Baseline-Free Damage Imaging Algorithm Using Spatial Frequency Domain Virtual Time Reversal
Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic guided wave (GW) methods for damage imaging typically use baseline signals from the undamaged component, which are often affected by real opera...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on industrial informatics Jg. 18; H. 8; S. 5043 - 5054 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic guided wave (GW) methods for damage imaging typically use baseline signals from the undamaged component, which are often affected by real operational conditions and may not always be available. This article proposes a baseline-free damage imaging algorithm based on spatial frequency domain virtual time reversal (SFD-VTR). Virtual time reversal (VTR) is an alternative to traditional time reversal as it reduces the burden of physically back-propagating re-emitted signals by applying signal operations between the transmitted and received waveforms. However, VTR relies on the reconstruction of the emitted signal in the time domain, which involves significant data manipulation causing sampling errors of reconstructed signals. These errors are largely manifested in nonstationary transient phenomena, such as GW propagation and may lead to poor damage detection. Novel SFD-VTR damage indices were here proposed to enhance defect detection as they do not require the time domain reconstruction of re-emitted signals. Therefore, this work develops a new baseline-free algorithm for damage detection based on a mathematical model of acoustic emission wave propagation for a network of emitter-receivers. The algorithm was validated in aluminum and composite specimens, and it was able to localize material flaws with a maximum localization error of ∼6 mm and ∼2 mm for the aluminum and composite samples, respectively, proving to be a promising alternative to SHM systems. Besides, this new mathematical model optimized the traditional methodologies by excluding signal emissions from the setup, and digital signal processing steps. |
|---|---|
| AbstractList | Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic guided wave (GW) methods for damage imaging typically use baseline signals from the undamaged component, which are often affected by real operational conditions and may not always be available. This article proposes a baseline-free damage imaging algorithm based on spatial frequency domain virtual time reversal (SFD-VTR). Virtual time reversal (VTR) is an alternative to traditional time reversal as it reduces the burden of physically back-propagating re-emitted signals by applying signal operations between the transmitted and received waveforms. However, VTR relies on the reconstruction of the emitted signal in the time domain, which involves significant data manipulation causing sampling errors of reconstructed signals. These errors are largely manifested in nonstationary transient phenomena, such as GW propagation and may lead to poor damage detection. Novel SFD-VTR damage indices were here proposed to enhance defect detection as they do not require the time domain reconstruction of re-emitted signals. Therefore, this work develops a new baseline-free algorithm for damage detection based on a mathematical model of acoustic emission wave propagation for a network of emitter-receivers. The algorithm was validated in aluminum and composite specimens, and it was able to localize material flaws with a maximum localization error of ∼6 mm and ∼2 mm for the aluminum and composite samples, respectively, proving to be a promising alternative to SHM systems. Besides, this new mathematical model optimized the traditional methodologies by excluding signal emissions from the setup, and digital signal processing steps. |
| Author | Baptista, Fabricio Guimaraes Alfredo Ardila-Rey, Jorge de Castro, Bruno Albuquerque Ciampa, Francesco |
| Author_xml | – sequence: 1 givenname: Bruno Albuquerque orcidid: 0000-0003-4581-1459 surname: de Castro fullname: de Castro, Bruno Albuquerque email: bruno.castro@unesp.br organization: School of Engineering, São Paulo State University (UNESP), Sao Paulo, Brazil – sequence: 2 givenname: Fabricio Guimaraes orcidid: 0000-0002-1200-4354 surname: Baptista fullname: Baptista, Fabricio Guimaraes email: f.baptista@unesp.br organization: School of Engineering, São Paulo State University (UNESP), Sao Paulo, Brazil – sequence: 3 givenname: Jorge orcidid: 0000-0001-8811-2274 surname: Alfredo Ardila-Rey fullname: Alfredo Ardila-Rey, Jorge email: jorge.ardila@usm.cl organization: Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile, Chile – sequence: 4 givenname: Francesco orcidid: 0000-0003-3846-8891 surname: Ciampa fullname: Ciampa, Francesco email: f.ciampa@surrey.ac.uk organization: Aerospace Division, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, U.K |
| BookMark | eNp9kE1LAzEQhoNUsK3eBS8Bz1snyX40x9paXRAEbb14WLLpbE3ZzdZkK_Tfm9LiwYOX-WDed2Z4BqRnW4uEXDMYMQbybpHnIw6cjQTjseTxGekzGbMIIIFeqJOERYKDuCAD7zcAIgMh--TjXnmsjcVo7hDpTDVqjTQP0dg1ndTr1pnus6FLf-jftqozqqZB-7VDq_d01jbKWPpuXLcLg4VpkL7iNzqv6ktyXqna49UpD8ly_rCYPkXPL4_5dPIcaSFEFyETPOM6y9RYsTJFhatYoZaJ5lBCVYkkljpjJQvyknHMpOQrFKtxGrOqkqUYktvj3q1rw1u-KzbtztlwsuBpykGmUiZBBUeVdq33Dqti60yj3L5gUBwQFgFhcUBYnBAGS_rHok0XCLS2c8rU_xlvjkaDiL93ZApMQCx-AJ2hf9U |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_3390_electronics12092104 crossref_primary_10_1109_TII_2023_3268442 crossref_primary_10_1016_j_measurement_2023_113367 crossref_primary_10_1016_j_measurement_2024_116159 crossref_primary_10_1016_j_ndteint_2025_103457 crossref_primary_10_1016_j_compstruct_2024_117993 crossref_primary_10_1109_TII_2024_3514160 crossref_primary_10_1016_j_aei_2025_103701 crossref_primary_10_1177_14759217231159868 crossref_primary_10_1016_j_ultras_2024_107445 crossref_primary_10_1109_JSEN_2024_3511655 crossref_primary_10_1109_TII_2024_3413295 crossref_primary_10_1109_TGRS_2023_3347624 crossref_primary_10_1109_TIM_2023_3338679 crossref_primary_10_1109_TIM_2025_3588934 crossref_primary_10_1109_TNNLS_2022_3230426 crossref_primary_10_1016_j_ymssp_2025_113356 crossref_primary_10_1016_j_ijmecsci_2024_109450 crossref_primary_10_1016_j_ymssp_2023_110266 crossref_primary_10_1016_j_ymssp_2025_112696 crossref_primary_10_1016_j_ymssp_2025_113365 crossref_primary_10_1016_j_ymssp_2025_112562 |
| Cites_doi | 10.1016/j.ymssp.2021.107712 10.1109/TII.2015.2501762 10.1109/TIM.2016.2583218 10.1016/j.ultras.2015.05.011 10.1177/1045389X20972474 10.1080/10589759.2019.1652296 10.1109/TII.2017.2775343 10.1016/j.measurement.2019.107345 10.1121/1.5042240 10.3390/s20030826 10.3390/app9010011 10.1016/j.ins.2019.10.010 10.1016/j.sna.2020.112040 10.1109/TUFFC.2017.2748968 10.1088/1361-665X/ab1fc8 10.1177/1045389X15590269 10.3390/s18061928 10.1109/TUFFC.2018.2876723 10.1016/j.compstruct.2018.01.096 10.1007/s10921-016-0380-6 10.1061/(ASCE)0893-1321(2007)20:3(141) 10.1109/TIT.2019.2947045 10.1177/14759217211023934 10.1109/TUFFC.2020.3017760 10.1088/0964-1726/24/4/045014 10.1109/TUFFC.2017.2771525 10.1016/j.cja.2019.03.001 10.1088/1361-665X/ab8028 10.1109/TUFFC.2018.2813278 10.1016/j.ymssp.2016.01.023 10.1177/1461348418813699 10.1177/1550147719843054 10.1109/TIM.2015.2476278 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2021.3124924 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 5054 |
| ExternalDocumentID | 10_1109_TII_2021_3124924 9601304 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico; CNPq grantid: #312069/2018-9 funderid: 10.13039/501100003593 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo; São Paulo Research Foundation grantid: #2015/24903-5; #2018/23737-2 funderid: 10.13039/501100001807 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-e13272c77a8a1b6eaed4aec95c20b0ff3549c71b1c33b12e7992de3d8641ff9b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793847600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:18:02 EDT 2025 Sat Nov 29 04:16:59 EST 2025 Tue Nov 18 22:24:00 EST 2025 Wed Aug 27 02:14:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-e13272c77a8a1b6eaed4aec95c20b0ff3549c71b1c33b12e7992de3d8641ff9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8811-2274 0000-0003-4581-1459 0000-0003-3846-8891 0000-0002-1200-4354 |
| OpenAccessLink | http://hdl.handle.net/11449/231548 |
| PQID | 2662096995 |
| PQPubID | 85507 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9601304 crossref_primary_10_1109_TII_2021_3124924 crossref_citationtrail_10_1109_TII_2021_3124924 proquest_journals_2662096995 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1016/j.ymssp.2021.107712 – ident: ref2 doi: 10.1109/TII.2015.2501762 – ident: ref3 doi: 10.1109/TIM.2016.2583218 – ident: ref28 doi: 10.1016/j.ultras.2015.05.011 – ident: ref19 doi: 10.1177/1045389X20972474 – ident: ref32 doi: 10.1080/10589759.2019.1652296 – ident: ref1 doi: 10.1109/TII.2017.2775343 – ident: ref15 doi: 10.1016/j.measurement.2019.107345 – ident: ref11 doi: 10.1121/1.5042240 – ident: ref33 doi: 10.3390/s20030826 – ident: ref16 doi: 10.3390/app9010011 – ident: ref29 doi: 10.1016/j.ins.2019.10.010 – ident: ref5 doi: 10.1016/j.sna.2020.112040 – ident: ref14 doi: 10.1109/TUFFC.2017.2748968 – ident: ref27 doi: 10.1088/1361-665X/ab1fc8 – ident: ref23 doi: 10.1177/1045389X15590269 – ident: ref26 doi: 10.3390/s18061928 – ident: ref6 doi: 10.1109/TUFFC.2018.2876723 – ident: ref20 doi: 10.1016/j.compstruct.2018.01.096 – ident: ref31 doi: 10.1007/s10921-016-0380-6 – ident: ref21 doi: 10.1061/(ASCE)0893-1321(2007)20:3(141) – ident: ref30 doi: 10.1109/TIT.2019.2947045 – ident: ref9 doi: 10.1177/14759217211023934 – ident: ref7 doi: 10.1109/TUFFC.2020.3017760 – ident: ref25 doi: 10.1088/0964-1726/24/4/045014 – ident: ref8 doi: 10.1109/TUFFC.2017.2771525 – ident: ref24 doi: 10.1016/j.cja.2019.03.001 – ident: ref17 doi: 10.1088/1361-665X/ab8028 – ident: ref10 doi: 10.1109/TUFFC.2018.2813278 – ident: ref22 doi: 10.1016/j.ymssp.2016.01.023 – ident: ref12 doi: 10.1177/1461348418813699 – ident: ref13 doi: 10.1177/1550147719843054 – ident: ref4 doi: 10.1109/TIM.2015.2476278 |
| SSID | ssj0037039 |
| Score | 2.463348 |
| Snippet | Structural health monitoring (SHM) techniques are widely used in industry applications to guarantee the integrity of several types of components. Ultrasonic... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5043 |
| SubjectTerms | Acoustic emission Acoustic propagation Algorithms Aluminum Back propagation Baseline-free Damage detection damage imaging Digital signal processing Emitters Errors Flaw detection Frequency domain analysis guided waves (GWs) Image reconstruction Imaging imaging algorithm Industrial applications Informatics Mathematical analysis Mathematical models Reconstruction Sampling error Signal processing Structural health monitoring Time domain analysis ultrasound virtual time reversal (VTR) Wave propagation Waveforms |
| Title | Baseline-Free Damage Imaging Algorithm Using Spatial Frequency Domain Virtual Time Reversal |
| URI | https://ieeexplore.ieee.org/document/9601304 https://www.proquest.com/docview/2662096995 |
| Volume | 18 |
| WOSCitedRecordID | wos000793847600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6c0EN6SJpHiRun6NBLIBuvpLW1OqZNTXwxpTgh0MOilUaNwY-wXhf67zuS1yYlodDbHkYgZqR5rOabD-CT5H1tKYwkThmZZD6jO-dUL6Hk3JvAi-KdiWQTajTKHx70txZcbrEwiBibz_AqfMa3fLewq_CrrEvZNrncbAd2lOqvsVobryvp5Oo4G7XHEylSuXmSTHV3PBxSISg41adhPl72VwiKnCovHHGMLoOD_9vXO9hvskh2vTb7IbRwfgRvn80WPIYfn03EmmMyqBDZjZmR52DDWWQlYtfTn4tqUj_OWOwZYIGZmE4iI9nYWv2b3SxmZjJn95MqIExYgIqw7xiaOMz0BO4GX8dfbpOGSSGxUso6Qao5lbBKmdzwso8GXWbQ6p4VaZl6L6lKtIqXnMRLLlBpLRxKl_cz7r0u5XvYnS_meArMW-W5zEtyiy5zuTOG_GkeshKk5Ey4NnQ3yi1sM2Y8sF1Mi1hupLogcxTBHEVjjjZcbFc8rUds_EP2OKh_K9dovg2djf2K5g4uC0o9BBVoWvc-vL7qDPZEADPEdr4O7NbVCs_hjf1VT5bVx3i8_gDh7sy1 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qK6gPrdqKZ6vmwRfB9TYfe9k89sOjh_UQOaXgw5JNJu3Bfcj2KvS_d5LbOyqVgm_7MIEwk8zHZn7zA3gnec84CiOZ11ZmKii6c14XGSXnwUZelOBtIpvQw2F5fm6-bsCHNRYGEVPzGX6Mn-kt38_ddfxV1qVsm1yuegBbhVIiX6K1Vn5X0tk1aTpqwTMpcrl6lMxNdzQYUCkoOFWocUKe-isIJVaVO644xZf-zv_t7Clst3kkO1wa_hls4Ow5PLk1XXAXfh7ZhDbHrN8gshM7Jd_BBtPES8QOJxfzZry4nLLUNcAiNzGdRUayqbn6hp3Mp3Y8Yz_GTcSYsAgWYd8wtnHYyR58738aHZ9mLZdC5qSUiwyp6tTCaW1Ly-seWvTKojOFE3mdhyCpTnSa15zEay5QGyM8Sl_2FA_B1PIFbM7mM3wJLDgduCxrcoxe-dJbSx61jHkJUnomfAe6K-VWrh00HvkuJlUqOHJTkTmqaI6qNUcH3q9X_FoO2bhHdjeqfy3Xar4DByv7Ve0tvKoo-RBUohlTvPr3qrfw6HT05aw6Gww_78NjEaENqbnvADYXzTW-hofu92J81bxJR-0PsRDP_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Baseline-Free+Damage+Imaging+Algorithm+Using+Spatial+Frequency+Domain+Virtual+Time+Reversal&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=de+Castro%2C+Bruno+Albuquerque&rft.au=Baptista%2C+Fabricio+Guimaraes&rft.au=Alfredo+Ardila-Rey%2C+Jorge&rft.au=Ciampa%2C+Francesco&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=18&rft.issue=8&rft.spage=5043&rft.epage=5054&rft_id=info:doi/10.1109%2FTII.2021.3124924&rft.externalDocID=9601304 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |