A Unified Discretization Approach to Compute-Forward: From Discrete to Continuous Inputs
Compute-forward is a coding technique that enables receiver(s) in a network to directly decode one or more linear combinations of the transmitted codewords. Initial efforts focused on Gaussian channels and derived achievable rate regions via nested lattice codes and single-user (lattice) decoding as...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 69; číslo 1; s. 1 - 46 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Compute-forward is a coding technique that enables receiver(s) in a network to directly decode one or more linear combinations of the transmitted codewords. Initial efforts focused on Gaussian channels and derived achievable rate regions via nested lattice codes and single-user (lattice) decoding as well as sequential (lattice) decoding. Recently, these results have been generalized to discrete memoryless channels via nested linear codes and joint typicality coding, culminating in a simultaneous-decoding rate region for recovering one or more linear combinations from <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> users. Using a discretization approach, this paper translates this result into a simultaneous-decoding rate region for a wide class of continuous memoryless channels, including the important special case of Gaussian channels. Additionally, this paper derives a single, unified expression for both discrete and continuous rate regions via an algebraic generalization of Rényi's information dimension. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2022.3197592 |