Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation
In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to dri...
Uloženo v:
| Vydáno v: | IEEE robotics and automation letters Ročník 5; číslo 2; s. 1142 - 1149 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to drive along a continuum of new local trajectories consistent with the road appearance and semantics, each with a different view of the scene. We demonstrate the ability of policies learned within our simulator to generalize to and navigate in previously unseen real-world roads, without access to any human control labels during training. Our results validate the learned policy onboard a full-scale autonomous vehicle, including in previously un-encountered scenarios, such as new roads and novel, complex, near-crash situations. Our methods are scalable, leverage reinforcement learning, and apply broadly to situations requiring effective perception and robust operation in the physical world. |
|---|---|
| AbstractList | In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to drive along a continuum of new local trajectories consistent with the road appearance and semantics, each with a different view of the scene. We demonstrate the ability of policies learned within our simulator to generalize to and navigate in previously unseen real-world roads, without access to any human control labels during training. Our results validate the learned policy onboard a full-scale autonomous vehicle, including in previously un-encountered scenarios, such as new roads and novel, complex, near-crash situations. Our methods are scalable, leverage reinforcement learning, and apply broadly to situations requiring effective perception and robust operation in the physical world. |
| Author | Amini, Alexander Karaman, Sertac Phillips, Jacob Moseyko, Julia Gilitschenski, Igor Rus, Daniela Banerjee, Rohan |
| Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-9673-1267 surname: Amini fullname: Amini, Alexander email: amini@mit.edu organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America – sequence: 2 givenname: Igor orcidid: 0000-0001-6426-365X surname: Gilitschenski fullname: Gilitschenski, Igor email: igilitschenski@mit.edu organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America – sequence: 3 givenname: Jacob orcidid: 0000-0002-3276-7914 surname: Phillips fullname: Phillips, Jacob email: jdp99@mit.edu organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America – sequence: 4 givenname: Julia orcidid: 0000-0002-4977-4918 surname: Moseyko fullname: Moseyko, Julia email: jmoseyko@mit.edu organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America – sequence: 5 givenname: Rohan orcidid: 0000-0001-9235-0478 surname: Banerjee fullname: Banerjee, Rohan email: rohanb@mit.edu organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America – sequence: 6 givenname: Sertac orcidid: 0000-0002-2225-7275 surname: Karaman fullname: Karaman, Sertac email: sertac@mit.edu organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, United States of America – sequence: 7 givenname: Daniela orcidid: 0000-0001-5473-3566 surname: Rus fullname: Rus, Daniela email: rus@mit.edu organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America |
| BookMark | eNp9kM1LwzAYxoNMcM7dBS8Bz535aNLmOPahwkCZerWkaSoZbTKTVPC_t3VDxIOn5-Xl-b0fzzkYWWc1AJcYzTBG4maznc8IImhGBOcpTk_AmNAsS2jG-ehXfQamIewQQpiRjAo2Bq8bLb019g1uXdmFCBfORu8a-Ogao4wOsHYermyVRJf0AudddNa1rgtw6c3HQK69a-FSRpkMHW3hk2m7Rkbj7AU4rWUT9PSoE_CyXj0v7pLNw-39Yr5JFKU0JjVOqSqZkipLecZLzqUotaipkCLHEhGJ6v4zmbMyRajkWOWaI1rluiJVWaV0Aq4Pc_fevXc6xGLnOm_7lQWhjOBciIz1Ln5wKe9C8LoulInfd0YvTVNgVAxxFn2cxRBncYyzB9EfcO9NK_3nf8jVATFa6x97LljG8pR-AfEXgcc |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2024_110532 crossref_primary_10_1109_TIV_2020_3002505 crossref_primary_10_1109_ACCESS_2020_3040896 crossref_primary_10_3390_electronics12020302 crossref_primary_10_3390_s21113606 crossref_primary_10_1109_ACCESS_2025_3539761 crossref_primary_10_1109_JSEN_2023_3280959 crossref_primary_10_1109_LRA_2024_3368234 crossref_primary_10_1109_JIOT_2024_3513642 crossref_primary_10_1038_s41598_022_14737_2 crossref_primary_10_1109_TITS_2022_3177224 crossref_primary_10_1145_3460082 crossref_primary_10_1016_j_jnca_2023_103648 crossref_primary_10_1109_TITS_2024_3368136 crossref_primary_10_1109_TPAMI_2024_3435937 crossref_primary_10_3390_s22186793 crossref_primary_10_1109_ACCESS_2024_3496578 crossref_primary_10_1016_j_tre_2024_103748 crossref_primary_10_1007_s00521_024_09732_9 crossref_primary_10_1109_ACCESS_2024_3406219 crossref_primary_10_1109_TITS_2025_3558958 crossref_primary_10_1186_s10033_025_01336_1 crossref_primary_10_3390_s22124500 crossref_primary_10_1109_TITS_2025_3532803 crossref_primary_10_3390_info14050290 crossref_primary_10_1038_s42256_020_00237_3 crossref_primary_10_1007_s42421_023_00086_7 crossref_primary_10_1016_j_trc_2021_103008 crossref_primary_10_3390_electronics14152919 crossref_primary_10_1080_15472450_2025_2559224 crossref_primary_10_1109_LRA_2020_3039730 crossref_primary_10_1145_3749992 crossref_primary_10_1016_j_conengprac_2024_105947 crossref_primary_10_1109_TITS_2024_3452480 crossref_primary_10_1016_j_engappai_2025_111285 crossref_primary_10_1016_j_jocs_2023_102119 crossref_primary_10_1109_ACCESS_2021_3098675 crossref_primary_10_1109_TC_2023_3310678 crossref_primary_10_1016_j_jksuci_2022_03_013 crossref_primary_10_3390_robotics12050133 crossref_primary_10_1109_LRA_2021_3061336 crossref_primary_10_3390_app13116700 crossref_primary_10_3390_en13112917 crossref_primary_10_3390_ai5040105 crossref_primary_10_3390_s22208055 crossref_primary_10_1109_MNET_2023_3334285 crossref_primary_10_3389_frvir_2021_721933 crossref_primary_10_1109_TITS_2021_3131303 crossref_primary_10_1109_TIV_2022_3174029 crossref_primary_10_1177_01423312231197854 crossref_primary_10_1038_s42256_022_00556_7 crossref_primary_10_1016_j_neucom_2024_127874 crossref_primary_10_1109_TPAMI_2021_3102140 crossref_primary_10_3390_app15105424 crossref_primary_10_1016_j_neucom_2024_128161 crossref_primary_10_1016_j_isatra_2024_05_010 crossref_primary_10_1049_cvi2_12074 crossref_primary_10_1109_TASE_2024_3410891 crossref_primary_10_1016_j_infsof_2025_107859 crossref_primary_10_1109_JAS_2023_123375 crossref_primary_10_1016_j_prime_2024_100810 crossref_primary_10_1287_opre_2023_2436 crossref_primary_10_3390_s23208473 crossref_primary_10_1016_j_nic_2020_08_007 crossref_primary_10_1109_LCOMM_2023_3274649 crossref_primary_10_1109_TIV_2022_3195635 crossref_primary_10_1016_j_engappai_2024_109600 crossref_primary_10_1016_j_asoc_2024_111265 crossref_primary_10_1016_j_commtr_2025_100191 crossref_primary_10_1016_j_ifacol_2023_10_1670 crossref_primary_10_1109_LRA_2025_3555938 crossref_primary_10_1109_TRO_2023_3249564 crossref_primary_10_1007_s13177_023_00356_2 crossref_primary_10_1109_LRA_2024_3387109 crossref_primary_10_1007_s11044_022_09816_1 crossref_primary_10_1109_ACCESS_2024_3385122 crossref_primary_10_1016_j_jmsy_2024_10_008 crossref_primary_10_1109_TRO_2024_3400937 crossref_primary_10_1016_j_trc_2024_104654 crossref_primary_10_1177_09544062211064797 crossref_primary_10_1007_s11370_021_00398_z crossref_primary_10_1109_TCDS_2020_3006621 crossref_primary_10_1109_TEM_2022_3201434 crossref_primary_10_3390_rs15194757 crossref_primary_10_1016_j_eswa_2023_120495 |
| Cites_doi | 10.1109/IROS40897.2019.8968116 10.1109/CVPR.2018.00945 10.1109/IROS.2017.8202133 10.1109/IVS.2017.7995835 10.1109/ICRA.2018.8460487 10.1109/ICRA.2018.8461253 10.1109/ICRA.2019.8793579 10.1109/ICRA.2019.8793742 10.1126/scirobotics.aau4984 10.1126/scirobotics.aaw0863 10.1007/978-3-319-67361-5_40 10.1109/CVPR.2017.632 10.5244/C.31.11 10.1109/ICCV.2015.312 10.1109/IROS.2018.8594386 10.1109/CVPR.2017.699 10.1109/IROS.2018.8594090 10.1007/BF00992696 10.1109/LRA.2015.2509024 10.1109/IVS.2017.7995938 10.1109/IVS.2015.7225830 10.1109/ICRA.2019.8793668 10.24963/ijcai.2018/682 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2020.2966414 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 1149 |
| ExternalDocumentID | 10_1109_LRA_2020_2966414 8957584 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 – fundername: Toyota Research Institute – fundername: NVIDIA Corporation |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-f143cb5cac74676b66a9be9f39a981a02a0f966a85b400b61c8e603d8ed2dbd43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 143 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526691200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Mon Jun 30 07:47:40 EDT 2025 Tue Nov 18 22:41:06 EST 2025 Sat Nov 29 06:03:05 EST 2025 Wed Aug 27 02:35:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-f143cb5cac74676b66a9be9f39a981a02a0f966a85b400b61c8e603d8ed2dbd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6426-365X 0000-0001-5473-3566 0000-0002-9673-1267 0000-0002-3276-7914 0000-0002-2225-7275 0000-0001-9235-0478 0000-0002-4977-4918 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8957584 |
| PQID | 2352189975 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8957584 crossref_primary_10_1109_LRA_2020_2966414 crossref_citationtrail_10_1109_LRA_2020_2966414 proquest_journals_2352189975 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref36 muller (ref38) 0 ref31 ref30 ref33 ref11 ref39 ref16 ref19 ref18 bojarski (ref2) 2016 henaff (ref17) 2019 andrychowicz (ref10) 2018 liu (ref37) 0 bansal (ref15) 2018 pomerleau (ref1) 0 dosovitskiy (ref34) 2017 xiao (ref21) 2019 amini (ref23) 2018 ref24 ref26 ref25 ref20 sadeghi (ref12) 2016 ref22 bruce (ref14) 2018 ref28 ref27 ref8 ref7 liu (ref29) 0 ref9 ref4 ref3 sutton (ref32) 0 dosovitskiy (ref5) 0 tedrake (ref6) 2019 |
| References_xml | – year: 2018 ident: ref10 article-title: Learning dexterous in-hand manipulation publication-title: arXiv 1808 00177 – ident: ref26 doi: 10.1109/IROS40897.2019.8968116 – ident: ref25 doi: 10.1109/CVPR.2018.00945 – year: 2016 ident: ref12 article-title: Cad2rl: Real single-image flight without a single real image publication-title: arXiv 1611 04201 – ident: ref13 doi: 10.1109/IROS.2017.8202133 – year: 2019 ident: ref6 article-title: Drake: Model-based design and verification for robotics – ident: ref35 doi: 10.1109/IVS.2017.7995835 – ident: ref8 doi: 10.1109/ICRA.2018.8460487 – ident: ref22 doi: 10.1109/ICRA.2018.8461253 – ident: ref3 doi: 10.1109/ICRA.2019.8793579 – year: 2019 ident: ref21 article-title: Multimodal end-to-end autonomous driving publication-title: arXiv 1906 03199 – start-page: 739 year: 0 ident: ref38 article-title: Off-road obstacle avoidance through end-to-end learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1109/ICRA.2019.8793742 – ident: ref11 doi: 10.1126/scirobotics.aau4984 – start-page: 1057 year: 0 ident: ref32 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proc Adv Neural Inf Process Syst – ident: ref27 doi: 10.1126/scirobotics.aaw0863 – start-page: 85 year: 0 ident: ref29 article-title: Image inpainting for irregular holes using partial convolutions publication-title: Proc Eur Conf Comput Vision – ident: ref7 doi: 10.1007/978-3-319-67361-5_40 – start-page: 305 year: 0 ident: ref1 article-title: ALVINN: An autonomous land vehicle in a neural network publication-title: Proc Proc Adv Neural Inf Process Syst – ident: ref36 doi: 10.1109/CVPR.2017.632 – ident: ref24 doi: 10.5244/C.31.11 – ident: ref16 doi: 10.1109/ICCV.2015.312 – ident: ref19 doi: 10.1109/IROS.2018.8594386 – ident: ref28 doi: 10.1109/CVPR.2017.699 – ident: ref20 doi: 10.1109/IROS.2018.8594090 – year: 2018 ident: ref14 article-title: Learning deployable navigation policies at kilometer scale from a single traversal publication-title: arXiv 1807 05211 – ident: ref31 doi: 10.1007/BF00992696 – year: 2018 ident: ref23 article-title: Spatial uncertainty sampling for end-to-end control publication-title: arXiv 1805 04829 – start-page: 700 year: 0 ident: ref37 article-title: Unsupervised image-to-image translation networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref33 doi: 10.1109/LRA.2015.2509024 – year: 2018 ident: ref15 article-title: Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst publication-title: arXiv 1812 03079 – start-page: 1 year: 0 ident: ref5 article-title: CARLA: An open urban driving simulator publication-title: Proc 1st Annu Conf Robot Learn – year: 2016 ident: ref2 article-title: End to end learning for self-driving cars publication-title: arXiv 1604 07316 [cs] – year: 2019 ident: ref17 article-title: Model-predictive policy learning with uncertainty regularization for driving in dense traffic publication-title: arXiv 1901 02705 – year: 2017 ident: ref34 article-title: Carla: An open urban driving simulator publication-title: arXiv 1711 03938 – ident: ref39 doi: 10.1109/IVS.2017.7995938 – ident: ref30 doi: 10.1109/IVS.2015.7225830 – ident: ref9 doi: 10.1109/ICRA.2019.8793668 – ident: ref18 doi: 10.24963/ijcai.2018/682 |
| SSID | ssj0001527395 |
| Score | 2.5667899 |
| Snippet | In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1142 |
| SubjectTerms | Access control autonomous agents Autonomous vehicles data-driven simulation Deep learning in robotics and automation Machine learning Policies real world reinforcement learning Roads & highways Robust control Semantics Simulation Training |
| Title | Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation |
| URI | https://ieeexplore.ieee.org/document/8957584 https://www.proquest.com/docview/2352189975 |
| Volume | 5 |
| WOSCitedRecordID | wos000526691200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB52xYsH3-L6WHLwIlg3fSfHRXfxoIusDzxZkjSRBW1lt_Xob3fSdldFEby0pSRQZprk-yaZbwCOtAwZEmXhaGMMEhQhHCEMXhDaIu-JUlop3txfxqMRe3jg1y04WeTCaK2rw2f61D5We_lprkobKusxjuCCBW1ox3Fc52p9xlOskhgP5zuRlPcux33kfx499RDSB27wbeWpSqn8mH-rRWW49r_PWYfVBjySfu3tDWjpbBNWvkgKbsFjI5j6RMa5LGcFOavPopNKABhpMUGUSgZZ6hS5gzfSLwub15CXM3I-ndjwAhlO8xdyLgrh2Dc6IzeTl6bK1zbcDQe3ZxdOU0PBUb7vF45BPKRkqISydUUiGUWCS82NzwVnrqCeoAbNI1gocTTLyFVMR9RPmU69VKaBvwNLWZ7pXSChwMnR4HomXR6wwBd-bDiagIo4VjLwOtCb2zdRjcC4rXPxnFREg_IEPZJYjySNRzpwvOjxWotr_NF2y3pg0a4xfgcO5i5MmtE3SzxElS4SyTjc-73XvqXn1K1zCg9gqZiW-hCW1VsxmU270L56H3Sr3-sDUxXN0Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0qGxLbAxsUtG7d8AMvSKTNh5PYj1U_tImuQqWgPhHZjo0qsWRKE34_10laQEyT9pJEka1Y98b2Odf2uQDvtQwZEmXhaGMMEhQhHCEMXhDaIu-JUrdWvPk2jxcLtl7zzx34uD8Lo7WuN5_pgX2s1_LTXFU2VDZkHMEFo8_gMKTU95rTWn8iKlZLjIe7tUiXD-fLETJA3x34COqpR_-Ze-pkKv-NwPW0Mjt5WoNO4WULH8mo8fcr6OjsNRz_JSrYhe-tZOoPssxltS3JuNmNTmoJYCTGBHEqmWapU-YO3sioKu3JhrzakkmxsQEGMivyOzIRpXDsG52RL5u7Ns_XG_g6m67G106bRcFRQRCUjkFEpGSohLKZRSIZRYJLzU3ABWeecH3hGjSPYKHE_iwjTzEduUHKdOqnMqXBWzjI8kyfAQkFDo8GZzTpccpoIILYcDSBK-JYSer3YLizb6JaiXGb6eJnUlMNlyfokcR6JGk90oMP-xr3jbzGI2W71gP7cq3xe9DfuTBp-9828RFXekgl4_D84Vrv4MX16naezG8Wny7gyH6n2Y_Th4OyqPQlPFe_ys22uKp_st9R4s_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Robust+Control+Policies+for+End-to-End+Autonomous+Driving+From+Data-Driven+Simulation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Amini%2C+Alexander&rft.au=Gilitschenski%2C+Igor&rft.au=Phillips%2C+Jacob&rft.au=Moseyko%2C+Julia&rft.date=2020-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=1143&rft.epage=1150&rft_id=info:doi/10.1109%2FLRA.2020.2966414&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_2966414 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |