Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation

In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to dri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 5; číslo 2; s. 1142 - 1149
Hlavní autori: Amini, Alexander, Gilitschenski, Igor, Phillips, Jacob, Moseyko, Julia, Banerjee, Rohan, Karaman, Sertac, Rus, Daniela
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.