Online Graph-Adaptive Learning With Scalability and Privacy

Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such as the age or gender of users in a social network. However, real-world networks can have very large size, and nodal attributes can be unavai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 67; číslo 9; s. 2471 - 2483
Hlavní autoři: Shen, Yanning, Leus, Geert, Giannakis, Georgios B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such as the age or gender of users in a social network. However, real-world networks can have very large size, and nodal attributes can be unavailable to a number of nodes, e.g., due to privacy concerns. Moreover, new nodes can emerge over time, which can necessitate real-time evaluation of their nodal attributes. In this context, this paper deals with scalable learning of nodal attributes by estimating a nodal function based on noisy observations at a subset of nodes. A multikernel-based approach is developed, which is scalable to large-size networks. Unlike most existing methods that re-solve the function estimation problem over all existing nodes whenever a new node joins the network, the novel method is capable of providing real-time evaluation of the function values on newly joining nodes without resorting to a batch solver. Interestingly, the novel scheme only relies on an encrypted version of each node's connectivity in order to learn the nodal attributes, which promotes privacy. Experiments on both synthetic and real datasets corroborate the effectiveness of the proposed methods.
AbstractList Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such as the age or gender of users in a social network. However, real-world networks can have very large size, and nodal attributes can be unavailable to a number of nodes, e.g., due to privacy concerns. Moreover, new nodes can emerge over time, which can necessitate real-time evaluation of their nodal attributes. In this context, this paper deals with scalable learning of nodal attributes by estimating a nodal function based on noisy observations at a subset of nodes. A multikernel-based approach is developed, which is scalable to large-size networks. Unlike most existing methods that re-solve the function estimation problem over all existing nodes whenever a new node joins the network, the novel method is capable of providing real-time evaluation of the function values on newly joining nodes without resorting to a batch solver. Interestingly, the novel scheme only relies on an encrypted version of each node's connectivity in order to learn the nodal attributes, which promotes privacy. Experiments on both synthetic and real datasets corroborate the effectiveness of the proposed methods.
Author Giannakis, Georgios B.
Shen, Yanning
Leus, Geert
Author_xml – sequence: 1
  givenname: Yanning
  orcidid: 0000-0002-7333-893X
  surname: Shen
  fullname: Shen, Yanning
  email: shenx513@umn.edu
  organization: Department of ECE and the Digital Technology Center, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Geert
  orcidid: 0000-0001-8288-867X
  surname: Leus
  fullname: Leus, Geert
  email: g.j.t.leus@tudelft.nl
  organization: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, CD, The Netherlands
– sequence: 3
  givenname: Georgios B.
  orcidid: 0000-0002-0196-0260
  surname: Giannakis
  fullname: Giannakis, Georgios B.
  email: georgios@umn.edu
  organization: Department of ECE and the Digital Technology Center, University of Minnesota, Minneapolis, MN, USA
BookMark eNp9kEFLAzEQRoNUsK3eBS8LnrcmmWx2g6dStAqFFlrRW8imiU1Zs2s2LfTfu6XFgwdhYObwvRnmDVDP194gdEvwiBAsHlbLxYhiIkZUYCYovUB9IhhJMct5r5txBmlW5B9XaNC2W4wJY4L30ePcV86bZBpUs0nHa9VEtzfJzKjgnf9M3l3cJEutKlW6ysVDovw6WQS3V_pwjS6tqlpzc-5D9Pb8tJq8pLP59HUynqUaAGJqtGWMaptTllFLcgAFUNpSgM450VlXZfcB1QVkQgjFOM4LIMUamKLWljBE96e9Tai_d6aNclvvgu9OSkoxgOA5gy7FTykd6rYNxkrtooqu9jEoV0mC5VGU7ETJoyh5FtWB-A_YBPelwuE_5O6EOGPMb7zgnOeZgB-E23Oo
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSIPN_2023_3271148
crossref_primary_10_1016_j_dsp_2025_105144
crossref_primary_10_1109_TSIPN_2022_3170652
crossref_primary_10_1007_s11760_024_03712_1
crossref_primary_10_1109_TSIPN_2022_3206578
crossref_primary_10_1016_j_sigpro_2023_109308
crossref_primary_10_1109_JIOT_2020_3026366
crossref_primary_10_1109_TSP_2021_3122095
crossref_primary_10_1109_TSIPN_2023_3277591
crossref_primary_10_1007_s11760_024_03186_1
crossref_primary_10_1109_TSP_2024_3460194
crossref_primary_10_1109_TSP_2022_3149134
crossref_primary_10_1109_TKDE_2023_3282898
crossref_primary_10_1109_TSP_2021_3054523
crossref_primary_10_1109_TSIPN_2020_3046217
Cites_doi 10.1109/JPROC.2018.2804318
10.1109/ICASSP.2013.6638704
10.1561/2400000013
10.5486/PMD.1959.6.3-4.12
10.1109/TSP.2018.2835384
10.1109/TSP.2016.2620116
10.1145/1217299.1217301
10.1007/978-3-540-45167-9_12
10.1109/TSP.2015.2411217
10.1109/TSP.2018.2827328
10.1145/2623330.2623732
10.1080/00031305.1992.10475879
10.1093/comnet/cnu016
10.1109/TSP.2015.2507546
10.1561/2200000018
10.1109/MSP.2012.2235192
10.1007/978-0-387-88146-1
10.1109/ICDM.2007.57
10.1137/1.9781611970128
10.1145/2481244.2481248
10.1109/INFCOMW.2017.8116495
10.1109/TNN.2009.2015974
10.1145/2939672.2939754
10.1109/TSP.2016.2602809
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2019.2904922
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2483
ExternalDocumentID 10_1109_TSP_2019_2904922
8666759
Genre orig-research
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 1R01GM104975-01
  funderid: 10.13039/100000002
– fundername: National Science Foundation
  grantid: 1711471; 1500713
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-ecf442cf72452f1733a33bfb93c761c51c5b1092c835999a46078318d34a2ffb3
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463622200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 01 15:20:34 EDT 2025
Sat Nov 29 04:10:48 EST 2025
Tue Nov 18 22:18:35 EST 2025
Wed Aug 27 02:30:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-ecf442cf72452f1733a33bfb93c761c51c5b1092c835999a46078318d34a2ffb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8288-867X
0000-0002-7333-893X
0000-0002-0196-0260
OpenAccessLink http://resolver.tudelft.nl/uuid:0269395f-84a1-47b2-b4e3-c11128514be0
PQID 2203396743
PQPubID 85478
PageCount 13
ParticipantIDs ieee_primary_8666759
proquest_journals_2203396743
crossref_citationtrail_10_1109_TSP_2019_2904922
crossref_primary_10_1109_TSP_2019_2904922
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
cortes (ref9) 2006
ref33
lu (ref37) 2016; 17
ref11
ref32
(ref39) 2014
ref19
ref18
shen (ref26) 2018
rahimi (ref25) 2007
belkin (ref3) 2006; 7
smola (ref16) 2003
altman (ref23) 1992; 46
hamilton (ref24) 2017
lu (ref5) 2003
ref20
wasserman (ref4) 2008
ref41
cortes (ref28) 2009
ref22
ref21
shen (ref29) 2019; 20
ref27
micchelli (ref36) 2005; 6
ioannidis (ref17) 2018
chapelle (ref8) 1999
ref7
berberidis (ref10) 2018
ref6
kondor (ref2) 2002
kolaczyk (ref1) 2009
erdos (ref38) 1959; 6
ref40
chen (ref30) 2009; 10
References_xml – ident: ref6
  doi: 10.1109/JPROC.2018.2804318
– ident: ref11
  doi: 10.1109/ICASSP.2013.6638704
– start-page: 801
  year: 2008
  ident: ref4
  article-title: Statistical analysis of semi-supervised regression
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1561/2400000013
– start-page: 305
  year: 2006
  ident: ref9
  article-title: On transductive regression
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 6
  start-page: 290
  year: 1959
  ident: ref38
  article-title: On random graphs I
  publication-title: Publ Math Debrecen
  doi: 10.5486/PMD.1959.6.3-4.12
– year: 2018
  ident: ref10
  article-title: Adaptive diffusions for scalable learning over graphs
– ident: ref19
  doi: 10.1109/TSP.2018.2835384
– ident: ref13
  doi: 10.1109/TSP.2016.2620116
– ident: ref41
  doi: 10.1145/1217299.1217301
– start-page: 144
  year: 2003
  ident: ref16
  article-title: Kernels and regularization on graphs
  publication-title: Learning Theory and Kernel Machines
  doi: 10.1007/978-3-540-45167-9_12
– year: 2018
  ident: ref26
  article-title: Online ensemble multi-kernel learning adaptive to non-stationary and adversarial environments
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref12
  doi: 10.1109/TSP.2015.2411217
– ident: ref20
  doi: 10.1109/TSP.2018.2827328
– start-page: 1177
  year: 2007
  ident: ref25
  article-title: Random features for large-scale kernel machines
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 315
  year: 2002
  ident: ref2
  article-title: Diffusion kernels on graphs and other discrete structures
  publication-title: Proc Int Conf Mach Learn
– volume: 10
  start-page: 1989
  year: 2009
  ident: ref30
  article-title: Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection
  publication-title: J Mach Learn Res
– year: 2014
  ident: ref39
  article-title: Meteorology and climatology meteoswiss
– year: 2018
  ident: ref17
  article-title: Semi-blind inference of topologies and dynamical processes over graphs
– ident: ref22
  doi: 10.1145/2623330.2623732
– volume: 46
  start-page: 175
  year: 1992
  ident: ref23
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Amer Statistician
  doi: 10.1080/00031305.1992.10475879
– ident: ref31
  doi: 10.1093/comnet/cnu016
– ident: ref14
  doi: 10.1109/TSP.2015.2507546
– ident: ref35
  doi: 10.1561/2200000018
– ident: ref15
  doi: 10.1109/MSP.2012.2235192
– year: 2009
  ident: ref1
  publication-title: Statistical Analysis of Network Data Methods and Models
  doi: 10.1007/978-0-387-88146-1
– volume: 17
  start-page: 1
  year: 2016
  ident: ref37
  article-title: Large scale online kernel learning
  publication-title: J Mach Learn Res
– start-page: 421
  year: 1999
  ident: ref8
  article-title: Transductive inference for estimating values of functions
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref33
  doi: 10.1109/ICDM.2007.57
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref3
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– start-page: 109
  year: 2009
  ident: ref28
  article-title: $\ell _2$-regularization for learning kernels
  publication-title: Proc Conf Uncertainty Artif Intell
– ident: ref18
  doi: 10.1137/1.9781611970128
– volume: 20
  start-page: 1
  year: 2019
  ident: ref29
  article-title: Random feature-based online multi-kernel learning in environments with unknown dynamics
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 1099
  year: 2005
  ident: ref36
  article-title: Learning the kernel function via regularization
  publication-title: J Mach Learn Res
– start-page: 1024
  year: 2017
  ident: ref24
  article-title: Inductive representation learning on large graphs
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1145/2481244.2481248
– start-page: 496
  year: 2003
  ident: ref5
  article-title: Link-based classification
  publication-title: Proc Int Conf Mach Learn
– ident: ref32
  doi: 10.1109/INFCOMW.2017.8116495
– ident: ref7
  doi: 10.1109/TNN.2009.2015974
– ident: ref21
  doi: 10.1145/2939672.2939754
– ident: ref40
  doi: 10.1109/TSP.2016.2602809
SSID ssj0014496
Score 2.487549
Snippet Graphs are widely adopted for modeling complex systems, including financial, biological, and social networks. Nodes in networks usually entail attributes, such...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2471
SubjectTerms Adaptive learning
Companies
Complex systems
Distance learning
Estimation
Graph signal reconstruction
Kernel
kernel-based learning
learning over dynamic graphs
Nodes
online learning
Privacy
Real time
Real-time systems
Social networking (online)
Social networks
Task analysis
Title Online Graph-Adaptive Learning With Scalability and Privacy
URI https://ieeexplore.ieee.org/document/8666759
https://www.proquest.com/docview/2203396743
Volume 67
WOSCitedRecordID wos000463622200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiUHL4LZ1iRtGjwNcXqQMdjU3UqbDx1IN7ZusP_epO2GoghCDz0kofxe-vJe3nu_B3CltHWrfMZx7EmBmQkETqzPhhkP_VAJqUh-of_yxHu9cDQS_QrcbGphtNZ58pluutc8lq8mcuGuylqhtbW5L7Zgi_OgqNXaRAwYy3txWXOBYj_ko3VIsi1aw0Hf5XCJJhHWHibk2xGU91T5oYjz06W7_7_vOoC90opEnULsh1DR6RHsfuEWrMFtQSKKHhwjNe6oeOoUGyr5VN_Q6zh7RwMroYKoe4XiVKH-bLyM5eoYnrv3w7tHXHZKwJJSmmEtDWNEGu7iqMbjlMaUJiYRVPLAk759EosEkdbeshZhzAIXvfNCRVlMjEnoCVTTSapPAVl9ZxT3hKJKWt_SEzoUIbdLCOW70FcdWmvwIlnSiLtuFh9R7k60RWThjhzcUQl3Ha43M6YFhcYfY2sO3s24Etk6NNbyicp_bB4R0qZUuCKKs99nncOOW7tIT2xANZst9AVsy2U2ns8u8-3zCb7bwGs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFNQHf01xOrUPvghma5N0afBpiHPiHINN3Vtpk1QHso2tG-y_N2m7oiiC0Ic-JG35Lr3c5e6-A7iUSrtVLmUocARHNKpzFGqfDVHmuZ7kQuLkQP-lzTodbzDg3QJc57UwSqkk-UxVzW0Sy5djMTdHZTVP29rM5Wuw7lKK7bRaK48ZUJp049IGA0GuxwaroKTNa_1e12Rx8Srm2iLG-NsmlHRV-aGKk_2lufu_L9uDncyOtBqp4PehoEYHsP2FXbAENymNqHVvOKlRQwYTo9qsjFH1zXodxu9WT8sopepeWsFIWt3pcBGI5SE8N-_6ty2U9UpAghASIyUiDYmImImkRg4jJCAkjEJOBKs7wtVXqJHAQltc2iYMaN3E7xxPEhrgKArJERRH45E6BktrvEgyh0sihfYuHa487jH9CC5dE_wqQ20Fni8yInHTz-LDTxwKm_sabt_A7Wdwl-EqnzFJSTT-GFsy8ObjMmTLUFnJx8_-spmPsU0IN2UUJ7_PuoDNVv-p7bcfOo-nsGXekyYrVqAYT-fqDDbEIh7OpufJUvoE71DDsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Graph-Adaptive+Learning+With+Scalability+and+Privacy&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Shen%2C+Yanning&rft.au=Leus%2C+Geert&rft.au=Giannakis%2C+Georgios+B.&rft.date=2019-05-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=9&rft.spage=2471&rft.epage=2483&rft_id=info:doi/10.1109%2FTSP.2019.2904922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2019_2904922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon