Greedy active learning algorithm for logistic regression models
We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy v...
Uloženo v:
| Vydáno v: | Computational statistics & data analysis Ročník 129; s. 119 - 134 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2019
|
| Témata: | |
| ISSN: | 0167-9473, 1872-7352 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy variable selection procedure such that we can update the classification model with all labeled training subjects. The proposed algorithm repeatedly performs both subject and variable selection steps until a prefixed stopping criterion is reached. Our numerical results show that the proposed procedure has competitive performance, with smaller training size and a more compact model compared with that of the classifier trained with all variables and a full data set. We also apply the proposed procedure to a well-known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data set to confirm the performance of our method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0167-9473 1872-7352 |
| DOI: | 10.1016/j.csda.2018.08.013 |