Optimizing DF Cognitive Radio Networks With Full-Duplex-Enabled Energy Access Points

With the recent advances in radio frequency (RF) energy harvesting (EH) technologies, wireless powered cooperative cognitive radio network (CCRN) has drawn an upsurge of interest for improving the spectrum utilization with incentive to motivate joint information and energy cooperation between the pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 16; no. 7; pp. 4683 - 4697
Main Authors: Hong Xing, Xin Kang, Kai-Kit Wong, Nallanathan, Arumugam
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the recent advances in radio frequency (RF) energy harvesting (EH) technologies, wireless powered cooperative cognitive radio network (CCRN) has drawn an upsurge of interest for improving the spectrum utilization with incentive to motivate joint information and energy cooperation between the primary and secondary systems. Dedicated energy beamforming is aimed at remedying the low efficiency of wireless power transfer, which nevertheless arouses out-of-band EH phases and thus low cooperation efficiency. To address this issue, in this paper, we consider a novel CCRN aided by full-duplex (FD)-enabled energy access points (EAPs) that can cooperate to wireless charge the secondary transmitter while concurrently receiving primary transmitter's signal in the first transmission phase, and to perform decode-and-forward relaying in the second transmission phase. We investigate a weighted sum-rate maximization problem subject to transmitting power constraints as well as a total cost constraint using successive convex approximation techniques. A zero-forcing-based suboptimal scheme that requires only local channel state information for the EAPs to obtain their optimum receiving beamforming is also derived. Various tradeoffs between the weighted sum-rate and other system parameters are provided in numerical results to corroborate the effectiveness of the proposed solutions against the benchmark ones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2017.2701377