Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation
In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to dri...
Uložené v:
| Vydané v: | IEEE robotics and automation letters Ročník 5; číslo 2; s. 1142 - 1149 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!