Greedy active learning algorithm for logistic regression models

We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy v...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational statistics & data analysis Ročník 129; s. 119 - 134
Hlavní autori: Hsu, Hsiang-Ling, Chang, Yuan-chin Ivan, Chen, Ray-Bing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2019
Predmet:
ISSN:0167-9473, 1872-7352
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy variable selection procedure such that we can update the classification model with all labeled training subjects. The proposed algorithm repeatedly performs both subject and variable selection steps until a prefixed stopping criterion is reached. Our numerical results show that the proposed procedure has competitive performance, with smaller training size and a more compact model compared with that of the classifier trained with all variables and a full data set. We also apply the proposed procedure to a well-known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data set to confirm the performance of our method.
AbstractList We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy variable selection procedure such that we can update the classification model with all labeled training subjects. The proposed algorithm repeatedly performs both subject and variable selection steps until a prefixed stopping criterion is reached. Our numerical results show that the proposed procedure has competitive performance, with smaller training size and a more compact model compared with that of the classifier trained with all variables and a full data set. We also apply the proposed procedure to a well-known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data set to confirm the performance of our method.
We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy variable selection procedure such that we can update the classification model with all labeled training subjects. The proposed algorithm repeatedly performs both subject and variable selection steps until a prefixed stopping criterion is reached. Our numerical results show that the proposed procedure has competitive performance, with smaller training size and a more compact model compared with that of the classifier trained with all variables and a full data set. We also apply the proposed procedure to a well-known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data set to confirm the performance of our method.
Author Hsu, Hsiang-Ling
Chen, Ray-Bing
Chang, Yuan-chin Ivan
Author_xml – sequence: 1
  givenname: Hsiang-Ling
  surname: Hsu
  fullname: Hsu, Hsiang-Ling
  email: hsuhl@nuk.edu.tw
  organization: National University of Kaohsiung, Taiwan
– sequence: 2
  givenname: Yuan-chin Ivan
  surname: Chang
  fullname: Chang, Yuan-chin Ivan
  email: ycchang@stat.sinica.edu.tw
  organization: Academia Sinica, Taiwan
– sequence: 3
  givenname: Ray-Bing
  orcidid: 0000-0001-7226-509X
  surname: Chen
  fullname: Chen, Ray-Bing
  email: rbchen@mail.ncku.edu.tw
  organization: National Cheng Kung University, Taiwan
BookMark eNp9kE1LAzEURYNUsFX_gKtZupnxJZmPDAgiRatQcKPrkCZvxpTppCZpof_elLpyUbjwNvc8uGdGJqMbkZA7CgUFWj-sCx2MKhhQUUAK5RdkSkXD8oZXbEKmqdTkbdnwKzILYQ0ArGzElDwtPKI5ZEpHu8dsQOVHO_aZGnrnbfzeZJ3z2eB6G6LVmcfeYwjWjdnGGRzCDbns1BDw9u9ek6_Xl8_5W778WLzPn5e55pzH3EBdKkO1VqCxE2pVtxy4qVWt9Ap42zJWgqIApuoEU5p2pTAAFWNdyQQFfk3uT3-33v3sMES5sUHjMKgR3S5IxnhTMZH2pyo7VbV3IXjs5NbbjfIHSUEebcm1PNqSR1sSUihPkPgHaRtVTEOjV3Y4jz6e0KQD9xa9DNriqNFYjzpK4-w5_BeTI4ee
CitedBy_id crossref_primary_10_3390_math9232991
crossref_primary_10_1007_s10664_019_09793_8
Cites_doi 10.1109/T-C.1971.223410
10.1007/BF00993277
10.1109/ICDM.2006.12
10.1111/j.2517-6161.1996.tb02067.x
10.18637/jss.v033.i01
10.1198/jasa.2009.ap07625
10.1016/0893-6080(95)00137-9
10.1093/biomet/71.1.1
10.1109/78.258082
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2018.08.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
EndPage 134
ExternalDocumentID 10_1016_j_csda_2018_08_013
S0167947318301968
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c333t-d064ad1cca0cef8ab69303d6a6acb03992240a100d5f82ac1f48d00522f428103
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447571400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9473
IngestDate Sun Sep 28 06:58:37 EDT 2025
Tue Nov 18 22:34:37 EST 2025
Sat Nov 29 03:40:46 EST 2025
Fri Feb 23 02:23:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords D-efficiency criterion
Active learning algorithm
Forward selection
Graft optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-d064ad1cca0cef8ab69303d6a6acb03992240a100d5f82ac1f48d00522f428103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7226-509X
PQID 2237528018
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2237528018
crossref_primary_10_1016_j_csda_2018_08_013
crossref_citationtrail_10_1016_j_csda_2018_08_013
elsevier_sciencedirect_doi_10_1016_j_csda_2018_08_013
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kubicaa, Singhb, Sorokinac (b15) 2011
Rakotomalala (b21) 2005
Atkinson (b2) 1996; 58
Breiman, Friedman, Olshen, Stone (b4) 1984
Whitney (b27) 1971; 20
Berger, Wong (b3) 2009
Long, Bian, Chapelle, Zhang, Inagaki, Chang (b17) 2010
Singh, Kubica, Larsen, Sorokina (b26) 2009
Cohn, Ghahramani, Jordan (b7) 1994
Hsu (b14) 2010
Settles (b24) 2012
Cohn (b5) 1996; 9
Cohn, Atlas, Ladner (b6) 1994; 15
Culver, M., Kun, D., Scott, S., 2006. Active learning to maximize area under the ROC curve. In: Sixth International Conference on Data Mining, 2006. ICDM ’06.
Deng, Joseph, Sudjianto, Wu (b9) 2009; 104
Albert, Anderson (b1) 1984; 71
Fedorov (b12) 1972
Dheeru, Karra Taniskidou (b10) 2017
Mallat, Zhang (b18) 1993; 41
Settles, B., 2009. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison.
Friedman, Hastie, Tibshirani (b13) 2010; 33
Perkins, Lacker, Theiler (b20) 2003; 3
Efron, Hastie (b11) 2016
Montgomery (b19) 2009
Silvey (b25) 1980
Lewis, Gale (b16) 1994
Settles, B., 2011. From theories to queries: Active learning in practice. In: Journal of Machine Learning Research, Workshop on Active Learning and Experimental Design, Workshop and Conference Proceedings, Vol. 16, pp. 1–18.
Montgomery (10.1016/j.csda.2018.08.013_b19) 2009
Kubicaa (10.1016/j.csda.2018.08.013_b15) 2011
Deng (10.1016/j.csda.2018.08.013_b9) 2009; 104
Berger (10.1016/j.csda.2018.08.013_b3) 2009
Atkinson (10.1016/j.csda.2018.08.013_b2) 1996; 58
Cohn (10.1016/j.csda.2018.08.013_b5) 1996; 9
Hsu (10.1016/j.csda.2018.08.013_b14) 2010
Perkins (10.1016/j.csda.2018.08.013_b20) 2003; 3
Efron (10.1016/j.csda.2018.08.013_b11) 2016
10.1016/j.csda.2018.08.013_b22
Lewis (10.1016/j.csda.2018.08.013_b16) 1994
Albert (10.1016/j.csda.2018.08.013_b1) 1984; 71
Whitney (10.1016/j.csda.2018.08.013_b27) 1971; 20
Cohn (10.1016/j.csda.2018.08.013_b6) 1994; 15
10.1016/j.csda.2018.08.013_b23
Silvey (10.1016/j.csda.2018.08.013_b25) 1980
Friedman (10.1016/j.csda.2018.08.013_b13) 2010; 33
Mallat (10.1016/j.csda.2018.08.013_b18) 1993; 41
Settles (10.1016/j.csda.2018.08.013_b24) 2012
Long (10.1016/j.csda.2018.08.013_b17) 2010
Breiman (10.1016/j.csda.2018.08.013_b4) 1984
Fedorov (10.1016/j.csda.2018.08.013_b12) 1972
10.1016/j.csda.2018.08.013_b8
Rakotomalala (10.1016/j.csda.2018.08.013_b21) 2005
Cohn (10.1016/j.csda.2018.08.013_b7) 1994
Dheeru (10.1016/j.csda.2018.08.013_b10) 2017
Singh (10.1016/j.csda.2018.08.013_b26) 2009
References_xml – reference: Settles, B., 2011. From theories to queries: Active learning in practice. In: Journal of Machine Learning Research, Workshop on Active Learning and Experimental Design, Workshop and Conference Proceedings, Vol. 16, pp. 1–18.
– year: 1984
  ident: b4
  article-title: Classification and Regression Trees
– volume: 58
  start-page: 59
  year: 1996
  end-page: 76
  ident: b2
  article-title: The usefulness of optimum experimental designs
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 71
  start-page: 1
  year: 1984
  end-page: 10
  ident: b1
  article-title: On the existence of maximum likelihood estimates in logistic regression models
  publication-title: Biometrika
– year: 2011
  ident: b15
  article-title: Parallel large-scale feature selection
  publication-title: Scaling Up Machine Learning: Parallel and Distributed Approaches
– start-page: 1172
  year: 2009
  end-page: 1183
  ident: b26
  article-title: Parallel large scale feature selection for logistic regression
  publication-title: SDM
– year: 2009
  ident: b19
  article-title: Design and Analysis of Experiments
– year: 1972
  ident: b12
  publication-title: Theory of Optimal Experiments
– year: 2012
  ident: b24
  article-title: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning
– start-page: 705
  year: 1994
  end-page: 712
  ident: b7
  article-title: Active learning with statistical models
  publication-title: Proceedings of the 7th International Conference on Neural Information Processing Systems
– volume: 3
  start-page: 1333
  year: 2003
  end-page: 1356
  ident: b20
  article-title: Grafting: Fast, incremental feature selection by gradient descent in function space
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1100
  year: 1971
  end-page: 1103
  ident: b27
  article-title: A direct method of nonparametric measurement selection
  publication-title: IEEE Trans. Comput.
– year: 2016
  ident: b11
  article-title: Computer Age Statistical Inference: Algorithms, Evidence, and Data Science
– year: 2010
  ident: b14
  article-title: Algorithms for Active Learning
– year: 1980
  ident: b25
  article-title: Optimal Design : An Introduction to the Theory for Parameter Estimation
– reference: Culver, M., Kun, D., Scott, S., 2006. Active learning to maximize area under the ROC curve. In: Sixth International Conference on Data Mining, 2006. ICDM ’06.
– volume: 15
  start-page: 201
  year: 1994
  end-page: 221
  ident: b6
  article-title: Improving generalization with active learning
  publication-title: Mach. Learn.
– reference: Settles, B., 2009. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison.
– volume: 104
  start-page: 969
  year: 2009
  end-page: 981
  ident: b9
  article-title: Active learning through sequential design, with applications to detection of money laundering
  publication-title: J. Amer. Statist. Assoc.
– year: 2010
  ident: b17
  article-title: Active learning for ranking through expected loss optimization
  publication-title: SIGIR 2010
– start-page: 3
  year: 1994
  end-page: 12
  ident: b16
  article-title: A sequential algorithm for training text classifiers
  publication-title: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 697
  year: 2005
  end-page: 702
  ident: b21
  article-title: TANAGRA: a free software for research and academic purposes
  publication-title: Proceedings of European Grid Conference 2005, RNTI-E-3, Vol. 2
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: b13
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– year: 2017
  ident: b10
  article-title: UCI Machine Learning Repository
– volume: 9
  start-page: 1071
  year: 1996
  end-page: 1083
  ident: b5
  article-title: Neural network exploration using optimal experiment design
  publication-title: Neural Netw.
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: b18
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– year: 2009
  ident: b3
  article-title: An Introduction to Optimal Design for Social and Biomedical Eesearch
– start-page: 3
  year: 1994
  ident: 10.1016/j.csda.2018.08.013_b16
  article-title: A sequential algorithm for training text classifiers
– year: 2010
  ident: 10.1016/j.csda.2018.08.013_b17
  article-title: Active learning for ranking through expected loss optimization
– start-page: 705
  year: 1994
  ident: 10.1016/j.csda.2018.08.013_b7
  article-title: Active learning with statistical models
– year: 2009
  ident: 10.1016/j.csda.2018.08.013_b19
– year: 2010
  ident: 10.1016/j.csda.2018.08.013_b14
– year: 2009
  ident: 10.1016/j.csda.2018.08.013_b3
– year: 2012
  ident: 10.1016/j.csda.2018.08.013_b24
– volume: 20
  start-page: 1100
  issue: 9
  year: 1971
  ident: 10.1016/j.csda.2018.08.013_b27
  article-title: A direct method of nonparametric measurement selection
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1971.223410
– year: 2016
  ident: 10.1016/j.csda.2018.08.013_b11
– volume: 15
  start-page: 201
  issue: 2
  year: 1994
  ident: 10.1016/j.csda.2018.08.013_b6
  article-title: Improving generalization with active learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00993277
– year: 1984
  ident: 10.1016/j.csda.2018.08.013_b4
– start-page: 697
  year: 2005
  ident: 10.1016/j.csda.2018.08.013_b21
  article-title: TANAGRA: a free software for research and academic purposes
– start-page: 1172
  year: 2009
  ident: 10.1016/j.csda.2018.08.013_b26
  article-title: Parallel large scale feature selection for logistic regression
– ident: 10.1016/j.csda.2018.08.013_b23
– ident: 10.1016/j.csda.2018.08.013_b8
  doi: 10.1109/ICDM.2006.12
– volume: 58
  start-page: 59
  issue: 1
  year: 1996
  ident: 10.1016/j.csda.2018.08.013_b2
  article-title: The usefulness of optimum experimental designs
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02067.x
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.csda.2018.08.013_b13
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– year: 2017
  ident: 10.1016/j.csda.2018.08.013_b10
– volume: 104
  start-page: 969
  issue: 487
  year: 2009
  ident: 10.1016/j.csda.2018.08.013_b9
  article-title: Active learning through sequential design, with applications to detection of money laundering
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/jasa.2009.ap07625
– volume: 9
  start-page: 1071
  issue: 6
  year: 1996
  ident: 10.1016/j.csda.2018.08.013_b5
  article-title: Neural network exploration using optimal experiment design
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(95)00137-9
– year: 1972
  ident: 10.1016/j.csda.2018.08.013_b12
– year: 2011
  ident: 10.1016/j.csda.2018.08.013_b15
  article-title: Parallel large-scale feature selection
– volume: 3
  start-page: 1333
  year: 2003
  ident: 10.1016/j.csda.2018.08.013_b20
  article-title: Grafting: Fast, incremental feature selection by gradient descent in function space
  publication-title: J. Mach. Learn. Res.
– volume: 71
  start-page: 1
  year: 1984
  ident: 10.1016/j.csda.2018.08.013_b1
  article-title: On the existence of maximum likelihood estimates in logistic regression models
  publication-title: Biometrika
  doi: 10.1093/biomet/71.1.1
– year: 1980
  ident: 10.1016/j.csda.2018.08.013_b25
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 10.1016/j.csda.2018.08.013_b18
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– ident: 10.1016/j.csda.2018.08.013_b22
SSID ssj0002478
Score 2.240548
Snippet We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms [formula omitted]-efficiency criterion
Active learning algorithm
algorithms
data collection
experimental design
Forward selection
Graft optimization
regression analysis
telescopes
Title Greedy active learning algorithm for logistic regression models
URI https://dx.doi.org/10.1016/j.csda.2018.08.013
https://www.proquest.com/docview/2237528018
Volume 129
WOSCitedRecordID wos000447571400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8oPElxtgUJN6qTHE-7adpTEMMjQnBkMpT5NhuYSrp1LTR9t9zl7NTtmkTIPESVVGcWr6f786Xu98x9qYShTE8qkIVaxWmRuCWSkyopbRGWp0L2_HMHhcnJ2I0kp8Gg9bXwrTToq7FxYU8_6-ihnsgbCyd_Qtx9y-FG_AbhA5XEDtc_0jwmEljLjuSjNb6rhCToZpOZvMfi-8_u8RCKvzp6JsnlAlbU1Oc5ndvlVo--HAh1h45WmfEC-aWDpXjNOnR0Sw7Y4almZPw2NtFyh8gtfJtqeoQMziHR-0KmgeuSuSzugzf-mEuGoEFUFeiETfLZChqCdpYptSzZNeSphUFuPZJdlUVu-gHKVPulCnZZU5Bzxsqn6IPZ7u6McgjxUVHycqTlYHr0w6_4ERwHqDHkBdI3GPrcZFJUOjr-0eHow-9DY9TsuF-4q7cijIDr__TbS7NNePeeSynG-yRO2oE-wSRx2xg6yfs4ceep7d5yvYILAGBJfBgCXqwBACWwIMlWIElILA8Y1_fHZ4evA9dS41QJ0myCA14oMpw2LaRtmOhKuyEmZhc5UpXUUdSnEaKR5HJxiJWmo9TYfDTQTyGcyqPkudsrZ7V9gULpMiVyfOokJlJq0rCKNjbcJqIwQPnsdpk3K9KqR3fPLY9mZY-sfCsxJUscSVL7IXKk0027MecE9vKnU9nfrFL5y-SH1gCNu4c99pLpgRlil_IVG1ny6YEX7nIYnDaxMt_fPcWe7DaFq_Y2mK-tNvsvm5hg853HMx-AXOYmvE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+active+learning+algorithm+for+logistic+regression+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Hsu%2C+Hsiang-Ling&rft.au=Chang%2C+Yuan-chin+Ivan&rft.au=Chen%2C+Ray-Bing&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=129&rft.spage=119&rft.epage=134&rft_id=info:doi/10.1016%2Fj.csda.2018.08.013&rft.externalDocID=S0167947318301968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon