Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation

In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to dri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 5; číslo 2; s. 1142 - 1149
Hlavní autoři: Amini, Alexander, Gilitschenski, Igor, Phillips, Jacob, Moseyko, Julia, Banerjee, Rohan, Karaman, Sertac, Rus, Daniela
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to drive along a continuum of new local trajectories consistent with the road appearance and semantics, each with a different view of the scene. We demonstrate the ability of policies learned within our simulator to generalize to and navigate in previously unseen real-world roads, without access to any human control labels during training. Our results validate the learned policy onboard a full-scale autonomous vehicle, including in previously un-encountered scenarios, such as new roads and novel, complex, near-crash situations. Our methods are scalable, leverage reinforcement learning, and apply broadly to situations requiring effective perception and robust operation in the physical world.
AbstractList In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to drive along a continuum of new local trajectories consistent with the road appearance and semantics, each with a different view of the scene. We demonstrate the ability of policies learned within our simulator to generalize to and navigate in previously unseen real-world roads, without access to any human control labels during training. Our results validate the learned policy onboard a full-scale autonomous vehicle, including in previously un-encountered scenarios, such as new roads and novel, complex, near-crash situations. Our methods are scalable, leverage reinforcement learning, and apply broadly to situations requiring effective perception and robust operation in the physical world.
Author Amini, Alexander
Karaman, Sertac
Phillips, Jacob
Moseyko, Julia
Gilitschenski, Igor
Rus, Daniela
Banerjee, Rohan
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-9673-1267
  surname: Amini
  fullname: Amini, Alexander
  email: amini@mit.edu
  organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
– sequence: 2
  givenname: Igor
  orcidid: 0000-0001-6426-365X
  surname: Gilitschenski
  fullname: Gilitschenski, Igor
  email: igilitschenski@mit.edu
  organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
– sequence: 3
  givenname: Jacob
  orcidid: 0000-0002-3276-7914
  surname: Phillips
  fullname: Phillips, Jacob
  email: jdp99@mit.edu
  organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
– sequence: 4
  givenname: Julia
  orcidid: 0000-0002-4977-4918
  surname: Moseyko
  fullname: Moseyko, Julia
  email: jmoseyko@mit.edu
  organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
– sequence: 5
  givenname: Rohan
  orcidid: 0000-0001-9235-0478
  surname: Banerjee
  fullname: Banerjee, Rohan
  email: rohanb@mit.edu
  organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
– sequence: 6
  givenname: Sertac
  orcidid: 0000-0002-2225-7275
  surname: Karaman
  fullname: Karaman, Sertac
  email: sertac@mit.edu
  organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, United States of America
– sequence: 7
  givenname: Daniela
  orcidid: 0000-0001-5473-3566
  surname: Rus
  fullname: Rus, Daniela
  email: rus@mit.edu
  organization: Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
BookMark eNp9kM1LwzAYxoNMcM7dBS8Bz535aNLmOPahwkCZerWkaSoZbTKTVPC_t3VDxIOn5-Xl-b0fzzkYWWc1AJcYzTBG4maznc8IImhGBOcpTk_AmNAsS2jG-ehXfQamIewQQpiRjAo2Bq8bLb019g1uXdmFCBfORu8a-Ogao4wOsHYermyVRJf0AudddNa1rgtw6c3HQK69a-FSRpkMHW3hk2m7Rkbj7AU4rWUT9PSoE_CyXj0v7pLNw-39Yr5JFKU0JjVOqSqZkipLecZLzqUotaipkCLHEhGJ6v4zmbMyRajkWOWaI1rluiJVWaV0Aq4Pc_fevXc6xGLnOm_7lQWhjOBciIz1Ln5wKe9C8LoulInfd0YvTVNgVAxxFn2cxRBncYyzB9EfcO9NK_3nf8jVATFa6x97LljG8pR-AfEXgcc
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110532
crossref_primary_10_1109_TIV_2020_3002505
crossref_primary_10_1109_ACCESS_2020_3040896
crossref_primary_10_3390_electronics12020302
crossref_primary_10_3390_s21113606
crossref_primary_10_1109_ACCESS_2025_3539761
crossref_primary_10_1109_JSEN_2023_3280959
crossref_primary_10_1109_LRA_2024_3368234
crossref_primary_10_1109_JIOT_2024_3513642
crossref_primary_10_1038_s41598_022_14737_2
crossref_primary_10_1109_TITS_2022_3177224
crossref_primary_10_1145_3460082
crossref_primary_10_1016_j_jnca_2023_103648
crossref_primary_10_1109_TITS_2024_3368136
crossref_primary_10_1109_TPAMI_2024_3435937
crossref_primary_10_3390_s22186793
crossref_primary_10_1109_ACCESS_2024_3496578
crossref_primary_10_1016_j_tre_2024_103748
crossref_primary_10_1007_s00521_024_09732_9
crossref_primary_10_1109_ACCESS_2024_3406219
crossref_primary_10_1109_TITS_2025_3558958
crossref_primary_10_1186_s10033_025_01336_1
crossref_primary_10_3390_s22124500
crossref_primary_10_1109_TITS_2025_3532803
crossref_primary_10_3390_info14050290
crossref_primary_10_1038_s42256_020_00237_3
crossref_primary_10_1007_s42421_023_00086_7
crossref_primary_10_1016_j_trc_2021_103008
crossref_primary_10_3390_electronics14152919
crossref_primary_10_1080_15472450_2025_2559224
crossref_primary_10_1109_LRA_2020_3039730
crossref_primary_10_1145_3749992
crossref_primary_10_1016_j_conengprac_2024_105947
crossref_primary_10_1109_TITS_2024_3452480
crossref_primary_10_1016_j_engappai_2025_111285
crossref_primary_10_1016_j_jocs_2023_102119
crossref_primary_10_1109_ACCESS_2021_3098675
crossref_primary_10_1109_TC_2023_3310678
crossref_primary_10_1016_j_jksuci_2022_03_013
crossref_primary_10_3390_robotics12050133
crossref_primary_10_1109_LRA_2021_3061336
crossref_primary_10_3390_app13116700
crossref_primary_10_3390_en13112917
crossref_primary_10_3390_ai5040105
crossref_primary_10_3390_s22208055
crossref_primary_10_1109_MNET_2023_3334285
crossref_primary_10_3389_frvir_2021_721933
crossref_primary_10_1109_TITS_2021_3131303
crossref_primary_10_1109_TIV_2022_3174029
crossref_primary_10_1177_01423312231197854
crossref_primary_10_1038_s42256_022_00556_7
crossref_primary_10_1016_j_neucom_2024_127874
crossref_primary_10_1109_TPAMI_2021_3102140
crossref_primary_10_3390_app15105424
crossref_primary_10_1016_j_neucom_2024_128161
crossref_primary_10_1016_j_isatra_2024_05_010
crossref_primary_10_1049_cvi2_12074
crossref_primary_10_1109_TASE_2024_3410891
crossref_primary_10_1016_j_infsof_2025_107859
crossref_primary_10_1109_JAS_2023_123375
crossref_primary_10_1016_j_prime_2024_100810
crossref_primary_10_1287_opre_2023_2436
crossref_primary_10_3390_s23208473
crossref_primary_10_1016_j_nic_2020_08_007
crossref_primary_10_1109_LCOMM_2023_3274649
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_1016_j_engappai_2024_109600
crossref_primary_10_1016_j_asoc_2024_111265
crossref_primary_10_1016_j_commtr_2025_100191
crossref_primary_10_1016_j_ifacol_2023_10_1670
crossref_primary_10_1109_LRA_2025_3555938
crossref_primary_10_1109_TRO_2023_3249564
crossref_primary_10_1007_s13177_023_00356_2
crossref_primary_10_1109_LRA_2024_3387109
crossref_primary_10_1007_s11044_022_09816_1
crossref_primary_10_1109_ACCESS_2024_3385122
crossref_primary_10_1016_j_jmsy_2024_10_008
crossref_primary_10_1109_TRO_2024_3400937
crossref_primary_10_1016_j_trc_2024_104654
crossref_primary_10_1177_09544062211064797
crossref_primary_10_1007_s11370_021_00398_z
crossref_primary_10_1109_TCDS_2020_3006621
crossref_primary_10_1109_TEM_2022_3201434
crossref_primary_10_3390_rs15194757
crossref_primary_10_1016_j_eswa_2023_120495
Cites_doi 10.1109/IROS40897.2019.8968116
10.1109/CVPR.2018.00945
10.1109/IROS.2017.8202133
10.1109/IVS.2017.7995835
10.1109/ICRA.2018.8460487
10.1109/ICRA.2018.8461253
10.1109/ICRA.2019.8793579
10.1109/ICRA.2019.8793742
10.1126/scirobotics.aau4984
10.1126/scirobotics.aaw0863
10.1007/978-3-319-67361-5_40
10.1109/CVPR.2017.632
10.5244/C.31.11
10.1109/ICCV.2015.312
10.1109/IROS.2018.8594386
10.1109/CVPR.2017.699
10.1109/IROS.2018.8594090
10.1007/BF00992696
10.1109/LRA.2015.2509024
10.1109/IVS.2017.7995938
10.1109/IVS.2015.7225830
10.1109/ICRA.2019.8793668
10.24963/ijcai.2018/682
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2966414
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1149
ExternalDocumentID 10_1109_LRA_2020_2966414
8957584
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
– fundername: Toyota Research Institute
– fundername: NVIDIA Corporation
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-f143cb5cac74676b66a9be9f39a981a02a0f966a85b400b61c8e603d8ed2dbd43
IEDL.DBID RIE
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526691200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 07:47:40 EDT 2025
Tue Nov 18 22:41:06 EST 2025
Sat Nov 29 06:03:05 EST 2025
Wed Aug 27 02:35:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-f143cb5cac74676b66a9be9f39a981a02a0f966a85b400b61c8e603d8ed2dbd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6426-365X
0000-0001-5473-3566
0000-0002-9673-1267
0000-0002-3276-7914
0000-0002-2225-7275
0000-0001-9235-0478
0000-0002-4977-4918
OpenAccessLink https://ieeexplore.ieee.org/document/8957584
PQID 2352189975
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_8957584
crossref_primary_10_1109_LRA_2020_2966414
crossref_citationtrail_10_1109_LRA_2020_2966414
proquest_journals_2352189975
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref36
muller (ref38) 0
ref31
ref30
ref33
ref11
ref39
ref16
ref19
ref18
bojarski (ref2) 2016
henaff (ref17) 2019
andrychowicz (ref10) 2018
liu (ref37) 0
bansal (ref15) 2018
pomerleau (ref1) 0
dosovitskiy (ref34) 2017
xiao (ref21) 2019
amini (ref23) 2018
ref24
ref26
ref25
ref20
sadeghi (ref12) 2016
ref22
bruce (ref14) 2018
ref28
ref27
ref8
ref7
liu (ref29) 0
ref9
ref4
ref3
sutton (ref32) 0
dosovitskiy (ref5) 0
tedrake (ref6) 2019
References_xml – year: 2018
  ident: ref10
  article-title: Learning dexterous in-hand manipulation
  publication-title: arXiv 1808 00177
– ident: ref26
  doi: 10.1109/IROS40897.2019.8968116
– ident: ref25
  doi: 10.1109/CVPR.2018.00945
– year: 2016
  ident: ref12
  article-title: Cad2rl: Real single-image flight without a single real image
  publication-title: arXiv 1611 04201
– ident: ref13
  doi: 10.1109/IROS.2017.8202133
– year: 2019
  ident: ref6
  article-title: Drake: Model-based design and verification for robotics
– ident: ref35
  doi: 10.1109/IVS.2017.7995835
– ident: ref8
  doi: 10.1109/ICRA.2018.8460487
– ident: ref22
  doi: 10.1109/ICRA.2018.8461253
– ident: ref3
  doi: 10.1109/ICRA.2019.8793579
– year: 2019
  ident: ref21
  article-title: Multimodal end-to-end autonomous driving
  publication-title: arXiv 1906 03199
– start-page: 739
  year: 0
  ident: ref38
  article-title: Off-road obstacle avoidance through end-to-end learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/ICRA.2019.8793742
– ident: ref11
  doi: 10.1126/scirobotics.aau4984
– start-page: 1057
  year: 0
  ident: ref32
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1126/scirobotics.aaw0863
– start-page: 85
  year: 0
  ident: ref29
  article-title: Image inpainting for irregular holes using partial convolutions
  publication-title: Proc Eur Conf Comput Vision
– ident: ref7
  doi: 10.1007/978-3-319-67361-5_40
– start-page: 305
  year: 0
  ident: ref1
  article-title: ALVINN: An autonomous land vehicle in a neural network
  publication-title: Proc Proc Adv Neural Inf Process Syst
– ident: ref36
  doi: 10.1109/CVPR.2017.632
– ident: ref24
  doi: 10.5244/C.31.11
– ident: ref16
  doi: 10.1109/ICCV.2015.312
– ident: ref19
  doi: 10.1109/IROS.2018.8594386
– ident: ref28
  doi: 10.1109/CVPR.2017.699
– ident: ref20
  doi: 10.1109/IROS.2018.8594090
– year: 2018
  ident: ref14
  article-title: Learning deployable navigation policies at kilometer scale from a single traversal
  publication-title: arXiv 1807 05211
– ident: ref31
  doi: 10.1007/BF00992696
– year: 2018
  ident: ref23
  article-title: Spatial uncertainty sampling for end-to-end control
  publication-title: arXiv 1805 04829
– start-page: 700
  year: 0
  ident: ref37
  article-title: Unsupervised image-to-image translation networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref33
  doi: 10.1109/LRA.2015.2509024
– year: 2018
  ident: ref15
  article-title: Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst
  publication-title: arXiv 1812 03079
– start-page: 1
  year: 0
  ident: ref5
  article-title: CARLA: An open urban driving simulator
  publication-title: Proc 1st Annu Conf Robot Learn
– year: 2016
  ident: ref2
  article-title: End to end learning for self-driving cars
  publication-title: arXiv 1604 07316 [cs]
– year: 2019
  ident: ref17
  article-title: Model-predictive policy learning with uncertainty regularization for driving in dense traffic
  publication-title: arXiv 1901 02705
– year: 2017
  ident: ref34
  article-title: Carla: An open urban driving simulator
  publication-title: arXiv 1711 03938
– ident: ref39
  doi: 10.1109/IVS.2017.7995938
– ident: ref30
  doi: 10.1109/IVS.2015.7225830
– ident: ref9
  doi: 10.1109/ICRA.2019.8793668
– ident: ref18
  doi: 10.24963/ijcai.2018/682
SSID ssj0001527395
Score 2.5667899
Snippet In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1142
SubjectTerms Access control
autonomous agents
Autonomous vehicles
data-driven simulation
Deep learning in robotics and automation
Machine learning
Policies
real world reinforcement learning
Roads & highways
Robust control
Semantics
Simulation
Training
Title Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation
URI https://ieeexplore.ieee.org/document/8957584
https://www.proquest.com/docview/2352189975
Volume 5
WOSCitedRecordID wos000526691200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB52xYsH3-L6WHLwIlg3fSfHRXfxoIusDzxZkjSRBW1lt_Xob3fSdldFEby0pSRQZprk-yaZbwCOtAwZEmXhaGMMEhQhHCEMXhDaIu-JUlop3txfxqMRe3jg1y04WeTCaK2rw2f61D5We_lprkobKusxjuCCBW1ox3Fc52p9xlOskhgP5zuRlPcux33kfx499RDSB27wbeWpSqn8mH-rRWW49r_PWYfVBjySfu3tDWjpbBNWvkgKbsFjI5j6RMa5LGcFOavPopNKABhpMUGUSgZZ6hS5gzfSLwub15CXM3I-ndjwAhlO8xdyLgrh2Dc6IzeTl6bK1zbcDQe3ZxdOU0PBUb7vF45BPKRkqISydUUiGUWCS82NzwVnrqCeoAbNI1gocTTLyFVMR9RPmU69VKaBvwNLWZ7pXSChwMnR4HomXR6wwBd-bDiagIo4VjLwOtCb2zdRjcC4rXPxnFREg_IEPZJYjySNRzpwvOjxWotr_NF2y3pg0a4xfgcO5i5MmtE3SzxElS4SyTjc-73XvqXn1K1zCg9gqZiW-hCW1VsxmU270L56H3Sr3-sDUxXN0Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0qGxLbAxsUtG7d8AMvSKTNh5PYj1U_tImuQqWgPhHZjo0qsWRKE34_10laQEyT9pJEka1Y98b2Odf2uQDvtQwZEmXhaGMMEhQhHCEMXhDaIu-JUrdWvPk2jxcLtl7zzx34uD8Lo7WuN5_pgX2s1_LTXFU2VDZkHMEFo8_gMKTU95rTWn8iKlZLjIe7tUiXD-fLETJA3x34COqpR_-Ze-pkKv-NwPW0Mjt5WoNO4WULH8mo8fcr6OjsNRz_JSrYhe-tZOoPssxltS3JuNmNTmoJYCTGBHEqmWapU-YO3sioKu3JhrzakkmxsQEGMivyOzIRpXDsG52RL5u7Ns_XG_g6m67G106bRcFRQRCUjkFEpGSohLKZRSIZRYJLzU3ABWeecH3hGjSPYKHE_iwjTzEduUHKdOqnMqXBWzjI8kyfAQkFDo8GZzTpccpoIILYcDSBK-JYSer3YLizb6JaiXGb6eJnUlMNlyfokcR6JGk90oMP-xr3jbzGI2W71gP7cq3xe9DfuTBp-9828RFXekgl4_D84Vrv4MX16naezG8Wny7gyH6n2Y_Th4OyqPQlPFe_ys22uKp_st9R4s_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Robust+Control+Policies+for+End-to-End+Autonomous+Driving+From+Data-Driven+Simulation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Amini%2C+Alexander&rft.au=Gilitschenski%2C+Igor&rft.au=Phillips%2C+Jacob&rft.au=Moseyko%2C+Julia&rft.date=2020-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=1143&rft.epage=1150&rft_id=info:doi/10.1109%2FLRA.2020.2966414&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_2966414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon