Baseline-Free Damage Imaging Algorithm Using Spatial Frequency Domain Virtual Time Reversal

Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic guided wave (GW) methods for damage imaging typically use baseline signals from the undamaged component, which are often affected by real opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 18; H. 8; S. 5043 - 5054
Hauptverfasser: de Castro, Bruno Albuquerque, Baptista, Fabricio Guimaraes, Alfredo Ardila-Rey, Jorge, Ciampa, Francesco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic guided wave (GW) methods for damage imaging typically use baseline signals from the undamaged component, which are often affected by real operational conditions and may not always be available. This article proposes a baseline-free damage imaging algorithm based on spatial frequency domain virtual time reversal (SFD-VTR). Virtual time reversal (VTR) is an alternative to traditional time reversal as it reduces the burden of physically back-propagating re-emitted signals by applying signal operations between the transmitted and received waveforms. However, VTR relies on the reconstruction of the emitted signal in the time domain, which involves significant data manipulation causing sampling errors of reconstructed signals. These errors are largely manifested in nonstationary transient phenomena, such as GW propagation and may lead to poor damage detection. Novel SFD-VTR damage indices were here proposed to enhance defect detection as they do not require the time domain reconstruction of re-emitted signals. Therefore, this work develops a new baseline-free algorithm for damage detection based on a mathematical model of acoustic emission wave propagation for a network of emitter-receivers. The algorithm was validated in aluminum and composite specimens, and it was able to localize material flaws with a maximum localization error of ∼6 mm and ∼2 mm for the aluminum and composite samples, respectively, proving to be a promising alternative to SHM systems. Besides, this new mathematical model optimized the traditional methodologies by excluding signal emissions from the setup, and digital signal processing steps.
AbstractList Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic guided wave (GW) methods for damage imaging typically use baseline signals from the undamaged component, which are often affected by real operational conditions and may not always be available. This article proposes a baseline-free damage imaging algorithm based on spatial frequency domain virtual time reversal (SFD-VTR). Virtual time reversal (VTR) is an alternative to traditional time reversal as it reduces the burden of physically back-propagating re-emitted signals by applying signal operations between the transmitted and received waveforms. However, VTR relies on the reconstruction of the emitted signal in the time domain, which involves significant data manipulation causing sampling errors of reconstructed signals. These errors are largely manifested in nonstationary transient phenomena, such as GW propagation and may lead to poor damage detection. Novel SFD-VTR damage indices were here proposed to enhance defect detection as they do not require the time domain reconstruction of re-emitted signals. Therefore, this work develops a new baseline-free algorithm for damage detection based on a mathematical model of acoustic emission wave propagation for a network of emitter-receivers. The algorithm was validated in aluminum and composite specimens, and it was able to localize material flaws with a maximum localization error of ∼6 mm and ∼2 mm for the aluminum and composite samples, respectively, proving to be a promising alternative to SHM systems. Besides, this new mathematical model optimized the traditional methodologies by excluding signal emissions from the setup, and digital signal processing steps.
Author Baptista, Fabricio Guimaraes
Alfredo Ardila-Rey, Jorge
de Castro, Bruno Albuquerque
Ciampa, Francesco
Author_xml – sequence: 1
  givenname: Bruno Albuquerque
  orcidid: 0000-0003-4581-1459
  surname: de Castro
  fullname: de Castro, Bruno Albuquerque
  email: bruno.castro@unesp.br
  organization: School of Engineering, São Paulo State University (UNESP), Sao Paulo, Brazil
– sequence: 2
  givenname: Fabricio Guimaraes
  orcidid: 0000-0002-1200-4354
  surname: Baptista
  fullname: Baptista, Fabricio Guimaraes
  email: f.baptista@unesp.br
  organization: School of Engineering, São Paulo State University (UNESP), Sao Paulo, Brazil
– sequence: 3
  givenname: Jorge
  orcidid: 0000-0001-8811-2274
  surname: Alfredo Ardila-Rey
  fullname: Alfredo Ardila-Rey, Jorge
  email: jorge.ardila@usm.cl
  organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile
– sequence: 4
  givenname: Francesco
  orcidid: 0000-0003-3846-8891
  surname: Ciampa
  fullname: Ciampa, Francesco
  email: f.ciampa@surrey.ac.uk
  organization: Aerospace Division, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, U.K
BookMark eNp9kE1LAzEQhoNUsK3eBS8Bz1snyX40x9paXRAEbb14WLLpbE3ZzdZkK_Tfm9LiwYOX-WDed2Z4BqRnW4uEXDMYMQbybpHnIw6cjQTjseTxGekzGbMIIIFeqJOERYKDuCAD7zcAIgMh--TjXnmsjcVo7hDpTDVqjTQP0dg1ndTr1pnus6FLf-jftqozqqZB-7VDq_d01jbKWPpuXLcLg4VpkL7iNzqv6ktyXqna49UpD8ly_rCYPkXPL4_5dPIcaSFEFyETPOM6y9RYsTJFhatYoZaJ5lBCVYkkljpjJQvyknHMpOQrFKtxGrOqkqUYktvj3q1rw1u-KzbtztlwsuBpykGmUiZBBUeVdq33Dqti60yj3L5gUBwQFgFhcUBYnBAGS_rHok0XCLS2c8rU_xlvjkaDiL93ZApMQCx-AJ2hf9U
CODEN ITIICH
CitedBy_id crossref_primary_10_3390_electronics12092104
crossref_primary_10_1109_TII_2023_3268442
crossref_primary_10_1016_j_measurement_2023_113367
crossref_primary_10_1016_j_measurement_2024_116159
crossref_primary_10_1016_j_ndteint_2025_103457
crossref_primary_10_1016_j_compstruct_2024_117993
crossref_primary_10_1109_TII_2024_3514160
crossref_primary_10_1016_j_aei_2025_103701
crossref_primary_10_1177_14759217231159868
crossref_primary_10_1016_j_ultras_2024_107445
crossref_primary_10_1109_JSEN_2024_3511655
crossref_primary_10_1109_TII_2024_3413295
crossref_primary_10_1109_TGRS_2023_3347624
crossref_primary_10_1109_TIM_2023_3338679
crossref_primary_10_1109_TIM_2025_3588934
crossref_primary_10_1109_TNNLS_2022_3230426
crossref_primary_10_1016_j_ymssp_2025_113356
crossref_primary_10_1016_j_ijmecsci_2024_109450
crossref_primary_10_1016_j_ymssp_2023_110266
crossref_primary_10_1016_j_ymssp_2025_112696
crossref_primary_10_1016_j_ymssp_2025_113365
crossref_primary_10_1016_j_ymssp_2025_112562
Cites_doi 10.1016/j.ymssp.2021.107712
10.1109/TII.2015.2501762
10.1109/TIM.2016.2583218
10.1016/j.ultras.2015.05.011
10.1177/1045389X20972474
10.1080/10589759.2019.1652296
10.1109/TII.2017.2775343
10.1016/j.measurement.2019.107345
10.1121/1.5042240
10.3390/s20030826
10.3390/app9010011
10.1016/j.ins.2019.10.010
10.1016/j.sna.2020.112040
10.1109/TUFFC.2017.2748968
10.1088/1361-665X/ab1fc8
10.1177/1045389X15590269
10.3390/s18061928
10.1109/TUFFC.2018.2876723
10.1016/j.compstruct.2018.01.096
10.1007/s10921-016-0380-6
10.1061/(ASCE)0893-1321(2007)20:3(141)
10.1109/TIT.2019.2947045
10.1177/14759217211023934
10.1109/TUFFC.2020.3017760
10.1088/0964-1726/24/4/045014
10.1109/TUFFC.2017.2771525
10.1016/j.cja.2019.03.001
10.1088/1361-665X/ab8028
10.1109/TUFFC.2018.2813278
10.1016/j.ymssp.2016.01.023
10.1177/1461348418813699
10.1177/1550147719843054
10.1109/TIM.2015.2476278
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3124924
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 5054
ExternalDocumentID 10_1109_TII_2021_3124924
9601304
Genre orig-research
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico; CNPq
  grantid: #312069/2018-9
  funderid: 10.13039/501100003593
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo; São Paulo Research Foundation
  grantid: #2015/24903-5; #2018/23737-2
  funderid: 10.13039/501100001807
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-e13272c77a8a1b6eaed4aec95c20b0ff3549c71b1c33b12e7992de3d8641ff9b3
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793847600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:18:02 EDT 2025
Sat Nov 29 04:16:59 EST 2025
Tue Nov 18 22:24:00 EST 2025
Wed Aug 27 02:14:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-e13272c77a8a1b6eaed4aec95c20b0ff3549c71b1c33b12e7992de3d8641ff9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8811-2274
0000-0003-4581-1459
0000-0003-3846-8891
0000-0002-1200-4354
OpenAccessLink http://hdl.handle.net/11449/231548
PQID 2662096995
PQPubID 85507
PageCount 12
ParticipantIDs ieee_primary_9601304
crossref_primary_10_1109_TII_2021_3124924
crossref_citationtrail_10_1109_TII_2021_3124924
proquest_journals_2662096995
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1016/j.ymssp.2021.107712
– ident: ref2
  doi: 10.1109/TII.2015.2501762
– ident: ref3
  doi: 10.1109/TIM.2016.2583218
– ident: ref28
  doi: 10.1016/j.ultras.2015.05.011
– ident: ref19
  doi: 10.1177/1045389X20972474
– ident: ref32
  doi: 10.1080/10589759.2019.1652296
– ident: ref1
  doi: 10.1109/TII.2017.2775343
– ident: ref15
  doi: 10.1016/j.measurement.2019.107345
– ident: ref11
  doi: 10.1121/1.5042240
– ident: ref33
  doi: 10.3390/s20030826
– ident: ref16
  doi: 10.3390/app9010011
– ident: ref29
  doi: 10.1016/j.ins.2019.10.010
– ident: ref5
  doi: 10.1016/j.sna.2020.112040
– ident: ref14
  doi: 10.1109/TUFFC.2017.2748968
– ident: ref27
  doi: 10.1088/1361-665X/ab1fc8
– ident: ref23
  doi: 10.1177/1045389X15590269
– ident: ref26
  doi: 10.3390/s18061928
– ident: ref6
  doi: 10.1109/TUFFC.2018.2876723
– ident: ref20
  doi: 10.1016/j.compstruct.2018.01.096
– ident: ref31
  doi: 10.1007/s10921-016-0380-6
– ident: ref21
  doi: 10.1061/(ASCE)0893-1321(2007)20:3(141)
– ident: ref30
  doi: 10.1109/TIT.2019.2947045
– ident: ref9
  doi: 10.1177/14759217211023934
– ident: ref7
  doi: 10.1109/TUFFC.2020.3017760
– ident: ref25
  doi: 10.1088/0964-1726/24/4/045014
– ident: ref8
  doi: 10.1109/TUFFC.2017.2771525
– ident: ref24
  doi: 10.1016/j.cja.2019.03.001
– ident: ref17
  doi: 10.1088/1361-665X/ab8028
– ident: ref10
  doi: 10.1109/TUFFC.2018.2813278
– ident: ref22
  doi: 10.1016/j.ymssp.2016.01.023
– ident: ref12
  doi: 10.1177/1461348418813699
– ident: ref13
  doi: 10.1177/1550147719843054
– ident: ref4
  doi: 10.1109/TIM.2015.2476278
SSID ssj0037039
Score 2.463348
Snippet Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5043
SubjectTerms Acoustic emission
Acoustic propagation
Algorithms
Aluminum
Back propagation
Baseline-free
Damage detection
damage imaging
Digital signal processing
Emitters
Errors
Flaw detection
Frequency domain analysis
guided waves (GWs)
Image reconstruction
Imaging
imaging algorithm
Industrial applications
Informatics
Mathematical analysis
Mathematical models
Reconstruction
Sampling error
Signal processing
Structural health monitoring
Time domain analysis
ultrasound
virtual time reversal (VTR)
Wave propagation
Waveforms
Title Baseline-Free Damage Imaging Algorithm Using Spatial Frequency Domain Virtual Time Reversal
URI https://ieeexplore.ieee.org/document/9601304
https://www.proquest.com/docview/2662096995
Volume 18
WOSCitedRecordID wos000793847600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6c0EN6SJpHiRun6NBLIBuvpLW1OqZNTXwxpTgh0MOilUaNwY-wXhf67zuS1yYlodDbHkYgZqR5rOabD-CT5H1tKYwkThmZZD6jO-dUL6Hk3JvAi-KdiWQTajTKHx70txZcbrEwiBibz_AqfMa3fLewq_CrrEvZNrncbAd2lOqvsVobryvp5Oo4G7XHEylSuXmSTHV3PBxSISg41adhPl72VwiKnCovHHGMLoOD_9vXO9hvskh2vTb7IbRwfgRvn80WPIYfn03EmmMyqBDZjZmR52DDWWQlYtfTn4tqUj_OWOwZYIGZmE4iI9nYWv2b3SxmZjJn95MqIExYgIqw7xiaOMz0BO4GX8dfbpOGSSGxUso6Qao5lbBKmdzwso8GXWbQ6p4VaZl6L6lKtIqXnMRLLlBpLRxKl_cz7r0u5XvYnS_meArMW-W5zEtyiy5zuTOG_GkeshKk5Ey4NnQ3yi1sM2Y8sF1Mi1hupLogcxTBHEVjjjZcbFc8rUds_EP2OKh_K9dovg2djf2K5g4uC0o9BBVoWvc-vL7qDPZEADPEdr4O7NbVCs_hjf1VT5bVx3i8_gDh7sy1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qK6gPrdqKZ6vmwRfB9TYfe9k89sOjh_UQOaXgw5JNJu3Bfcj2KvS_d5LbOyqVgm_7MIEwk8zHZn7zA3gnec84CiOZ11ZmKii6c14XGSXnwUZelOBtIpvQw2F5fm6-bsCHNRYGEVPzGX6Mn-kt38_ddfxV1qVsm1yuegBbhVIiX6K1Vn5X0tk1aTpqwTMpcrl6lMxNdzQYUCkoOFWocUKe-isIJVaVO644xZf-zv_t7Clst3kkO1wa_hls4Ow5PLk1XXAXfh7ZhDbHrN8gshM7Jd_BBtPES8QOJxfzZry4nLLUNcAiNzGdRUayqbn6hp3Mp3Y8Yz_GTcSYsAgWYd8wtnHYyR58738aHZ9mLZdC5qSUiwyp6tTCaW1Ly-seWvTKojOFE3mdhyCpTnSa15zEay5QGyM8Sl_2FA_B1PIFbM7mM3wJLDgduCxrcoxe-dJbSx61jHkJUnomfAe6K-VWrh00HvkuJlUqOHJTkTmqaI6qNUcH3q9X_FoO2bhHdjeqfy3Xar4DByv7Ve0tvKoo-RBUohlTvPr3qrfw6HT05aw6Gww_78NjEaENqbnvADYXzTW-hofu92J81bxJR-0PsRDP_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Baseline-Free+Damage+Imaging+Algorithm+Using+Spatial+Frequency+Domain+Virtual+Time+Reversal&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=de+Castro%2C+Bruno+Albuquerque&rft.au=Baptista%2C+Fabricio+Guimaraes&rft.au=Alfredo+Ardila-Rey%2C+Jorge&rft.au=Ciampa%2C+Francesco&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=18&rft.issue=8&rft.spage=5043&rft.epage=5054&rft_id=info:doi/10.1109%2FTII.2021.3124924&rft.externalDocID=9601304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon