Designing ultrathin Fe doped Ta2O5-x nanobelts for highly enhanced ammonia photosynthesis
[Display omitted] •Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe doping induced the decreased working function and formation of more oxygen vacancies.•Fe-Ta2O5-x nanobelts exhibited highly enhanced photocataly...
Uložené v:
| Vydané v: | Journal of colloid and interface science Ročník 669; s. 477 - 485 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.09.2024
|
| Predmet: | |
| ISSN: | 0021-9797, 1095-7103, 1095-7103 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe doping induced the decreased working function and formation of more oxygen vacancies.•Fe-Ta2O5-x nanobelts exhibited highly enhanced photocatalytic performance.
Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber–Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers’ separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g−1 h−1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis. |
|---|---|
| AbstractList | [Display omitted]
•Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe doping induced the decreased working function and formation of more oxygen vacancies.•Fe-Ta2O5-x nanobelts exhibited highly enhanced photocatalytic performance.
Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber–Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers’ separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g−1 h−1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis. Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber-Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers' separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g-1 h-1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis.Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber-Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers' separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g-1 h-1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis. |
| Author | Yu, Xin Sun, Hezheng Xin, Changhui Tang, Yanting Yao, Jiaxin Wang, Bin |
| Author_xml | – sequence: 1 givenname: Changhui surname: Xin fullname: Xin, Changhui – sequence: 2 givenname: Hezheng surname: Sun fullname: Sun, Hezheng – sequence: 3 givenname: Jiaxin surname: Yao fullname: Yao, Jiaxin – sequence: 4 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 5 givenname: Xin orcidid: 0000-0002-9839-3900 surname: Yu fullname: Yu, Xin email: xinyu@henu.edu.cn – sequence: 6 givenname: Yanting surname: Tang fullname: Tang, Yanting email: tangyanting@henu.edu.cn |
| BookMark | eNp9kLtuGzEQRYnABiLL-YFULNPsZobkvoA0hmPHBgS4sYtUBM2d1VJYkQpJBdbfewW5cqFqmnvu4J4rduGDJ8a-I5QIWP_clBvrUilAqBJUKYT6whYIXVU0CPKCLQAEFl3TNV_ZVUobAMSq6hbs729Kbu2dX_P9lKPJo_P8nngfdtTzZyOequKNe-PDK0058SFEPrr1OB04-dF4O6fMdhu8M3w3hhzSwedx7kzX7HIwU6JvH3fJXu7vnm8fitXTn8fbm1VhpZS5sIpA1JJatFiLYehoME3T9rVoDL7KRgnEGuq2QlQDUauQYFAoSdVdDcrKJftx6t3F8G9PKeutS5amyXgK-6QlVHIeLucnSyZOURtDSpEGvYtua-JBI-ijR73RR4_66FGD0rPHGWo_QdZlk13wsy43nUd_nVCa9_93FHWyjo7OXCSbdR_cOfwdg9GQIQ |
| CitedBy_id | crossref_primary_10_1016_j_jphotochem_2025_116692 crossref_primary_10_1016_j_jallcom_2024_177616 crossref_primary_10_1016_j_seppur_2025_134325 crossref_primary_10_1002_cphc_202400753 crossref_primary_10_1039_D4TC05394J |
| Cites_doi | 10.1016/j.apcatb.2022.122070 10.1002/cssc.202300944 10.1016/j.cej.2023.143259 10.1016/j.ijhydene.2018.08.075 10.1016/j.jcis.2019.09.123 10.1016/j.apsusc.2016.12.125 10.1016/j.jhazmat.2023.132117 10.1016/j.apcatb.2020.119196 10.1016/j.jtice.2018.12.021 10.1021/acs.jpcc.7b11822 10.1016/j.materresbull.2022.112143 10.1016/j.cej.2021.131673 10.1039/D1TA06296D 10.1016/j.jcis.2020.03.030 10.1016/j.ceramint.2020.10.038 10.1016/j.compositesb.2019.107712 10.1016/j.seppur.2020.117235 10.1016/j.ces.2022.117734 10.1016/j.physb.2020.412422 10.1039/C8TA11561C 10.1016/j.jcis.2016.11.069 10.1016/j.jtice.2019.08.021 10.1039/C3CS60438A 10.1016/j.apcata.2022.118978 10.1016/j.apcatb.2021.120680 10.1016/S1872-2067(21)63939-6 10.1016/j.ecoenv.2024.115927 10.1016/j.jenvman.2021.114289 10.1002/anie.201705628 10.1016/j.jcis.2023.02.005 10.1002/smll.202205388 10.1016/j.apcatb.2023.122462 10.1021/acssuschemeng.9b01178 10.1016/j.jhazmat.2009.11.077 10.1016/j.apcatb.2022.122292 10.1016/j.apcatb.2022.122148 10.1016/j.apcatb.2021.120379 10.1016/j.ceramint.2023.09.114 10.1016/j.apsusc.2022.156252 10.1002/anie.202204271 10.1016/j.cej.2020.126776 10.1016/j.nanoen.2019.104187 10.1016/j.cclet.2022.01.076 10.1016/j.jcis.2023.01.098 10.1016/j.jcis.2016.11.105 10.1021/acsami.5b07685 10.1016/j.jmst.2021.08.085 10.1039/D2TA06933D 10.1016/j.apcatb.2019.117781 10.1021/jacs.3c01947 10.1016/j.apsusc.2022.155970 10.1002/aenm.202201782 10.1021/acs.inorgchem.3c01741 10.1016/j.jcis.2016.11.102 10.1002/anie.202100726 10.1002/adma.201806482 10.1016/j.apcatb.2022.122308 10.1016/j.cej.2020.126868 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.jcis.2024.04.224 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1095-7103 |
| EndPage | 485 |
| ExternalDocumentID | 10_1016_j_jcis_2024_04_224 S0021979724009561 |
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7X8 |
| ID | FETCH-LOGICAL-c333t-c4e0263e81c162ff9efa778d627a1b37421160685114fee841e0f413e469604c3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001239136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9797 1095-7103 |
| IngestDate | Sun Nov 09 09:57:42 EST 2025 Sat Nov 29 06:30:27 EST 2025 Tue Nov 18 22:00:20 EST 2025 Sat Jun 01 15:42:46 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Oxygen vacancies Nanostructure Photocatalysis Ta2O5 Doping |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-c4e0263e81c162ff9efa778d627a1b37421160685114fee841e0f413e469604c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9839-3900 |
| PQID | 3053979326 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_3053979326 crossref_primary_10_1016_j_jcis_2024_04_224 crossref_citationtrail_10_1016_j_jcis_2024_04_224 elsevier_sciencedirect_doi_10_1016_j_jcis_2024_04_224 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of colloid and interface science |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Mao, Wang, Zou, Shi, Viasus, Loh, Xia, Ji, Li, Shang, Ghoussoub, Xu, Ye, Li, Kherani, Zheng, Liu, Zhang, Ozin (b0020) 2023; 145 Zhu, Lin, Cui, Zhao, Zhang, Huang (b0130) 2016; 8 Luo, Bai, Li, Yu, Li, Wang, Wu, Liang, Zhao, Liu (b0080) 2019; 66 Zhang, Zhang, Gong (b0300) 2014; 43 Dong, Liu, Liu, Li, Hou, Hao, Bai, Zhao, Liu, Guo (b0120) 2022; 17 Liang, Niu, Guo, Niu, Yang, Liu, Tang, Feng (b0215) 2021; 406 Mehrabanpour, Nezamzadeh-Ejhieh, Ghattavi, Ershadi (b0265) 2023; 614 Wang, Fan, Guo, Gao, Guo, Han, Gao, Zhang, Gu, Wu (b0010) 2024 Hao, Ma, Jia, Wei, Bai, Wei, Ni (b0210) 2022; 109 Tamiji, Nezamzadeh-Ejhieh (b0255) 2019; 104 Ouyang, He, Sun, Luo, Zheng, Chen, Li, Lin, Liu, Asiri, Sun (b0150) 2022; 10 Wang, Jin, Pan, Li, Chen, Liu, Xu (b0280) 2019; 7 Ghattavi, Nezamzadeh-Ejhieh (b0310) 2020; 183 Fu, Zhuang, Chee, Dong, Ye, Shen (b0135) 2019; 7 Mirsalari, Nezamzadeh-Ejhieh (b0290) 2020; 250 Norouzi, Nezamzadeh-Ejhieh (b0180) 2020; 599 Yin, Sun, Zhou, Li, Li, Song, Huo, Wang, Yan (b0250) 2021; 406 Dong, Huang, Bi (b0090) 2022; 61 Song, Sun, Wang, Bai, Wu, Li, Zhang, Zhou, Pang, Liang, Yue, Zhao (b0235) 2021; 21 Ejhieh, Khorsandi (b0070) 2010; 176 Liu, Zhao, Yu, Xiong, Liu, Zhang, Chu, Liu, Liu, Zhou (b0055) 2022; 436 Guo, Zhao, Yang, Huang, Tang, Zhang, Li, Yu, Shen, Zhao (b0125) 2020; 560 Chen, Yu, Huang, Chen, Bi (b0195) 2022; 18 Wang, Zhao, Yuan, Li, Zhang, Hu, Lin, Wu, He (b0040) 2023; 638 Manukumar, Kishore, Manjunath, Nagaraju (b0175) 2018; 43 Wu, Li, Luo, Chen, Huang, Yu, Shen, Li, Shi (b0095) 2023; 325 Chen, Li, Fu, Peng (b0165) 2023; 613 Cheng, Shi, Mao, Dong, Huang, Zong, Liu, Shen, Guo (b0100) 2023; 637 Li, Li, Ai, Jia, Zhang (b0305) 2018; 57 Wang, Cao, Chen, Yang, Fu, Liu, Yin (b0030) 2023; 649 Zhang, Meng, Xie, Ni, Lu, Xia (b0205) 2021; 296 Yu, Huang, Zhao, Zhou, Xin, Guo (b0145) 2022; 304 Meng, Lv, Sun, Hong, Xing, Qiang, Chen, Jin (b0225) 2019; 256 Sun, Zhu, Zhang, Meng, Chen, Feng, Chen, Ding (b0015) 2022; 43 Derikvandi, Nezamzadeh-Ejhieh (b0060) 2017; 490 Derikvandi, Nezamzadeh-Ejhieh (b0270) 2017; 490 Tang, Zhang, Pu, Ge, Li, Huang (b0275) 2019; 96 Rezaei, Nezamzadeh-Ejhieh, Massah (b0065) 2024; 269 Yu, Zhao, Huang, Zhao, Guo, Tang, Ma, Li, Guo, Zhao (b0115) 2020; 572 Zhang, Di, Qian, Ji, Tian, Ye, Zhao, Yin, Li, Xia (b0200) 2021; 299 Hou, Yang, Feng, She, Xin, Li, Yu (b0160) 2023; 160 Ren, Shi, Li, Zhang, Meng (b0110) 2023; 327 Ren, Xia, Chong, Yan, Lin, Yang (b0185) 2022; 257 Zhao, Zhao, Shi, Wang, Waterhouse, Wu, Tung, Zhang (b0035) 2019; 31 Xin, Wang, Yang, Zhao, Yu, Tian (b0295) 2023; 49 Zhang, Di, Zhu, Ji, Chen, Liu, Li, Wei, Li, Xia (b0190) 2023; 323 Song, Wu, Cao, Zhang, Luo, Gao, Li, Sun, Hou (b0260) 2022; 12 Cheng, Liu, Song, Chen, Dai, Yuan, Fu (b0155) 2020; 277 Gao, Wu, Zhao, Bian, Zhou, Tang, Zhang (b0230) 2023 Derikvandi, Nezamzadeh-Ejhieh (b0245) 2017; 490 Zhao, Ren, Liu, Li, Li, Lai, Li (b0085) 2023; 459 Tran, Truong, Phan, Nguyen, Huynh, Agresti, Pescetelli, Le, Di Carlo, Lund, Le, Nguyen (b0170) 2017; 399 Gurylev (b0050) 2022; 18 Fu, Pan, Mu, Li, Zhan, Zhao, Mu, Li (b0285) 2021; 9 Yu, Zhou, Huang, Xin, Lin, Fu, Li, Zhang (b0075) 2023; 325 Ajmal, Rasheed, Tran, Shao, Hwang, Bui, Kim, Kim, Lee (b0025) 2023; 321 Zhao, Wang, Gao, Wen, Feng, Song, Zhu, Luo, Tan, Ge, Zhang, Zhang, Zheng, Li, Chen (b0005) 2021; 60 Liu, Ye, Li, Tao, Zhang, Lian, Zhang, Li (b0220) 2022; 33 Gomes, da Silva, Goncalves, Machado, Alcantara, Caires, Wender (b0140) 2018; 122 Zhang, Li, Li, Shi, Zhou, Ye, Yang, Li, Jiang (b0105) 2023; 62 Tan, Ren, Zhao, Xin, Shi, Yang, Jiang (b0240) 2023; 466 Liu, Zeng, Ma, Dong, Tan, Pan (b0045) 2021; 47 Zhao (10.1016/j.jcis.2024.04.224_b0005) 2021; 60 Luo (10.1016/j.jcis.2024.04.224_b0080) 2019; 66 Mao (10.1016/j.jcis.2024.04.224_b0020) 2023; 145 Song (10.1016/j.jcis.2024.04.224_b0260) 2022; 12 Gurylev (10.1016/j.jcis.2024.04.224_b0050) 2022; 18 Rezaei (10.1016/j.jcis.2024.04.224_b0065) 2024; 269 Wang (10.1016/j.jcis.2024.04.224_b0010) 2024 Derikvandi (10.1016/j.jcis.2024.04.224_b0245) 2017; 490 Fu (10.1016/j.jcis.2024.04.224_b0285) 2021; 9 Dong (10.1016/j.jcis.2024.04.224_b0090) 2022; 61 Tran (10.1016/j.jcis.2024.04.224_b0170) 2017; 399 Ejhieh (10.1016/j.jcis.2024.04.224_b0070) 2010; 176 Xin (10.1016/j.jcis.2024.04.224_b0295) 2023; 49 Cheng (10.1016/j.jcis.2024.04.224_b0155) 2020; 277 Dong (10.1016/j.jcis.2024.04.224_b0120) 2022; 17 Zhang (10.1016/j.jcis.2024.04.224_b0205) 2021; 296 Liu (10.1016/j.jcis.2024.04.224_b0055) 2022; 436 Sun (10.1016/j.jcis.2024.04.224_b0015) 2022; 43 Chen (10.1016/j.jcis.2024.04.224_b0195) 2022; 18 Yu (10.1016/j.jcis.2024.04.224_b0075) 2023; 325 Wang (10.1016/j.jcis.2024.04.224_b0040) 2023; 638 Yin (10.1016/j.jcis.2024.04.224_b0250) 2021; 406 Ajmal (10.1016/j.jcis.2024.04.224_b0025) 2023; 321 Fu (10.1016/j.jcis.2024.04.224_b0135) 2019; 7 Zhao (10.1016/j.jcis.2024.04.224_b0085) 2023; 459 Zhang (10.1016/j.jcis.2024.04.224_b0105) 2023; 62 Liang (10.1016/j.jcis.2024.04.224_b0215) 2021; 406 Norouzi (10.1016/j.jcis.2024.04.224_b0180) 2020; 599 Meng (10.1016/j.jcis.2024.04.224_b0225) 2019; 256 Ren (10.1016/j.jcis.2024.04.224_b0110) 2023; 327 Wu (10.1016/j.jcis.2024.04.224_b0095) 2023; 325 Manukumar (10.1016/j.jcis.2024.04.224_b0175) 2018; 43 Zhang (10.1016/j.jcis.2024.04.224_b0200) 2021; 299 Yu (10.1016/j.jcis.2024.04.224_b0145) 2022; 304 Ouyang (10.1016/j.jcis.2024.04.224_b0150) 2022; 10 Wang (10.1016/j.jcis.2024.04.224_b0030) 2023; 649 Gomes (10.1016/j.jcis.2024.04.224_b0140) 2018; 122 Hao (10.1016/j.jcis.2024.04.224_b0210) 2022; 109 Gao (10.1016/j.jcis.2024.04.224_b0230) 2023 Ghattavi (10.1016/j.jcis.2024.04.224_b0310) 2020; 183 Yu (10.1016/j.jcis.2024.04.224_b0115) 2020; 572 Chen (10.1016/j.jcis.2024.04.224_b0165) 2023; 613 Wang (10.1016/j.jcis.2024.04.224_b0280) 2019; 7 Li (10.1016/j.jcis.2024.04.224_b0305) 2018; 57 Derikvandi (10.1016/j.jcis.2024.04.224_b0060) 2017; 490 Liu (10.1016/j.jcis.2024.04.224_b0220) 2022; 33 Tang (10.1016/j.jcis.2024.04.224_b0275) 2019; 96 Tamiji (10.1016/j.jcis.2024.04.224_b0255) 2019; 104 Derikvandi (10.1016/j.jcis.2024.04.224_b0270) 2017; 490 Ren (10.1016/j.jcis.2024.04.224_b0185) 2022; 257 Mehrabanpour (10.1016/j.jcis.2024.04.224_b0265) 2023; 614 Zhang (10.1016/j.jcis.2024.04.224_b0190) 2023; 323 Cheng (10.1016/j.jcis.2024.04.224_b0100) 2023; 637 Tan (10.1016/j.jcis.2024.04.224_b0240) 2023; 466 Zhao (10.1016/j.jcis.2024.04.224_b0035) 2019; 31 Guo (10.1016/j.jcis.2024.04.224_b0125) 2020; 560 Song (10.1016/j.jcis.2024.04.224_b0235) 2021; 21 Hou (10.1016/j.jcis.2024.04.224_b0160) 2023; 160 Liu (10.1016/j.jcis.2024.04.224_b0045) 2021; 47 Mirsalari (10.1016/j.jcis.2024.04.224_b0290) 2020; 250 Zhu (10.1016/j.jcis.2024.04.224_b0130) 2016; 8 Zhang (10.1016/j.jcis.2024.04.224_b0300) 2014; 43 |
| References_xml | – volume: 638 start-page: 427 year: 2023 end-page: 438 ident: b0040 article-title: One-step fabrication of Cu-doped Bi publication-title: J. Colloid Interface Sci. – volume: 406 year: 2021 ident: b0215 article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride publication-title: Chem. Eng. J. – volume: 572 start-page: 141 year: 2020 end-page: 150 ident: b0115 article-title: Visible light photocatalysis of amorphous Cl-Ta publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 23494 year: 2022 end-page: 23498 ident: b0150 article-title: Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO publication-title: J. Mater. Chem. A – volume: 323 year: 2023 ident: b0190 article-title: Chemical bonding interface in Bi publication-title: Appl. Catal., B – volume: 257 year: 2022 ident: b0185 article-title: Transition metal modified 3DOM WO publication-title: Chem. Eng. Sci. – volume: 62 start-page: 12138 year: 2023 end-page: 12147 ident: b0105 article-title: Synergistic effects of the Ni publication-title: Inorg. Chem. – volume: 7 start-page: 5702 year: 2019 end-page: 5711 ident: b0280 article-title: Zr doped mesoporous LaTaON publication-title: J. Mater. Chem. A – volume: 43 start-page: 4395 year: 2014 end-page: 4422 ident: b0300 article-title: Tantalum-based semiconductors for solar water splitting publication-title: Chem. Soc. Rev. – volume: 325 year: 2023 ident: b0095 article-title: Molecular-level insights on NIR-driven photocatalytic H publication-title: Appl. Catal., B – volume: 43 start-page: 2273 year: 2022 end-page: 2300 ident: b0015 article-title: Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO publication-title: Chin. J. Catal. – volume: 296 year: 2021 ident: b0205 article-title: Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO publication-title: Appl. Catal., B – volume: 31 start-page: 1806482 year: 2019 ident: b0035 article-title: Tuning oxygen vacancies in ultrathin TiO publication-title: Adv. Mater. – volume: 399 start-page: 515 year: 2017 end-page: 522 ident: b0170 article-title: Application of nitrogen-doped TiO publication-title: Appl. Surf. Sci. – volume: 613 year: 2023 ident: b0165 article-title: (N, F)-co-doped TiO publication-title: Appl. Surf. Sci. – volume: 66 year: 2019 ident: b0080 article-title: Band structure engineering of bioinspired Fe doped SrMoO publication-title: Nano Energy – volume: 459 year: 2023 ident: b0085 article-title: In-depth insights into Fe(III)-doped g-C publication-title: J. Hazard. Mater. – volume: 49 start-page: 37861 year: 2023 end-page: 37871 ident: b0295 article-title: Construction of ZnS publication-title: Ceram. Int. – volume: 327 year: 2023 ident: b0110 article-title: Electronic metal-support interaction via defective-induced platinum modified BiOBr for photocatalytic N publication-title: Appl. Catal., B – volume: 57 start-page: 122 year: 2018 end-page: 138 ident: b0305 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Edi. – volume: 60 start-page: 11910 year: 2021 end-page: 11918 ident: b0005 article-title: Magnetic-field-stimulated efficient photocatalytic N publication-title: Angew. Chem. Int. Edit. – year: 2023 ident: b0230 article-title: Tuning the heterostructured interfaces of ZnO/ZnCr publication-title: ChemSusChem – volume: 406 year: 2021 ident: b0250 article-title: Enhanced electron-hole separation in SnS publication-title: Chem. Eng. J. – volume: 436 year: 2022 ident: b0055 article-title: S doped Ta publication-title: Chem. Eng. J. – volume: 599 year: 2020 ident: b0180 article-title: α-Fe publication-title: Phys. B – volume: 160 year: 2023 ident: b0160 article-title: Ultrathin carbon-coated Fe-TiO publication-title: Mater. Res. Bull. – volume: 43 start-page: 18125 year: 2018 end-page: 18135 ident: b0175 article-title: Mesoporous Ta publication-title: Int. J. Hydrogen Energy – volume: 560 start-page: 359 year: 2020 end-page: 368 ident: b0125 article-title: Mesocrystalline Ta publication-title: J. Colloid Interface Sci. – volume: 490 start-page: 628 year: 2017 end-page: 641 ident: b0245 article-title: Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS publication-title: J. Colloid Interface Sci. – volume: 304 year: 2022 ident: b0145 article-title: Topotactic formation of poriferous (Al, C)–Ta publication-title: J. Environ. Manage. – volume: 299 year: 2021 ident: b0200 article-title: Oxygen vacancies in Bi publication-title: Appl. Catal., B – volume: 17 year: 2022 ident: b0120 article-title: Single atomic Pt on amorphous ZrO publication-title: Mater. Today Nano – volume: 122 start-page: 6014 year: 2018 end-page: 6025 ident: b0140 article-title: Synthesis and visible-light-driven photocatalytic activity of Ta publication-title: J. Phys. Chem. C – volume: 325 year: 2023 ident: b0075 article-title: Rational design of AgCl@Zr publication-title: Appl. Catal., B – volume: 269 year: 2024 ident: b0065 article-title: A comprehensive review on the boosted effects of anion vacancy in the heterogeneous photocatalytic degradation, part I: Focus on sulfur, nitrogen, carbon, and halogen vacancies publication-title: Ecotox. Environ. Safe. – volume: 104 start-page: 130 year: 2019 end-page: 138 ident: b0255 article-title: Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study publication-title: J. Taiwan Inst. Chem. Eng. – volume: 18 start-page: 2205388 year: 2022 ident: b0195 article-title: Interlayer charge transfer over graphitized carbon nitride enabling highly-efficient photocatalytic nitrogen fixation publication-title: Small – volume: 33 start-page: 5162 year: 2022 end-page: 5168 ident: b0220 article-title: Boosting the photocatalytic nitrogen reduction to ammonia through adsorption-plasmonic synergistic effects publication-title: Chin. Chem. Lett. – volume: 649 year: 2023 ident: b0030 article-title: Facile preparation of perylene imide based supramolecular structure with strong internal electric-field for enhancing photocatalytic nitrogen fixation publication-title: Appl. Catal., A – volume: 321 year: 2023 ident: b0025 article-title: Electron deficient boron-doped amorphous carbon nitride to uphill N publication-title: Appl. Catal., B – volume: 490 start-page: 652 year: 2017 end-page: 664 ident: b0060 article-title: Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: Experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 122 year: 2016 end-page: 127 ident: b0130 article-title: Gray Ta publication-title: ACS Appl. Mater. Interfaces – volume: 614 year: 2023 ident: b0265 article-title: A magnetically separable clinoptilolite supported CdS-PbS photocatalyst: Characterization and photocatalytic activity toward cefotaxime publication-title: Appl. Surf. Sci. – volume: 47 start-page: 4702 year: 2021 end-page: 4706 ident: b0045 article-title: Oxygen-defects modified amorphous Ta publication-title: Ceram. Int. – volume: 176 start-page: 629 year: 2010 end-page: 637 ident: b0070 article-title: Photodecolorization of eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst publication-title: J. Hazard. Mater. – volume: 21 year: 2021 ident: b0235 article-title: Directed charge transfer in all solid state heterojunction of Fe doped MoS publication-title: Mater. Today Phys. – volume: 145 start-page: 13134 year: 2023 end-page: 13146 ident: b0020 article-title: Photochemical acceleration of ammonia production by Pt publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2201782 year: 2022 ident: b0260 article-title: Simultaneous photoelectrocatalytic oxidation and nitrite-ammonia conversion with artificial photoelectrochemistry Cells publication-title: Adv. Energy Mater. – volume: 9 start-page: 22827 year: 2021 end-page: 22832 ident: b0285 article-title: Refining active sites and hydrogen spillover for boosting visible-light-driven ammonia synthesis at room temperature publication-title: J. Mater. Chem. A – volume: 96 start-page: 487 year: 2019 end-page: 495 ident: b0275 article-title: Snowflake-like Cu publication-title: J. Taiwan Inst. Chem. Eng. – volume: 277 year: 2020 ident: b0155 article-title: Visible-light-driven deep oxidation of NO over Fe doped TiO publication-title: Appl. Catal., B – volume: 109 start-page: 276 year: 2022 end-page: 281 ident: b0210 article-title: Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr publication-title: J. Mater. Sci. Technol. – volume: 256 year: 2019 ident: b0225 article-title: High-efficiency Fe-Mediated Bi publication-title: Appl. Catal., B – volume: 7 start-page: 9622 year: 2019 end-page: 9628 ident: b0135 article-title: Oxygen vacancies in Ta publication-title: ACS Sustainable Chem. Eng. – volume: 250 year: 2020 ident: b0290 article-title: Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents publication-title: Sep. Purif. Technol. – volume: 18 year: 2022 ident: b0050 article-title: A review on the development and advancement of Ta publication-title: Mater. Today Sustainability – volume: 466 year: 2023 ident: b0240 article-title: Ca publication-title: Chem. Eng. J. – volume: 61 year: 2022 ident: b0090 article-title: Anchoring black phosphorus quantum dots on Fe-doped W publication-title: Angew. Chem. Int. Edit. – start-page: e202404258 year: 2024 ident: b0010 article-title: Regulated dual defects of bridging organic and terminal inorganic ligands in iron-based metal-organic framework nodes for efficient photocatalytic ammonia synthesis publication-title: Angew. Chem. Int. Edit. – volume: 490 start-page: 314 year: 2017 end-page: 327 ident: b0270 article-title: Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO publication-title: J. Colloid Interface Sci. – volume: 183 year: 2020 ident: b0310 article-title: A visible light driven AgBr/g-C publication-title: Compos., Part B – volume: 637 start-page: 271 year: 2023 end-page: 282 ident: b0100 article-title: Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting publication-title: J. Colloid Interface Sci. – volume: 321 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0025 article-title: Electron deficient boron-doped amorphous carbon nitride to uphill N2 photo-fixation through π back donation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122070 – year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0230 article-title: Tuning the heterostructured interfaces of ZnO/ZnCr2O4 derived from layered-double-hydroxide precursors to advance nitrogen photofixation publication-title: ChemSusChem doi: 10.1002/cssc.202300944 – volume: 466 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0240 article-title: Ca2+ doped metal organic frameworks for enhanced photocatalytic ammonia synthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143259 – volume: 43 start-page: 18125 year: 2018 ident: 10.1016/j.jcis.2024.04.224_b0175 article-title: Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.08.075 – volume: 560 start-page: 359 year: 2020 ident: 10.1016/j.jcis.2024.04.224_b0125 article-title: Mesocrystalline Ta3N5 superstructures with long-lived charges for improved visible light photocatalytic hydrogen production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.09.123 – start-page: e202404258 year: 2024 ident: 10.1016/j.jcis.2024.04.224_b0010 article-title: Regulated dual defects of bridging organic and terminal inorganic ligands in iron-based metal-organic framework nodes for efficient photocatalytic ammonia synthesis publication-title: Angew. Chem. Int. Edit. – volume: 399 start-page: 515 year: 2017 ident: 10.1016/j.jcis.2024.04.224_b0170 article-title: Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.12.125 – volume: 459 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0085 article-title: In-depth insights into Fe(III)-doped g-C3N4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.132117 – volume: 277 year: 2020 ident: 10.1016/j.jcis.2024.04.224_b0155 article-title: Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119196 – volume: 96 start-page: 487 year: 2019 ident: 10.1016/j.jcis.2024.04.224_b0275 article-title: Snowflake-like Cu2S/Zn0.5Cd0.5S p–n heterojunction photocatalyst for enhanced visible light photocatalytic H2 evolution activity publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.12.021 – volume: 122 start-page: 6014 year: 2018 ident: 10.1016/j.jcis.2024.04.224_b0140 article-title: Synthesis and visible-light-driven photocatalytic activity of Ta4+ self-doped gray Ta2O5 nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b11822 – volume: 160 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0160 article-title: Ultrathin carbon-coated Fe-TiO2-x nanostructures for enhanced photocatalysis under visible-light irradiation publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2022.112143 – volume: 436 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0055 article-title: S doped Ta2O5 decorated CdS nanosphere via interfacial diffusion for enhanced and stable photocatalytic hydrogen production publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131673 – volume: 9 start-page: 22827 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0285 article-title: Refining active sites and hydrogen spillover for boosting visible-light-driven ammonia synthesis at room temperature publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06296D – volume: 572 start-page: 141 year: 2020 ident: 10.1016/j.jcis.2024.04.224_b0115 article-title: Visible light photocatalysis of amorphous Cl-Ta2O5-x microspheres for stabilized hydrogen generation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.03.030 – volume: 47 start-page: 4702 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0045 article-title: Oxygen-defects modified amorphous Ta2O5 nanoparticles for solar driven hydrogen publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.038 – volume: 183 year: 2020 ident: 10.1016/j.jcis.2024.04.224_b0310 article-title: A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers publication-title: Compos., Part B doi: 10.1016/j.compositesb.2019.107712 – volume: 250 year: 2020 ident: 10.1016/j.jcis.2024.04.224_b0290 article-title: Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117235 – volume: 257 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0185 article-title: Transition metal modified 3DOM WO3 with activated NN bond triggering high-efficiency nitrogen photoreduction publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117734 – volume: 599 year: 2020 ident: 10.1016/j.jcis.2024.04.224_b0180 article-title: α-Fe2O3/Cu2O heterostructure: Brief characterization and kinetic aspect of degradation of methylene blue publication-title: Phys. B doi: 10.1016/j.physb.2020.412422 – volume: 7 start-page: 5702 year: 2019 ident: 10.1016/j.jcis.2024.04.224_b0280 article-title: Zr doped mesoporous LaTaON2 for efficient photocatalytic water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11561C – volume: 490 start-page: 314 year: 2017 ident: 10.1016/j.jcis.2024.04.224_b0270 article-title: Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.11.069 – volume: 104 start-page: 130 year: 2019 ident: 10.1016/j.jcis.2024.04.224_b0255 article-title: Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2019.08.021 – volume: 43 start-page: 4395 year: 2014 ident: 10.1016/j.jcis.2024.04.224_b0300 article-title: Tantalum-based semiconductors for solar water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60438A – volume: 649 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0030 article-title: Facile preparation of perylene imide based supramolecular structure with strong internal electric-field for enhancing photocatalytic nitrogen fixation publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2022.118978 – volume: 299 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0200 article-title: Oxygen vacancies in Bi2Sn2O7 quantum dots to trigger efficient photocatalytic nitrogen reduction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120680 – volume: 43 start-page: 2273 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0015 article-title: Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63939-6 – volume: 269 year: 2024 ident: 10.1016/j.jcis.2024.04.224_b0065 article-title: A comprehensive review on the boosted effects of anion vacancy in the heterogeneous photocatalytic degradation, part I: Focus on sulfur, nitrogen, carbon, and halogen vacancies publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2024.115927 – volume: 304 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0145 article-title: Topotactic formation of poriferous (Al, C)–Ta2O5 mesocrystals for improved visible-light photocatalysis publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.114289 – volume: 57 start-page: 122 year: 2018 ident: 10.1016/j.jcis.2024.04.224_b0305 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Edi. doi: 10.1002/anie.201705628 – volume: 638 start-page: 427 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0040 article-title: One-step fabrication of Cu-doped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.02.005 – volume: 18 start-page: 2205388 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0195 article-title: Interlayer charge transfer over graphitized carbon nitride enabling highly-efficient photocatalytic nitrogen fixation publication-title: Small doi: 10.1002/smll.202205388 – volume: 327 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0110 article-title: Electronic metal-support interaction via defective-induced platinum modified BiOBr for photocatalytic N2 fixation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.122462 – volume: 7 start-page: 9622 year: 2019 ident: 10.1016/j.jcis.2024.04.224_b0135 article-title: Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01178 – volume: 176 start-page: 629 year: 2010 ident: 10.1016/j.jcis.2024.04.224_b0070 article-title: Photodecolorization of eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.11.077 – volume: 325 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0095 article-title: Molecular-level insights on NIR-driven photocatalytic H2 generation with ultrathin porous S-doped g-C3N4 nanosheets publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122292 – volume: 323 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0190 article-title: Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122148 – volume: 296 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0205 article-title: Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO4 single crystals publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120379 – volume: 49 start-page: 37861 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0295 article-title: Construction of ZnS1-x layers coated Nb2O5-x mesocrystals for boosted removal of organic contaminant publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.09.114 – volume: 614 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0265 article-title: A magnetically separable clinoptilolite supported CdS-PbS photocatalyst: Characterization and photocatalytic activity toward cefotaxime publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.156252 – volume: 61 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0090 article-title: Anchoring black phosphorus quantum dots on Fe-doped W18O49 nanowires for efficient photocatalytic nitrogen fixation publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.202204271 – volume: 406 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0250 article-title: Enhanced electron-hole separation in SnS2/Au/g-C3N4 embedded structure for efficient CO2 photoreduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126776 – volume: 66 year: 2019 ident: 10.1016/j.jcis.2024.04.224_b0080 article-title: Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104187 – volume: 33 start-page: 5162 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0220 article-title: Boosting the photocatalytic nitrogen reduction to ammonia through adsorption-plasmonic synergistic effects publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.01.076 – volume: 17 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0120 article-title: Single atomic Pt on amorphous ZrO2 nanowires for advanced photocatalytic CO2 reduction publication-title: Mater. Today Nano – volume: 637 start-page: 271 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0100 article-title: Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.01.098 – volume: 490 start-page: 652 year: 2017 ident: 10.1016/j.jcis.2024.04.224_b0060 article-title: Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: Experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.11.105 – volume: 8 start-page: 122 year: 2016 ident: 10.1016/j.jcis.2024.04.224_b0130 article-title: Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07685 – volume: 109 start-page: 276 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0210 article-title: Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.08.085 – volume: 10 start-page: 23494 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0150 article-title: Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO2 nanobelt array publication-title: J. Mater. Chem. A doi: 10.1039/D2TA06933D – volume: 256 year: 2019 ident: 10.1016/j.jcis.2024.04.224_b0225 article-title: High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117781 – volume: 145 start-page: 13134 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0020 article-title: Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c01947 – volume: 613 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0165 article-title: (N, F)-co-doped TiO2-δ beads loaded onto C nanofibers: Excellent visible-light photocatalyst for the degradation of organic dyes and reduction of Cr(VI) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.155970 – volume: 12 start-page: 2201782 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0260 article-title: Simultaneous photoelectrocatalytic oxidation and nitrite-ammonia conversion with artificial photoelectrochemistry Cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201782 – volume: 18 year: 2022 ident: 10.1016/j.jcis.2024.04.224_b0050 article-title: A review on the development and advancement of Ta2O5 as a promising photocatalyst publication-title: Mater. Today Sustainability – volume: 62 start-page: 12138 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0105 article-title: Synergistic effects of the Ni3B cocatalyst and N vacancy on g-C3N4 for effectively enhanced photocatalytic N2 fixation publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c01741 – volume: 490 start-page: 628 year: 2017 ident: 10.1016/j.jcis.2024.04.224_b0245 article-title: Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.11.102 – volume: 60 start-page: 11910 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0005 article-title: Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.202100726 – volume: 21 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0235 article-title: Directed charge transfer in all solid state heterojunction of Fe doped MoS2 and C-TiO2 nanosheet for enhanced nitrogen photofixation publication-title: Mater. Today Phys. – volume: 31 start-page: 1806482 year: 2019 ident: 10.1016/j.jcis.2024.04.224_b0035 article-title: Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm publication-title: Adv. Mater. doi: 10.1002/adma.201806482 – volume: 325 year: 2023 ident: 10.1016/j.jcis.2024.04.224_b0075 article-title: Rational design of AgCl@Zr3+-ZrO2 nanostructures for ultra-efficient visible-light photodegradation of emerging pollutants publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122308 – volume: 406 year: 2021 ident: 10.1016/j.jcis.2024.04.224_b0215 article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126868 |
| SSID | ssj0011559 |
| Score | 2.4879122 |
| Snippet | [Display omitted]
•Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe... Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 477 |
| SubjectTerms | Doping Nanostructure Oxygen vacancies Photocatalysis Ta2O5 |
| Title | Designing ultrathin Fe doped Ta2O5-x nanobelts for highly enhanced ammonia photosynthesis |
| URI | https://dx.doi.org/10.1016/j.jcis.2024.04.224 https://www.proquest.com/docview/3053979326 |
| Volume | 669 |
| WOSCitedRecordID | wos001239136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1095-7103 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011559 issn: 0021-9797 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DQk4IBggNmAyErcoU2O7-TiOsQo4DA5FhFPkOA5NVTnV0k7d_gz-Yt6LnWwr2gRIXKIqclLLv1_ee_b7IuTtsIzBZtPKZzwXvhD5yM9FUfowPi5jrVjA87bZRHR6Gqdp8mUw-NnlwpzPI2Pi9TpZ_Feo4R6AjamzfwF3_1K4Ab8BdLgC7HD9I-DftzEZeAKwmmPp2WllvLH2inoBtuVEss8jf-0Zaepcz5dtNQYPaxbPLzxtpjYeQOJsK-ktpvWybi4MGIlN1dxixyKT6qpwZZyw67XEsrVWZnR4plXn3Dc_pqvqyhVlrO67nGqnQlECSesOquS66rn7zR1sv3O33EkFE30oljs-61JobkR42hiRyAbpHmorhcHuwyBRfl1Mh7alixO0wjV_sTpb2LY_v6kDezIxO5ypCkuzM4FlbZlN2t4os41e6wDngUG1mO27RXZYNEpAUu4cfTxJP_W-KXTk2sAhO3GXimWjBjf_6TZzZ0Pxt9bM5DF55OCjR5Y-T8hAm11y_7jr_rdLHl4rVPmUfO9JRXtS0bGmLamoIxXtSUWBVNSSinakoo5U9CapnpGv45PJ8QffNeXwFed86SuhYdvOdRyoIGRlmehSRlFchCySQc4jwYIANsVoyItS61gEeliCpaRFiHWAFH9Otk1t9AtClVSq4LkKcxhbwFoPyxFXIolyCVAEeo8E3dplylWsx8Yp86wLTZxluN4Zrnc2FBms9x7x-mcWtl7LnaNHHSSZ-y6sJZkBg-587k2HXwa4oI9NGl2vmgzUJ3rKYVO0_4_vfkkeXH08r8j28mylX5N76nxZNWcHZCtK4wNHyV9fibNe |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+ultrathin+Fe+doped+Ta2O5-x+nanobelts+for+highly+enhanced+ammonia+photosynthesis&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Xin%2C+Changhui&rft.au=Sun%2C+Hezheng&rft.au=Yao%2C+Jiaxin&rft.au=Wang%2C+Bin&rft.date=2024-09-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=669&rft.spage=477&rft.epage=485&rft_id=info:doi/10.1016%2Fj.jcis.2024.04.224&rft.externalDocID=S0021979724009561 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |