Flow and heat transfer in cross-stream type T-junctions: A computational study
•The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration subject to temperature-dependent fluid property conditions by Hirota et al. (2010).•Preliminary, a quasi two-dimensional configuration with cons...
Uloženo v:
| Vydáno v: | The International journal of heat and fluid flow Ročník 71; s. 179 - 188 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.06.2018
|
| Témata: | |
| ISSN: | 0142-727X, 1879-2278 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration subject to temperature-dependent fluid property conditions by Hirota et al. (2010).•Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014) is simulated.•The applied computational model is based on the VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014) applying an elliptic-relaxation eddy viscosity model as sub-scale model.•In addition, RANS (Reynolds averaged Navier–Stokes) computations employing the elliptic-relaxation-based eddy-viscosity model of Hanjalić et al. (2004), representing the constituent of the present VLES modelling scheme, are performed for the sake of a comparative assessment.•Very good agreement with the reference data is obtained in terms of mean flow and thermal fields as well as second moments for the quasi two-dimensional case, while the results of the 3D configuration suggest a more intensive mixing compared to the experiment.
The present computational study is concerned with the thermal mixing of flow-crossing streams in a T-shaped junction, focussing primarily on a configuration subjected to temperature-dependent fluid property conditions. The reference experimental investigation is conducted by Hirota et al. (2010). Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014), is simulated. The presently applied computational model is based on a VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014). The residual turbulence is modeled employing the appropriately modified RANS-based (Reynolds-Averaged Navier–Stokes) elliptic-relaxation eddy-viscosity model of Hanjalić et al. (2004). In addition to the VLES, both flow configurations are computed applying the background RANS model representing the constituent of the present VLES method. Whereas the eddy viscosity model describes fully-modeled turbulence in the RANS framework, it relates to the unresolved sub-scale turbulence within the VLES methodology. Unlike the RANS method, the VLES method is capable of capturing the spectral dynamics of turbulence to an extent complying with the underlying grid resolution. The latter model feature contributes decisively to an appropriately intensified turbulence activity in the separated shear layer regions and, consequently, to an enhanced mixing process. The results obtained with the present VLES model follow closely the reference DNS data in the Hattori et al. (2014) case with respect to velocity and temperature fields as well as the fields of associated turbulent quantities in all characteristic regions of the flow domain: main and branch streams’ merging zone, flow-reversal and post-reattachment regions. In the more complex Hirota et al. (2010) configuration, the flow field is captured reasonably well, while the computationally obtained thermal fields suggest a somewhat more intensive mixing relative to the reference experiment. |
|---|---|
| AbstractList | •The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration subject to temperature-dependent fluid property conditions by Hirota et al. (2010).•Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014) is simulated.•The applied computational model is based on the VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014) applying an elliptic-relaxation eddy viscosity model as sub-scale model.•In addition, RANS (Reynolds averaged Navier–Stokes) computations employing the elliptic-relaxation-based eddy-viscosity model of Hanjalić et al. (2004), representing the constituent of the present VLES modelling scheme, are performed for the sake of a comparative assessment.•Very good agreement with the reference data is obtained in terms of mean flow and thermal fields as well as second moments for the quasi two-dimensional case, while the results of the 3D configuration suggest a more intensive mixing compared to the experiment.
The present computational study is concerned with the thermal mixing of flow-crossing streams in a T-shaped junction, focussing primarily on a configuration subjected to temperature-dependent fluid property conditions. The reference experimental investigation is conducted by Hirota et al. (2010). Preliminary, a quasi two-dimensional configuration with constant fluid properties, for which the reference DNS (Direct Numerical Simulation) database is made available by Hattori et al. (2014), is simulated. The presently applied computational model is based on a VLES (Very Large Eddy Simulation) formulation of Chang et al. (2014). The residual turbulence is modeled employing the appropriately modified RANS-based (Reynolds-Averaged Navier–Stokes) elliptic-relaxation eddy-viscosity model of Hanjalić et al. (2004). In addition to the VLES, both flow configurations are computed applying the background RANS model representing the constituent of the present VLES method. Whereas the eddy viscosity model describes fully-modeled turbulence in the RANS framework, it relates to the unresolved sub-scale turbulence within the VLES methodology. Unlike the RANS method, the VLES method is capable of capturing the spectral dynamics of turbulence to an extent complying with the underlying grid resolution. The latter model feature contributes decisively to an appropriately intensified turbulence activity in the separated shear layer regions and, consequently, to an enhanced mixing process. The results obtained with the present VLES model follow closely the reference DNS data in the Hattori et al. (2014) case with respect to velocity and temperature fields as well as the fields of associated turbulent quantities in all characteristic regions of the flow domain: main and branch streams’ merging zone, flow-reversal and post-reattachment regions. In the more complex Hirota et al. (2010) configuration, the flow field is captured reasonably well, while the computationally obtained thermal fields suggest a somewhat more intensive mixing relative to the reference experiment. |
| Author | Krumbein, B. Termini, V. Tropea, C. Jakirlić, S. |
| Author_xml | – sequence: 1 givenname: B. surname: Krumbein fullname: Krumbein, B. email: krumbein@sla.tu-darmstadt.de – sequence: 2 givenname: V. surname: Termini fullname: Termini, V. – sequence: 3 givenname: S. surname: Jakirlić fullname: Jakirlić, S. email: s.jakirlic@sla.tu-darmstadt.de – sequence: 4 givenname: C. orcidid: 0000-0002-1506-9655 surname: Tropea fullname: Tropea, C. |
| BookMark | eNqNkL1OwzAYRS1UJNrCO3hhTPBPErtIDFVFC1IFS5HYLMc_wlHqVLYD6tuTUKZOnT59wz2698zAxHfeAHCPUY4Rrh6a3DVfRibb9k7btvvJCcI8RzRHmF6BKeZskRHC-ARMES5Ixgj7vAGzGBuEUIUKNgVv6yEHpddwJMEUpI_WBOg8VKGLMYspGLmH6XgwcJc1vVfJdT4-wiVU3f7QJzn-soUx9fp4C66tbKO5-79z8LF-3q1esu375nW13GaKUpoyy1VJ-UIWlFWUI1nLslYLS3mNC24xZgwjhVVdckaItqYmxIxDbKExrkhJ5-DpxP0rGYwVh-D2MhwFRmKUIxpxJkeMcgSiYpAz5FdneeVOSwYDrr2YsjlRzDD125kgonLGK6NdMCoJ3bkLSb8rhJFJ |
| CitedBy_id | crossref_primary_10_1134_S0040601523090070 crossref_primary_10_1080_10407782_2021_1969176 crossref_primary_10_1007_s40430_019_1776_x crossref_primary_10_3390_app12157381 crossref_primary_10_1016_j_ces_2024_120310 |
| Cites_doi | 10.1016/j.nucengdes.2009.11.008 10.1016/S0045-7930(97)00036-4 10.1016/j.ijheatfluidflow.2014.05.008 10.1115/1.2911398 10.1007/s10494-017-9867-1 10.1016/j.ijheatfluidflow.2007.03.004 10.1016/j.nucengdes.2010.05.056 10.1088/1468-5248/1/1/011 10.1016/j.ijheatfluidflow.2004.07.005 10.1016/j.nucengdes.2008.09.003 10.1080/14786449308620508 10.1137/0721062 10.1063/1.869966 10.1016/j.nucengdes.2009.11.027 10.2514/2.7499 10.1016/j.ijheatfluidflow.2010.04.006 10.1016/j.nucengdes.2013.08.021 10.1016/j.ijheatmasstransfer.2007.08.024 10.1016/j.ijheatfluidflow.2017.09.020 10.1080/10407782.2012.644167 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijheatfluidflow.2018.03.013 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2278 |
| EndPage | 188 |
| ExternalDocumentID | 10_1016_j_ijheatfluidflow_2018_03_013 S0142727X17310214 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADHUB ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c333t-f8c5389a4376380aba5bc9f38b148f117710c1cb58722dfeb22e2278f4d116253 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435428900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-727X |
| IngestDate | Sat Nov 29 07:26:04 EST 2025 Tue Nov 18 22:37:12 EST 2025 Fri Feb 23 02:47:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | T-junction Hybrid RANS/LES Turbulence Very large eddy simulation Heat transfer |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-f8c5389a4376380aba5bc9f38b148f117710c1cb58722dfeb22e2278f4d116253 |
| ORCID | 0000-0002-1506-9655 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_ijheatfluidflow_2018_03_013 crossref_citationtrail_10_1016_j_ijheatfluidflow_2018_03_013 elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2018_03_013 |
| PublicationCentury | 2000 |
| PublicationDate | June 2018 2018-06-00 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | The International journal of heat and fluid flow |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Sutherland (bib0021) 1893; 36 Dubief, Delcayre (bib0002) 2000; 1 John-Puthenveettil (bib0011) 2012 Smith, B., Mahaffy, J., Angele, K., Westin, J., 2011. Report of the OECD/NEA-Vattenfall T-junction benchmark exercise. Speziale (bib0020) 1998; 36 Höhne (bib0008) 2014; 269 Hosseini, Yuki, Hashizume (bib0009) 2008; 51 Kays (bib0012) 1994; 116 Walker, Simiano, Zboray, Prasser (bib0024) 2009; 239 Chang, Jakirlić, Dietrich, Basara, Tropea (bib0001) 2014; 49 Hattori, Iwase, Houra, Tagawa (bib0006) 2014 Krumbein, Fooroghi, Jakirlić, Magagnato, Frohnapfel (bib0015) 2017; 99 Kuczaj, Komen, Loginov (bib0017) 2010; 240 Hanjalić, Popovac, Hadz̆iabdić (bib0005) 2004; 25 Kolar (bib0014) 2007; 28 Sweby (bib0022) 1984; 21 Hirota, Mohri, Asano, Goto (bib0007) 2010; 31 Jakirlić, Kutej, Hanssmann, Basara, Tropea (bib0010) 2016 Walker, Manera, Niceno, Simiano, Prasser (bib0023) 2010; 240 Frank, Lifante, Prasser, Menter (bib0003) 2010; 240 Moser, Kim, Mansour (bib0018) 1999; 11 Krumbein, Jakirlić, Tropea (bib0016) 2017; 68, doi:10.1016/j.ijheatfluidflow.2017.09.020 Kim, Jeong (bib0013) 2012; 61 Hanjalić, Jakirlić (bib0004) 1998; 27 Frank (10.1016/j.ijheatfluidflow.2018.03.013_bib0003) 2010; 240 Hosseini (10.1016/j.ijheatfluidflow.2018.03.013_bib0009) 2008; 51 10.1016/j.ijheatfluidflow.2018.03.013_bib0019 Hanjalić (10.1016/j.ijheatfluidflow.2018.03.013_bib0005) 2004; 25 Walker (10.1016/j.ijheatfluidflow.2018.03.013_bib0024) 2009; 239 John-Puthenveettil (10.1016/j.ijheatfluidflow.2018.03.013_sbref0011) 2012 Speziale (10.1016/j.ijheatfluidflow.2018.03.013_bib0020) 1998; 36 Krumbein (10.1016/j.ijheatfluidflow.2018.03.013_bib0016) 2017 Krumbein (10.1016/j.ijheatfluidflow.2018.03.013_bib0015) 2017; 99 Hanjalić (10.1016/j.ijheatfluidflow.2018.03.013_bib0004) 1998; 27 Hattori (10.1016/j.ijheatfluidflow.2018.03.013_bib0006) 2014 Walker (10.1016/j.ijheatfluidflow.2018.03.013_bib0023) 2010; 240 Kolar (10.1016/j.ijheatfluidflow.2018.03.013_bib0014) 2007; 28 Chang (10.1016/j.ijheatfluidflow.2018.03.013_bib0001) 2014; 49 Kays (10.1016/j.ijheatfluidflow.2018.03.013_bib0012) 1994; 116 Sweby (10.1016/j.ijheatfluidflow.2018.03.013_bib0022) 1984; 21 Jakirlić (10.1016/j.ijheatfluidflow.2018.03.013_bib0010) 2016 Kim (10.1016/j.ijheatfluidflow.2018.03.013_bib0013) 2012; 61 Moser (10.1016/j.ijheatfluidflow.2018.03.013_bib0018) 1999; 11 Sutherland (10.1016/j.ijheatfluidflow.2018.03.013_bib0021) 1893; 36 Hirota (10.1016/j.ijheatfluidflow.2018.03.013_bib0007) 2010; 31 Höhne (10.1016/j.ijheatfluidflow.2018.03.013_bib0008) 2014; 269 Dubief (10.1016/j.ijheatfluidflow.2018.03.013_bib0002) 2000; 1 Kuczaj (10.1016/j.ijheatfluidflow.2018.03.013_bib0017) 2010; 240 |
| References_xml | – year: 2014 ident: bib0006 article-title: DNS and LES for turbulent heat transfer and mixing in T-junction channel flow publication-title: 10th Int. ERCOFTAC Symp. on ETMM, Marbella, Spain – year: 2016 ident: bib0010 article-title: Eddy-resolving simulations of the notchback DrivAer model: influence of underbody geometry and wheels rotation on aerodynamic behaviour publication-title: SAE Technical Paper 2016-01-1602 – volume: 68, doi:10.1016/j.ijheatfluidflow.2017.09.020 year: 2017 ident: bib0016 article-title: VLES study of a jet impinging onto a heated wall publication-title: Int. J. Heat Fluid Flow – volume: 240 start-page: 2116 year: 2010 end-page: 2122 ident: bib0017 article-title: Large-eddy simulation study of turbulent mixing in a T-junction publication-title: Nuclear Eng. Des. – volume: 31 start-page: 776 year: 2010 end-page: 784 ident: bib0007 article-title: Experimental study on turbulent mixing process in cross-flow type T-junction publication-title: Int. J. Heat Fluid Flow – reference: Smith, B., Mahaffy, J., Angele, K., Westin, J., 2011. Report of the OECD/NEA-Vattenfall T-junction benchmark exercise. – volume: 36 start-page: 173 year: 1998 end-page: 184 ident: bib0020 article-title: Turbulence modeling for time-dependent RANS and VLES: A review publication-title: AIAA J. – volume: 269 start-page: 149 year: 2014 end-page: 154 ident: bib0008 article-title: Scale resolved simulations of the OECD/NEA-Vattenfall T-junction benchmark publication-title: Nuclear Eng. Des. – volume: 1 start-page: N11 year: 2000 ident: bib0002 article-title: On coherent-vortex identification in turbulence publication-title: J. Turbulence – year: 2012 ident: bib0011 publication-title: Computational modelling of complex flows using eddy-resolving models accounting for near-wall turbulence – volume: 99 year: 2017 ident: bib0015 article-title: VLES modeling of flow over walls with variably-shaped roughness by reference to complementary DNS publication-title: Flow Turbul. Combust. – volume: 21 start-page: 995 year: 1984 end-page: 1011 ident: bib0022 article-title: High resolution schemes using flux limiters for hyperbolic conservation laws publication-title: SIAM J. Numer. Anal. – volume: 49 start-page: 28 year: 2014 end-page: 42 ident: bib0001 article-title: Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study publication-title: Int. J. Heat Fluid Flow – volume: 240 start-page: 2107 year: 2010 end-page: 2115 ident: bib0023 article-title: Steady-state RANS-simulations of the mixing in a T-junction publication-title: Nuclear Eng. Des. – volume: 239 start-page: 116 year: 2009 end-page: 126 ident: bib0024 article-title: Investigations on mixing phenomena in single-phase flow in a T-junction geometry publication-title: Nuclear Eng. Des. – volume: 116 start-page: 284 year: 1994 end-page: 295 ident: bib0012 article-title: Turbulent Prandtl number - where are we? publication-title: ASME J. Heat Transf. – volume: 36 start-page: 507 year: 1893 end-page: 531 ident: bib0021 article-title: The viscosity of gases and molecular force publication-title: Philos. Mag. Series 5 – volume: 61 start-page: 180 year: 2012 end-page: 200 ident: bib0013 article-title: Large eddy simulation of turbulent flow in a T-junction publication-title: Numer. Heat Transf. Part A – volume: 28 start-page: 638 year: 2007 end-page: 652 ident: bib0014 article-title: Vortex identification: New requirements and limitations publication-title: Int. J. Heat Fluid Flow – volume: 27 start-page: 137 year: 1998 end-page: 156 ident: bib0004 article-title: Contribution towards the second-moment closure modelling of separating turbulent flows publication-title: Comput. Fluids – volume: 25 start-page: 1047 year: 2004 end-page: 1051 ident: bib0005 article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD publication-title: Int. J. Heat Fluid Flow – volume: 240 start-page: 2313 year: 2010 end-page: 2328 ident: bib0003 article-title: Simulation of turbulent and thermal mixing in a T-junction using URANS and scale-resolving turbulence models in ANSYS CFX publication-title: Nuclear Eng. Des. – volume: 51 start-page: 2444 year: 2008 end-page: 2454 ident: bib0009 article-title: Classification of turbulent jets in a T-junction area with a 90-deg bend upstream publication-title: Int. J. Heat Mass Transf. – volume: 11 start-page: 943 year: 1999 end-page: 945 ident: bib0018 article-title: Direct numerical simulation of turbulent channel flow up to publication-title: Phys. Fluids – volume: 240 start-page: 2313 year: 2010 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0003 article-title: Simulation of turbulent and thermal mixing in a T-junction using URANS and scale-resolving turbulence models in ANSYS CFX publication-title: Nuclear Eng. Des. doi: 10.1016/j.nucengdes.2009.11.008 – volume: 27 start-page: 137 issue: 2 year: 1998 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0004 article-title: Contribution towards the second-moment closure modelling of separating turbulent flows publication-title: Comput. Fluids doi: 10.1016/S0045-7930(97)00036-4 – volume: 49 start-page: 28 year: 2014 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0001 article-title: Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2014.05.008 – volume: 116 start-page: 284 year: 1994 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0012 article-title: Turbulent Prandtl number - where are we? publication-title: ASME J. Heat Transf. doi: 10.1115/1.2911398 – volume: 99 year: 2017 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0015 article-title: VLES modeling of flow over walls with variably-shaped roughness by reference to complementary DNS publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-017-9867-1 – volume: 28 start-page: 638 year: 2007 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0014 article-title: Vortex identification: New requirements and limitations publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.03.004 – volume: 240 start-page: 2107 year: 2010 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0023 article-title: Steady-state RANS-simulations of the mixing in a T-junction publication-title: Nuclear Eng. Des. doi: 10.1016/j.nucengdes.2010.05.056 – volume: 1 start-page: N11 year: 2000 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0002 article-title: On coherent-vortex identification in turbulence publication-title: J. Turbulence doi: 10.1088/1468-5248/1/1/011 – ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0019 – volume: 25 start-page: 1047 year: 2004 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0005 article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2004.07.005 – year: 2014 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0006 article-title: DNS and LES for turbulent heat transfer and mixing in T-junction channel flow – volume: 239 start-page: 116 year: 2009 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0024 article-title: Investigations on mixing phenomena in single-phase flow in a T-junction geometry publication-title: Nuclear Eng. Des. doi: 10.1016/j.nucengdes.2008.09.003 – volume: 36 start-page: 507 issue: 223 year: 1893 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0021 article-title: The viscosity of gases and molecular force publication-title: Philos. Mag. Series 5 doi: 10.1080/14786449308620508 – volume: 21 start-page: 995 issue: 5 year: 1984 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0022 article-title: High resolution schemes using flux limiters for hyperbolic conservation laws publication-title: SIAM J. Numer. Anal. doi: 10.1137/0721062 – volume: 11 start-page: 943 issue: 4 year: 1999 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0018 article-title: Direct numerical simulation of turbulent channel flow up to Reτ=590 publication-title: Phys. Fluids doi: 10.1063/1.869966 – volume: 240 start-page: 2116 year: 2010 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0017 article-title: Large-eddy simulation study of turbulent mixing in a T-junction publication-title: Nuclear Eng. Des. doi: 10.1016/j.nucengdes.2009.11.027 – volume: 36 start-page: 173 issue: 2 year: 1998 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0020 article-title: Turbulence modeling for time-dependent RANS and VLES: A review publication-title: AIAA J. doi: 10.2514/2.7499 – year: 2016 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0010 article-title: Eddy-resolving simulations of the notchback DrivAer model: influence of underbody geometry and wheels rotation on aerodynamic behaviour – volume: 31 start-page: 776 year: 2010 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0007 article-title: Experimental study on turbulent mixing process in cross-flow type T-junction publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.04.006 – volume: 269 start-page: 149 year: 2014 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0008 article-title: Scale resolved simulations of the OECD/NEA-Vattenfall T-junction benchmark publication-title: Nuclear Eng. Des. doi: 10.1016/j.nucengdes.2013.08.021 – year: 2012 ident: 10.1016/j.ijheatfluidflow.2018.03.013_sbref0011 – volume: 51 start-page: 2444 year: 2008 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0009 article-title: Classification of turbulent jets in a T-junction area with a 90-deg bend upstream publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.08.024 – year: 2017 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0016 article-title: VLES study of a jet impinging onto a heated wall publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2017.09.020 – volume: 61 start-page: 180 year: 2012 ident: 10.1016/j.ijheatfluidflow.2018.03.013_bib0013 article-title: Large eddy simulation of turbulent flow in a T-junction publication-title: Numer. Heat Transf. Part A doi: 10.1080/10407782.2012.644167 |
| SSID | ssj0006047 |
| Score | 2.2436736 |
| Snippet | •The thermal mixing of flow-crossing streams in two T-shaped junction configurations is investigated computationally, focusing primarily on a configuration... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 179 |
| SubjectTerms | Heat transfer Hybrid RANS/LES T-junction Turbulence Very large eddy simulation |
| Title | Flow and heat transfer in cross-stream type T-junctions: A computational study |
| URI | https://dx.doi.org/10.1016/j.ijheatfluidflow.2018.03.013 |
| Volume | 71 |
| WOSCitedRecordID | wos000435428900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2278 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006047 issn: 0142-727X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0FpahOihQCmiFJAPcEJZxXnUDuLQVdUKClpxWNDeIsdxpEQhW223VT-nn8qM7Ty2ILQIcbEiK7GTmfG8Mg9C3kRag5gRuSe10F4kkQ-qWHhCaDh7GoyQxCQKf-HTqZjPk6-j0W2bC3Nd86YRNzfJxX9FNcwBsjF19i_Q3S0KE3ANSIcR0A7jRog_qxc2yhfZLLaAAMVUY9D5OyMRPcwOkT-s73XmVSDXzLvYFHVlmjy0DsK-9mzVE9W6D3FQecLshxsX9VWJ46Lzj39eYuMR1xp-3HkLTCCOCSf43k2eg0q7rEuj5HLjm-3vNz8OjGt3PPRWMNFHVVkXWptGsxblCWYaqPkBn1uhZDmx4ImHebpDVm27tThey2wXGie2me0O-ItEsM6JalxWCAUDAPx-DOoTprytTYW9U3QbY94CfCPGQ9P8_B7ZDnicAN_cnnw6nZ930v7Ij2xKvvuEB-RtH0P4h01_rwcNdJvZY7LrjBI6scT0hIx0s0ceOQOFOvZ_uUd2BtUrn5IpUhoFhFPcnraURsuGDimNIqXRAaW9pxO6RmfU0Nk--XZ2Ojv56Ln2HJ4Kw3DlFXCoQd2VEcoo4ctMxplKilBkYGIXGAzAfMVUFgseBHmhsyDQiNAiyhkDszt8RraaRaOfE6qkzMKC6yj3s4jHUiK_yBWTWDtIhuyAfGiBlSpXux5bqNRpG6RYpXdgnSKsUz9MAdYH5Kh7_MIWcdn0weMWM6nTSK2mmQJ5bbbEi39f4pA87I_SS7K1Wl7pV-S-ul6Vl8vXjiB_AhADu_I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+and+heat+transfer+in+cross-stream+type+T-junctions%3A+A+computational+study&rft.jtitle=The+International+journal+of+heat+and+fluid+flow&rft.au=Krumbein%2C+B.&rft.au=Termini%2C+V.&rft.au=Jakirli%C4%87%2C+S.&rft.au=Tropea%2C+C.&rft.date=2018-06-01&rft.pub=Elsevier+Inc&rft.issn=0142-727X&rft.eissn=1879-2278&rft.volume=71&rft.spage=179&rft.epage=188&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2018.03.013&rft.externalDocID=S0142727X17310214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon |