Online Graph-Adaptive Learning With Scalability and Privacy
Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such as the age or gender of users in a social network. However, real-world networks can have very large size, and nodal attributes can be unavai...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 67; číslo 9; s. 2471 - 2483 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such as the age or gender of users in a social network. However, real-world networks can have very large size, and nodal attributes can be unavailable to a number of nodes, e.g., due to privacy concerns. Moreover, new nodes can emerge over time, which can necessitate real-time evaluation of their nodal attributes. In this context, this paper deals with scalable learning of nodal attributes by estimating a nodal function based on noisy observations at a subset of nodes. A multikernel-based approach is developed, which is scalable to large-size networks. Unlike most existing methods that re-solve the function estimation problem over all existing nodes whenever a new node joins the network, the novel method is capable of providing real-time evaluation of the function values on newly joining nodes without resorting to a batch solver. Interestingly, the novel scheme only relies on an encrypted version of each node's connectivity in order to learn the nodal attributes, which promotes privacy. Experiments on both synthetic and real datasets corroborate the effectiveness of the proposed methods. |
|---|---|
| AbstractList | Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such as the age or gender of users in a social network. However, real-world networks can have very large size, and nodal attributes can be unavailable to a number of nodes, e.g., due to privacy concerns. Moreover, new nodes can emerge over time, which can necessitate real-time evaluation of their nodal attributes. In this context, this paper deals with scalable learning of nodal attributes by estimating a nodal function based on noisy observations at a subset of nodes. A multikernel-based approach is developed, which is scalable to large-size networks. Unlike most existing methods that re-solve the function estimation problem over all existing nodes whenever a new node joins the network, the novel method is capable of providing real-time evaluation of the function values on newly joining nodes without resorting to a batch solver. Interestingly, the novel scheme only relies on an encrypted version of each node's connectivity in order to learn the nodal attributes, which promotes privacy. Experiments on both synthetic and real datasets corroborate the effectiveness of the proposed methods. |
| Author | Giannakis, Georgios B. Shen, Yanning Leus, Geert |
| Author_xml | – sequence: 1 givenname: Yanning orcidid: 0000-0002-7333-893X surname: Shen fullname: Shen, Yanning email: shenx513@umn.edu organization: Department of ECE and the Digital Technology Center, University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Geert orcidid: 0000-0001-8288-867X surname: Leus fullname: Leus, Geert email: g.j.t.leus@tudelft.nl organization: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, CD, The Netherlands – sequence: 3 givenname: Georgios B. orcidid: 0000-0002-0196-0260 surname: Giannakis fullname: Giannakis, Georgios B. email: georgios@umn.edu organization: Department of ECE and the Digital Technology Center, University of Minnesota, Minneapolis, MN, USA |
| BookMark | eNp9kEFLAzEQRoNUsK3eBS8LnrcmmWx2g6dStAqFFlrRW8imiU1Zs2s2LfTfu6XFgwdhYObwvRnmDVDP194gdEvwiBAsHlbLxYhiIkZUYCYovUB9IhhJMct5r5txBmlW5B9XaNC2W4wJY4L30ePcV86bZBpUs0nHa9VEtzfJzKjgnf9M3l3cJEutKlW6ysVDovw6WQS3V_pwjS6tqlpzc-5D9Pb8tJq8pLP59HUynqUaAGJqtGWMaptTllFLcgAFUNpSgM450VlXZfcB1QVkQgjFOM4LIMUamKLWljBE96e9Tai_d6aNclvvgu9OSkoxgOA5gy7FTykd6rYNxkrtooqu9jEoV0mC5VGU7ETJoyh5FtWB-A_YBPelwuE_5O6EOGPMb7zgnOeZgB-E23Oo |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TSIPN_2023_3271148 crossref_primary_10_1016_j_dsp_2025_105144 crossref_primary_10_1109_TSIPN_2022_3170652 crossref_primary_10_1007_s11760_024_03712_1 crossref_primary_10_1109_TSIPN_2022_3206578 crossref_primary_10_1016_j_sigpro_2023_109308 crossref_primary_10_1109_JIOT_2020_3026366 crossref_primary_10_1109_TSP_2021_3122095 crossref_primary_10_1109_TSIPN_2023_3277591 crossref_primary_10_1007_s11760_024_03186_1 crossref_primary_10_1109_TSP_2024_3460194 crossref_primary_10_1109_TSP_2022_3149134 crossref_primary_10_1109_TKDE_2023_3282898 crossref_primary_10_1109_TSP_2021_3054523 crossref_primary_10_1109_TSIPN_2020_3046217 |
| Cites_doi | 10.1109/JPROC.2018.2804318 10.1109/ICASSP.2013.6638704 10.1561/2400000013 10.5486/PMD.1959.6.3-4.12 10.1109/TSP.2018.2835384 10.1109/TSP.2016.2620116 10.1145/1217299.1217301 10.1007/978-3-540-45167-9_12 10.1109/TSP.2015.2411217 10.1109/TSP.2018.2827328 10.1145/2623330.2623732 10.1080/00031305.1992.10475879 10.1093/comnet/cnu016 10.1109/TSP.2015.2507546 10.1561/2200000018 10.1109/MSP.2012.2235192 10.1007/978-0-387-88146-1 10.1109/ICDM.2007.57 10.1137/1.9781611970128 10.1145/2481244.2481248 10.1109/INFCOMW.2017.8116495 10.1109/TNN.2009.2015974 10.1145/2939672.2939754 10.1109/TSP.2016.2602809 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2019.2904922 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (IEEE/IET Electronic Library - IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 2483 |
| ExternalDocumentID | 10_1109_TSP_2019_2904922 8666759 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: 1R01GM104975-01 funderid: 10.13039/100000002 – fundername: National Science Foundation grantid: 1711471; 1500713 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-ecf442cf72452f1733a33bfb93c761c51c5b1092c835999a46078318d34a2ffb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463622200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Sat Nov 01 15:20:34 EDT 2025 Sat Nov 29 04:10:48 EST 2025 Tue Nov 18 22:18:35 EST 2025 Wed Aug 27 02:30:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-ecf442cf72452f1733a33bfb93c761c51c5b1092c835999a46078318d34a2ffb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8288-867X 0000-0002-7333-893X 0000-0002-0196-0260 |
| OpenAccessLink | http://resolver.tudelft.nl/uuid:0269395f-84a1-47b2-b4e3-c11128514be0 |
| PQID | 2203396743 |
| PQPubID | 85478 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_8666759 proquest_journals_2203396743 crossref_citationtrail_10_1109_TSP_2019_2904922 crossref_primary_10_1109_TSP_2019_2904922 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 cortes (ref9) 2006 ref33 lu (ref37) 2016; 17 ref11 ref32 (ref39) 2014 ref19 ref18 shen (ref26) 2018 rahimi (ref25) 2007 belkin (ref3) 2006; 7 smola (ref16) 2003 altman (ref23) 1992; 46 hamilton (ref24) 2017 lu (ref5) 2003 ref20 wasserman (ref4) 2008 ref41 cortes (ref28) 2009 ref22 ref21 shen (ref29) 2019; 20 ref27 micchelli (ref36) 2005; 6 ioannidis (ref17) 2018 chapelle (ref8) 1999 ref7 berberidis (ref10) 2018 ref6 kondor (ref2) 2002 kolaczyk (ref1) 2009 erdos (ref38) 1959; 6 ref40 chen (ref30) 2009; 10 |
| References_xml | – ident: ref6 doi: 10.1109/JPROC.2018.2804318 – ident: ref11 doi: 10.1109/ICASSP.2013.6638704 – start-page: 801 year: 2008 ident: ref4 article-title: Statistical analysis of semi-supervised regression publication-title: Proc Adv Neural Inf Process Syst – ident: ref27 doi: 10.1561/2400000013 – start-page: 305 year: 2006 ident: ref9 article-title: On transductive regression publication-title: Proc Adv Neural Inf Process Syst – volume: 6 start-page: 290 year: 1959 ident: ref38 article-title: On random graphs I publication-title: Publ Math Debrecen doi: 10.5486/PMD.1959.6.3-4.12 – year: 2018 ident: ref10 article-title: Adaptive diffusions for scalable learning over graphs – ident: ref19 doi: 10.1109/TSP.2018.2835384 – ident: ref13 doi: 10.1109/TSP.2016.2620116 – ident: ref41 doi: 10.1145/1217299.1217301 – start-page: 144 year: 2003 ident: ref16 article-title: Kernels and regularization on graphs publication-title: Learning Theory and Kernel Machines doi: 10.1007/978-3-540-45167-9_12 – year: 2018 ident: ref26 article-title: Online ensemble multi-kernel learning adaptive to non-stationary and adversarial environments publication-title: Proc Int Conf Artif Intell Statist – ident: ref12 doi: 10.1109/TSP.2015.2411217 – ident: ref20 doi: 10.1109/TSP.2018.2827328 – start-page: 1177 year: 2007 ident: ref25 article-title: Random features for large-scale kernel machines publication-title: Proc Adv Neural Inf Process Syst – start-page: 315 year: 2002 ident: ref2 article-title: Diffusion kernels on graphs and other discrete structures publication-title: Proc Int Conf Mach Learn – volume: 10 start-page: 1989 year: 2009 ident: ref30 article-title: Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection publication-title: J Mach Learn Res – year: 2014 ident: ref39 article-title: Meteorology and climatology meteoswiss – year: 2018 ident: ref17 article-title: Semi-blind inference of topologies and dynamical processes over graphs – ident: ref22 doi: 10.1145/2623330.2623732 – volume: 46 start-page: 175 year: 1992 ident: ref23 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Amer Statistician doi: 10.1080/00031305.1992.10475879 – ident: ref31 doi: 10.1093/comnet/cnu016 – ident: ref14 doi: 10.1109/TSP.2015.2507546 – ident: ref35 doi: 10.1561/2200000018 – ident: ref15 doi: 10.1109/MSP.2012.2235192 – year: 2009 ident: ref1 publication-title: Statistical Analysis of Network Data Methods and Models doi: 10.1007/978-0-387-88146-1 – volume: 17 start-page: 1 year: 2016 ident: ref37 article-title: Large scale online kernel learning publication-title: J Mach Learn Res – start-page: 421 year: 1999 ident: ref8 article-title: Transductive inference for estimating values of functions publication-title: Proc Adv Neural Inf Process Syst – ident: ref33 doi: 10.1109/ICDM.2007.57 – volume: 7 start-page: 2399 year: 2006 ident: ref3 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – start-page: 109 year: 2009 ident: ref28 article-title: $\ell _2$-regularization for learning kernels publication-title: Proc Conf Uncertainty Artif Intell – ident: ref18 doi: 10.1137/1.9781611970128 – volume: 20 start-page: 1 year: 2019 ident: ref29 article-title: Random feature-based online multi-kernel learning in environments with unknown dynamics publication-title: J Mach Learn Res – volume: 6 start-page: 1099 year: 2005 ident: ref36 article-title: Learning the kernel function via regularization publication-title: J Mach Learn Res – start-page: 1024 year: 2017 ident: ref24 article-title: Inductive representation learning on large graphs publication-title: Proc Adv Neural Inf Process Syst – ident: ref34 doi: 10.1145/2481244.2481248 – start-page: 496 year: 2003 ident: ref5 article-title: Link-based classification publication-title: Proc Int Conf Mach Learn – ident: ref32 doi: 10.1109/INFCOMW.2017.8116495 – ident: ref7 doi: 10.1109/TNN.2009.2015974 – ident: ref21 doi: 10.1145/2939672.2939754 – ident: ref40 doi: 10.1109/TSP.2016.2602809 |
| SSID | ssj0014496 |
| Score | 2.487549 |
| Snippet | Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2471 |
| SubjectTerms | Adaptive learning Companies Complex systems Distance learning Estimation Graph signal reconstruction Kernel kernel-based learning learning over dynamic graphs Nodes online learning Privacy Real time Real-time systems Social networking (online) Social networks Task analysis |
| Title | Online Graph-Adaptive Learning With Scalability and Privacy |
| URI | https://ieeexplore.ieee.org/document/8666759 https://www.proquest.com/docview/2203396743 |
| Volume | 67 |
| WOSCitedRecordID | wos000463622200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHX1WsVsnBi-C2ye4mu4unIlZPpdCKvYVkH1qQtPQF_ffuJmlQFEHIIYedEL5Jdr5kZr4BuLFRXHORGmTZBUY0EQGyYZgiw92sQl9GoUrzYROs3-fjsRjU4K7qhdFa58Vnuu1O81y-msqV-1XW4ZZrs1DswA5jUdGrVWUMKM1ncVm6QFDI2XibkvRFZzQcuBou0cbC8mGMv4WgfKbKj404jy69w__d1xEclCzS6xZuP4aazk5g_4u2YAPuCxFR78kpUqOuSmZuY_NKPdU373WyfPeG1kOFUPfGSzLlDeaTdSI3p_DSexw9PKNyUgKShJAl0tJQiqVhLo9qAkZIQkhqUkEkiwIZ2iO1SGBp-ZZlhAmNXPYu4IrQBBuTkjOoZ9NMn4NnQmOoSIXRJKSRsnRCGUkUT7m1Zlo1obMFL5aljLibZvER558Tvogt3LGDOy7hbsJtZTErJDT-WNtw8FbrSmSb0Nr6Jy7fsUWMsU-IcE0UF79bXcKeu3ZRntiC-nK-0lewK9fLyWJ-nT8-nwmLwLs |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDryrWZw5eBLdNdjePxVMRa8VaCq3YW0j2oQVpS5sW-u_dTdKgKIKQQw47JHyT7HzJzHwDcKWjuAxYrJBmFxjRiDlIh2GKVGBmFdrcc0WcDpvwO51gMGDdEtwUvTBSyrT4TNbMaZrLF2M-N7_K6oHm2r7L1mDdpRTbWbdWkTOgNJ3GpQkDQW7gD1ZJSZvV-72uqeJiNcw0I8b4WxBKp6r82IrT-NLc_d-d7cFOziOtRub4fSjJ0QFsf1EXrMBtJiNqPRhNatQQ0cRsbVauqPpmvQ6Td6unfZRJdS-taCSs7nS4iPjyEF6a9_27FspnJSBOCEmQ5EpDwpVvMqnK8QmJCIlVzAj3PYe7-og1EphrxqU5YUQ9k79zAkFohJWKyRGUR-ORPAZLuUpRFjMliUs9oQmFUJyIIA60tS9FFeor8EKeC4mbeRYfYfpBYbNQwx0auMMc7ipcFxaTTETjj7UVA2-xLke2Cmcr_4T5WzYLMbYJYaaN4uR3q0vYbPWf22H7sfN0ClvmOlmx4hmUk-lcnsMGXyTD2fQifZQ-ATyyxAI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Graph-Adaptive+Learning+With+Scalability+and+Privacy&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Shen%2C+Yanning&rft.au=Leus%2C+Geert&rft.au=Giannakis%2C+Georgios+B.&rft.date=2019-05-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=9&rft.spage=2471&rft.epage=2483&rft_id=info:doi/10.1109%2FTSP.2019.2904922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2019_2904922 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |