Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation
In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to dri...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 5; no. 2; pp. 1142 - 1149 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!