates to the unresolved sub-scale turbulence within the VLES methodology. Unlike the RANS method, the VLES method is capable of capturing the spectral dynamics of turbulence to an extent complying with the underlying grid resolution. The latter model feature contributes decisively to an appropriately intensified turbulence activity in the separated shear layer regions and, consequently, to an enhanced mixing process. The results obtained with the present VLES model follow closely the reference DNS data in the Hattori et al. (2014) case with respect to velocity and temperature fields as well as the fields of associated turbulent quantities in all characteristic regions of the flow domain: main and branch streams’ merging zone, flow-reversal and post-reattachment regions. In the more complex Hirota et al. (2010) configuration, the flow field is captured reasonably well, while the computationally obtained thermal fields suggest a somewhat more intensive mixing relative to the reference experiment.
Author Krumbein, B.
Termini, V.
Tropea, C.
Jakirlić, S.
Author_xml – sequence: 1
  givenname: B.
  surname: Krumbein
  fullname: Krumbein, B.
  email: krumbein@sla.tu-darmstadt.de
– sequence: 2
  givenname: V.
  surname: Termini
  fullname: Termini, V.
– sequence: 3
  givenname: S.
  surname: Jakirlić
  fullname: Jakirlić, S.
  email: s.jakirlic@sla.tu-darmstadt.de
– sequence: 4
  givenname: C.
  orcidid: 0000-0002-1506-9655
  surname: Tropea
  fullname: Tropea, C.
BookMark eNqNkL1OwzAYRS1UJNrCO3hhTPBPErtIDFVFC1IFS5HYLMc_wlHqVLYD6tuTUKZOnT59wz2698zAxHfeAHCPUY4Rrh6a3DVfRibb9k7btvvJCcI8RzRHmF6BKeZskRHC-ARMES5Ixgj7vAGzGBuEUIUKNgVv6yEHpddwJMEUpI_WBOg8VKGLMYspGLmH6XgwcJc1vVfJdT4-wiVU3f7QJzn-soUx9fp4C66tbKO5-79z8LF-3q1esu375nW13GaKUpoyy1VJ-UIWlFWUI1nLslYLS3mNC24xZgwjhVVdckaItqYmxIxDbKExrkhJ5-DpxP0rGYwVh-D2MhwFRmKUIxpxJkeMcgSiYpAz5FdneeVOSwYDrr2YsjlRzDD125kgonLGK6NdMCoJ3bkLSb8rhJFJ
CitedBy_id crossref_primary_10_1134_S0040601523090070
crossref_primary_10_1080_10407782_2021_1969176
crossref_primary_10_1007_s40430_019_1776_x
crossref_primary_10_3390_app12157381
crossref_primary_10_1016_j_ces_2024_120310
Cites_doi 10.1016/j.nucengdes.2009.11.008
10.1016/S0045-7930(97)00036-4
10.1016/j.ijheatfluidflow.2014.05.008
10.1115/1.2911398
10.1007/s10494-017-9867-1
10.1016/j.ijheatfluidflow.2007.03.004
10.1016/j.nucengdes.2010.05.056
10.1088/1468-5248/1/1/011
10.1016/j.ijheatfluidflow.2004.07.005
10.1016/j.nucengdes.2008.09.003
10.1080/14786449308620508
10.1137/0721062
10.1063/1.869966
10.1016/j.nucengdes.2009.11.027
10.2514/2.7499
10.1016/j.ijheatfluidflow.2010.04.006
10.1016/j.nucengdes.2013.08.021
10.1016/j.ijheatmasstransfer.2007.08.024
10.1016/j.ijheatfluidflow.2017.09.020
10.1080/10407782.2012.644167
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatfluidflow.2018.03.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2278
EndPage 188
ExternalDocumentID 10_1016_j_ijheatfluidflow_2018_03_013
S0142727X17310214
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADHUB
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c333t-f8c5389a4376380aba5bc9f38b148f117710c1cb58722dfeb22e2278f4d116253
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435428900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-727X
IngestDate Sat Nov 29 07:26:04 EST 2025
Tue Nov 18 22:37:12 EST 2025
Fri Feb 23 02:47:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords T-junction
Hybrid RANS/LES
Turbulence
Very large eddy simulation
Heat transfer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-f8c5389a4376380aba5bc9f38b148f117710c1cb58722dfeb22e2278f4d116253
ORCID 0000-0002-1506-9655
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_ijheatfluidflow_2018_03_013
crossref_citationtrail_10_1016_j_ijheatfluidflow_2018_03_013
elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2018_03_013
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle The International journal of heat and fluid flow
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sutherland (bib0021) 1893; 36
Dubief, Delcayre (bib0002) 2000; 1
John-Puthenveettil (bib0011) 2012
Smith, B., Mahaffy, J., Angele, K., Westin, J., 2011. Report of the OECD/NEA-Vattenfall T-junction benchmark exercise.
Speziale (bib0020) 1998; 36
Höhne (bib0008) 2014; 269
Hosseini, Yuki, Hashizume (bib0009) 2008; 51
Kays (bib0012) 1994; 116
Walker, Simiano, Zboray, Prasser (bib0024) 2009; 239
Chang, Jakirlić, Dietrich, Basara, Tropea (bib0001) 2014; 49
Hattori, Iwase, Houra, Tagawa (bib0006) 2014
Krumbein, Fooroghi, Jakirlić, Magagnato, Frohnapfel (bib0015) 2017; 99
Kuczaj, Komen, Loginov (bib0017) 2010; 240
Hanjalić, Popovac, Hadz̆iabdić (bib0005) 2004; 25
Kolar (bib0014) 2007; 28
Sweby (bib0022) 1984; 21
Hirota, Mohri, Asano, Goto (bib0007) 2010; 31
Jakirlić, Kutej, Hanssmann, Basara, Tropea (bib0010) 2016
Walker, Manera, Niceno, Simiano, Prasser (bib0023) 2010; 240
Frank, Lifante, Prasser, Menter (bib0003) 2010; 240
Moser, Kim, Mansour (bib0018) 1999; 11
Krumbein, Jakirlić, Tropea (bib0016) 2017; 68, doi:10.1016/j.ijheatfluidflow.2017.09.020
Kim, Jeong (bib0013) 2012; 61
Hanjalić, Jakirlić (bib0004) 1998; 27
Frank (10.1016/j.ijheatfluidflow.2018.03.013_bib0003) 2010; 240
Hosseini (10.1016/j.ijheatfluidflow.2018.03.013_bib0009) 2008; 51
10.1016/j.ijheatfluidflow.2018.03.013_bib0019
Hanjalić (10.1016/j.ijheatfluidflow.2018.03.013_bib0005) 2004; 25
Walker (10.1016/j.ijheatfluidflow.2018.03.013_bib0024) 2009; 239
John-Puthenveettil (10.1016/j.ijheatfluidflow.2018.03.013_sbref0011) 2012
Speziale (10.1016/j.ijheatfluidflow.2018.03.013_bib0020) 1998; 36
Krumbein (10.1016/j.ijheatfluidflow.2018.03.013_bib0016) 2017
Krumbein (10.1016/j.ijheatfluidflow.2018.03.013_bib0015) 2017; 99
Hanjalić (10.1016/j.ijheatfluidflow.2018.03.013_bib0004) 1998; 27
Hattori (10.1016/j.ijheatfluidflow.2018.03.013_bib0006) 2014
Walker (10.1016/j.ijheatfluidflow.2018.03.013_bib0023) 2010; 240
Kolar (10.1016/j.ijheatfluidflow.2018.03.013_bib0014) 2007; 28
Chang (10.1016/j.ijheatfluidflow.2018.03.013_bib0001) 2014; 49
Kays (10.1016/j.ijheatfluidflow.2018.03.013_bib0012) 1994; 116
Sweby (10.1016/j.ijheatfluidflow.2018.03.013_bib0022) 1984; 21
Jakirlić (10.1016/j.ijheatfluidflow.2018.03.013_bib0010) 2016
Kim (10.1016/j.ijheatfluidflow.2018.03.013_bib0013) 2012; 61
Moser (10.1016/j.ijheatfluidflow.2018.03.013_bib0018) 1999; 11
Sutherland (10.1016/j.ijheatfluidflow.2018.03.013_bib0021) 1893; 36
Hirota (10.1016/j.ijheatfluidflow.2018.03.013_bib0007) 2010; 31
Höhne (10.1016/j.ijheatfluidflow.2018.03.013_bib0008) 2014; 269
Dubief (10.1016/j.ijheatfluidflow.2018.03.013_bib0002) 2000; 1
Kuczaj (10.1016/j.ijheatfluidflow.2018.03.013_bib0017) 2010; 240
References_xml – year: 2014
  ident: bib0006
  article-title: DNS and LES for turbulent heat transfer and mixing in T-junction channel flow
  publication-title: 10th Int. ERCOFTAC Symp. on ETMM, Marbella, Spain
– year: 2016
  ident: bib0010
  article-title: Eddy-resolving simulations of the notchback DrivAer model: influence of underbody geometry and wheels rotation on aerodynamic behaviour
  publication-title: SAE Technical Paper 2016-01-1602
– volume: 68, doi:10.1016/j.ijheatfluidflow.2017.09.020
  year: 2017
  ident: bib0016
  article-title: VLES study of a jet impinging onto a heated wall
  publication-title: Int. J. Heat Fluid Flow
– volume: 240
  start-page: 2116
  year: 2010
  end-page: 2122
  ident: bib0017
  article-title: Large-eddy simulation study of turbulent mixing in a T-junction
  publication-title: Nuclear Eng. Des.
– volume: 31
  start-page: 776
  year: 2010
  end-page: 784
  ident: bib0007
  article-title: Experimental study on turbulent mixing process in cross-flow type T-junction
  publication-title: Int. J. Heat Fluid Flow
– reference: Smith, B., Mahaffy, J., Angele, K., Westin, J., 2011. Report of the OECD/NEA-Vattenfall T-junction benchmark exercise.
– volume: 36
  start-page: 173
  year: 1998
  end-page: 184
  ident: bib0020
  article-title: Turbulence modeling for time-dependent RANS and VLES: A review
  publication-title: AIAA J.
– volume: 269
  start-page: 149
  year: 2014
  end-page: 154
  ident: bib0008
  article-title: Scale resolved simulations of the OECD/NEA-Vattenfall T-junction benchmark
  publication-title: Nuclear Eng. Des.
– volume: 1
  start-page: N11
  year: 2000
  ident: bib0002
  article-title: On coherent-vortex identification in turbulence
  publication-title: J. Turbulence
– year: 2012
  ident: bib0011
  publication-title: Computational modelling of complex flows using eddy-resolving models accounting for near-wall turbulence
– volume: 99
  year: 2017
  ident: bib0015
  article-title: VLES modeling of flow over walls with variably-shaped roughness by reference to complementary DNS
  publication-title: Flow Turbul. Combust.
– volume: 21
  start-page: 995
  year: 1984
  end-page: 1011
  ident: bib0022
  article-title: High resolution schemes using flux limiters for hyperbolic conservation laws
  publication-title: SIAM J. Numer. Anal.
– volume: 49
  start-page: 28
  year: 2014
  end-page: 42
  ident: bib0001
  article-title: Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study
  publication-title: Int. J. Heat Fluid Flow
– volume: 240
  start-page: 2107
  year: 2010
  end-page: 2115
  ident: bib0023
  article-title: Steady-state RANS-simulations of the mixing in a T-junction
  publication-title: Nuclear Eng. Des.
– volume: 239
  start-page: 116
  year: 2009
  end-page: 126
  ident: bib0024
  article-title: Investigations on mixing phenomena in single-phase flow in a T-junction geometry
  publication-title: Nuclear Eng. Des.
– volume: 116
  start-page: 284
  year: 1994
  end-page: 295
  ident: bib0012
  article-title: Turbulent Prandtl number - where are we?
  publication-title: ASME J. Heat Transf.
– volume: 36
  start-page: 507
  year: 1893
  end-page: 531
  ident: bib0021
  article-title: The viscosity of gases and molecular force
  publication-title: Philos. Mag. Series 5
– volume: 61
  start-page: 180
  year: 2012
  end-page: 200
  ident: bib0013
  article-title: Large eddy simulation of turbulent flow in a T-junction
  publication-title: Numer. Heat Transf. Part A
– volume: 28
  start-page: 638
  year: 2007
  end-page: 652
  ident: bib0014
  article-title: Vortex identification: New requirements and limitations
  publication-title: Int. J. Heat Fluid Flow
– volume: 27
  start-page: 137
  year: 1998
  end-page: 156
  ident: bib0004
  article-title: Contribution towards the second-moment closure modelling of separating turbulent flows
  publication-title: Comput. Fluids
– volume: 25
  start-page: 1047
  year: 2004
  end-page: 1051
  ident: bib0005
  article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD
  publication-title: Int. J. Heat Fluid Flow
– volume: 240
  start-page: 2313
  year: 2010
  end-page: 2328
  ident: bib0003
  article-title: Simulation of turbulent and thermal mixing in a T-junction using URANS and scale-resolving turbulence models in ANSYS CFX
  publication-title: Nuclear Eng. Des.
– volume: 51
  start-page: 2444
  year: 2008
  end-page: 2454
  ident: bib0009
  article-title: Classification of turbulent jets in a T-junction area with a 90-deg bend upstream
  publication-title: Int. J. Heat Mass Transf.
– volume: 11
  start-page: 943
  year: 1999
  end-page: 945
  ident: bib0018
  article-title: Direct numerical simulation of turbulent channel flow up to
  publication-title: Phys. Fluids
– volume: 240
  start-page: 2313
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0003
  article-title: Simulation of turbulent and thermal mixing in a T-junction using URANS and scale-resolving turbulence models in ANSYS CFX
  publication-title: Nuclear Eng. Des.
  doi: 10.1016/j.nucengdes.2009.11.008
– volume: 27
  start-page: 137
  issue: 2
  year: 1998
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0004
  article-title: Contribution towards the second-moment closure modelling of separating turbulent flows
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(97)00036-4
– volume: 49
  start-page: 28
  year: 2014
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0001
  article-title: Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2014.05.008
– volume: 116
  start-page: 284
  year: 1994
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0012
  article-title: Turbulent Prandtl number - where are we?
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2911398
– volume: 99
  year: 2017
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0015
  article-title: VLES modeling of flow over walls with variably-shaped roughness by reference to complementary DNS
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-017-9867-1
– volume: 28
  start-page: 638
  year: 2007
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0014
  article-title: Vortex identification: New requirements and limitations
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2007.03.004
– volume: 240
  start-page: 2107
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0023
  article-title: Steady-state RANS-simulations of the mixing in a T-junction
  publication-title: Nuclear Eng. Des.
  doi: 10.1016/j.nucengdes.2010.05.056
– volume: 1
  start-page: N11
  year: 2000
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0002
  article-title: On coherent-vortex identification in turbulence
  publication-title: J. Turbulence
  doi: 10.1088/1468-5248/1/1/011
– ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0019
– volume: 25
  start-page: 1047
  year: 2004
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0005
  article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2004.07.005
– year: 2014
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0006
  article-title: DNS and LES for turbulent heat transfer and mixing in T-junction channel flow
– volume: 239
  start-page: 116
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0024
  article-title: Investigations on mixing phenomena in single-phase flow in a T-junction geometry
  publication-title: Nuclear Eng. Des.
  doi: 10.1016/j.nucengdes.2008.09.003
– volume: 36
  start-page: 507
  issue: 223
  year: 1893
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0021
  article-title: The viscosity of gases and molecular force
  publication-title: Philos. Mag. Series 5
  doi: 10.1080/14786449308620508
– volume: 21
  start-page: 995
  issue: 5
  year: 1984
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0022
  article-title: High resolution schemes using flux limiters for hyperbolic conservation laws
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0721062
– volume: 11
  start-page: 943
  issue: 4
  year: 1999
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0018
  article-title: Direct numerical simulation of turbulent channel flow up to Reτ=590
  publication-title: Phys. Fluids
  doi: 10.1063/1.869966
– volume: 240
  start-page: 2116
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0017
  article-title: Large-eddy simulation study of turbulent mixing in a T-junction
  publication-title: Nuclear Eng. Des.
  doi: 10.1016/j.nucengdes.2009.11.027
– volume: 36
  start-page: 173
  issue: 2
  year: 1998
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0020
  article-title: Turbulence modeling for time-dependent RANS and VLES: A review
  publication-title: AIAA J.
  doi: 10.2514/2.7499
– year: 2016
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0010
  article-title: Eddy-resolving simulations of the notchback DrivAer model: influence of underbody geometry and wheels rotation on aerodynamic behaviour
– volume: 31
  start-page: 776
  year: 2010
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0007
  article-title: Experimental study on turbulent mixing process in cross-flow type T-junction
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.04.006
– volume: 269
  start-page: 149
  year: 2014
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0008
  article-title: Scale resolved simulations of the OECD/NEA-Vattenfall T-junction benchmark
  publication-title: Nuclear Eng. Des.
  doi: 10.1016/j.nucengdes.2013.08.021
– year: 2012
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_sbref0011
– volume: 51
  start-page: 2444
  year: 2008
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0009
  article-title: Classification of turbulent jets in a T-junction area with a 90-deg bend upstream
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.08.024
– year: 2017
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0016
  article-title: VLES study of a jet impinging onto a heated wall
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2017.09.020
– volume: 61
  start-page: 180
  year: 2012
  ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0013
  article-title: Large eddy simulation of turbulent flow in a T-junction
  publication-title: Numer. Heat Transf. Part A
  doi: 10.1080/10407782.2012.644167
SSID ssj0006047
Score 2.2436736
Snippet •The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 179
SubjectTerms Heat transfer
Hybrid RANS/LES
T-junction
Turbulence
Very large eddy simulation
Title Flow and heat transfer in cross-stream type T-junctions: A computational study
URI https://dx.doi.org/10.1016/j.ijheatfluidflow.2018.03.013
Volume 71
WOSCitedRecordID wos000435428900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2278
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006047
  issn: 0142-727X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaiFiE4tFBAlJd8gBPaaJ-1t-JAVLWCIkUcAsptZTu2tKvtpkrTqr-HX8qM7X2kIBSQuKwiK2uvM19mxrMz8xHy1kghRMJVoGORBKnKdJALbLnPYJxJFYcytWQTbDrl83n-dTT60dbC3NSsafjtbX75X0UNYyBsLJ39C3F3k8IAfAahwxXEDtetBH9WL12WL6pZpIAAx1Rj0vl7axEDrA4RFy72OgsqsGv2WVyJurIkD22AsO89W_Wg2owhDjpP2PVwYVNfl3hddvHxLyskHvHU8OMuWmATcWw6wfdu8Bxc2lVdWieX2dhs_3374sCGdsfDaEXE-6yqLoAJHn3M5kMN7EhYvAqNHLmMt8aRI_37RdG7mEM1LivcnN0Xbgtz9bjtWusqXDcbbN8xfF06YpvpVhV3pitwuiJMihCJkXdjluWgOXcnn0_n5529PwpTV5Tvd3afvOuzCP_wfL_3hAbezewR2fPHEjpxcHpMRro5IPv-iEK9Abg6IA8H_SufkClijYLIKS5PW6zRsqFDrFHEGh1g7ZhO6AbSqEXaU_Lt7HR28inwBB2BSpJkHRiuwF7mIkUrxUMhRSZVbhIu4ZBtMB0gClWkZMZZHC-MlnGssfTapIsogoN38ozsNMtGPydUMsN4xhchN4tUyAyJOphMJKzDNSiaQ_Kh_bEK5bvXI4lKXWwlvENy1N1-6dq4bHvjx1YyhfdJna9ZABK3m-LFv679kjzo_0KvyM56da1fk3vqZl1erd54GP4EB-C7Mg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+and+heat+transfer+in+cross-stream+type+T-junctions%3A+A+computational+study&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Krumbein%2C+B.&rft.au=Termini%2C+V.&rft.au=Jakirli%C4%87%2C+S.&rft.au=Tropea%2C+C.&rft.date=2018-06-01&rft.issn=0142-727X&rft.volume=71&rft.spage=179&rft.epage=188&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2018.03.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatfluidflow_2018_03_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon