Designing ultrathin Fe doped Ta2O5-x nanobelts for highly enhanced ammonia photosynthesis

[Display omitted] •Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe doping induced the decreased working function and formation of more oxygen vacancies.•Fe-Ta2O5-x nanobelts exhibited highly enhanced photocataly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of colloid and interface science Ročník 669; s. 477 - 485
Hlavní autoři: Xin, Changhui, Sun, Hezheng, Yao, Jiaxin, Wang, Bin, Yu, Xin, Tang, Yanting
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2024
Témata:
ISSN:0021-9797, 1095-7103, 1095-7103
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe doping induced the decreased working function and formation of more oxygen vacancies.•Fe-Ta2O5-x nanobelts exhibited highly enhanced photocatalytic performance. Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber–Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers’ separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g−1 h−1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis.
AbstractList [Display omitted] •Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe doping induced the decreased working function and formation of more oxygen vacancies.•Fe-Ta2O5-x nanobelts exhibited highly enhanced photocatalytic performance. Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber–Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers’ separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g−1 h−1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis.
Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber-Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers' separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g-1 h-1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis.Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber-Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers' separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 μM g-1 h-1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis.
Author Yu, Xin
Sun, Hezheng
Xin, Changhui
Tang, Yanting
Yao, Jiaxin
Wang, Bin
Author_xml – sequence: 1
  givenname: Changhui
  surname: Xin
  fullname: Xin, Changhui
– sequence: 2
  givenname: Hezheng
  surname: Sun
  fullname: Sun, Hezheng
– sequence: 3
  givenname: Jiaxin
  surname: Yao
  fullname: Yao, Jiaxin
– sequence: 4
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-9839-3900
  surname: Yu
  fullname: Yu, Xin
  email: xinyu@henu.edu.cn
– sequence: 6
  givenname: Yanting
  surname: Tang
  fullname: Tang, Yanting
  email: tangyanting@henu.edu.cn
BookMark eNp9kLtuGzEQRYnABiLL-YFULNPsZobkvoA0hmPHBgS4sYtUBM2d1VJYkQpJBdbfewW5cqFqmnvu4J4rduGDJ8a-I5QIWP_clBvrUilAqBJUKYT6whYIXVU0CPKCLQAEFl3TNV_ZVUobAMSq6hbs729Kbu2dX_P9lKPJo_P8nngfdtTzZyOequKNe-PDK0058SFEPrr1OB04-dF4O6fMdhu8M3w3hhzSwedx7kzX7HIwU6JvH3fJXu7vnm8fitXTn8fbm1VhpZS5sIpA1JJatFiLYehoME3T9rVoDL7KRgnEGuq2QlQDUauQYFAoSdVdDcrKJftx6t3F8G9PKeutS5amyXgK-6QlVHIeLucnSyZOURtDSpEGvYtua-JBI-ijR73RR4_66FGD0rPHGWo_QdZlk13wsy43nUd_nVCa9_93FHWyjo7OXCSbdR_cOfwdg9GQIQ
CitedBy_id crossref_primary_10_1016_j_jphotochem_2025_116692
crossref_primary_10_1016_j_jallcom_2024_177616
crossref_primary_10_1016_j_seppur_2025_134325
crossref_primary_10_1002_cphc_202400753
crossref_primary_10_1039_D4TC05394J
Cites_doi 10.1016/j.apcatb.2022.122070
10.1002/cssc.202300944
10.1016/j.cej.2023.143259
10.1016/j.ijhydene.2018.08.075
10.1016/j.jcis.2019.09.123
10.1016/j.apsusc.2016.12.125
10.1016/j.jhazmat.2023.132117
10.1016/j.apcatb.2020.119196
10.1016/j.jtice.2018.12.021
10.1021/acs.jpcc.7b11822
10.1016/j.materresbull.2022.112143
10.1016/j.cej.2021.131673
10.1039/D1TA06296D
10.1016/j.jcis.2020.03.030
10.1016/j.ceramint.2020.10.038
10.1016/j.compositesb.2019.107712
10.1016/j.seppur.2020.117235
10.1016/j.ces.2022.117734
10.1016/j.physb.2020.412422
10.1039/C8TA11561C
10.1016/j.jcis.2016.11.069
10.1016/j.jtice.2019.08.021
10.1039/C3CS60438A
10.1016/j.apcata.2022.118978
10.1016/j.apcatb.2021.120680
10.1016/S1872-2067(21)63939-6
10.1016/j.ecoenv.2024.115927
10.1016/j.jenvman.2021.114289
10.1002/anie.201705628
10.1016/j.jcis.2023.02.005
10.1002/smll.202205388
10.1016/j.apcatb.2023.122462
10.1021/acssuschemeng.9b01178
10.1016/j.jhazmat.2009.11.077
10.1016/j.apcatb.2022.122292
10.1016/j.apcatb.2022.122148
10.1016/j.apcatb.2021.120379
10.1016/j.ceramint.2023.09.114
10.1016/j.apsusc.2022.156252
10.1002/anie.202204271
10.1016/j.cej.2020.126776
10.1016/j.nanoen.2019.104187
10.1016/j.cclet.2022.01.076
10.1016/j.jcis.2023.01.098
10.1016/j.jcis.2016.11.105
10.1021/acsami.5b07685
10.1016/j.jmst.2021.08.085
10.1039/D2TA06933D
10.1016/j.apcatb.2019.117781
10.1021/jacs.3c01947
10.1016/j.apsusc.2022.155970
10.1002/aenm.202201782
10.1021/acs.inorgchem.3c01741
10.1016/j.jcis.2016.11.102
10.1002/anie.202100726
10.1002/adma.201806482
10.1016/j.apcatb.2022.122308
10.1016/j.cej.2020.126868
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.jcis.2024.04.224
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 485
ExternalDocumentID 10_1016_j_jcis_2024_04_224
S0021979724009561
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7X8
ID FETCH-LOGICAL-c333t-c4e0263e81c162ff9efa778d627a1b37421160685114fee841e0f413e469604c3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001239136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9797
1095-7103
IngestDate Sun Nov 09 09:57:42 EST 2025
Sat Nov 29 06:30:27 EST 2025
Tue Nov 18 22:00:20 EST 2025
Sat Jun 01 15:42:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxygen vacancies
Nanostructure
Photocatalysis
Ta2O5
Doping
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-c4e0263e81c162ff9efa778d627a1b37421160685114fee841e0f413e469604c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9839-3900
PQID 3053979326
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3053979326
crossref_primary_10_1016_j_jcis_2024_04_224
crossref_citationtrail_10_1016_j_jcis_2024_04_224
elsevier_sciencedirect_doi_10_1016_j_jcis_2024_04_224
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mao, Wang, Zou, Shi, Viasus, Loh, Xia, Ji, Li, Shang, Ghoussoub, Xu, Ye, Li, Kherani, Zheng, Liu, Zhang, Ozin (b0020) 2023; 145
Zhu, Lin, Cui, Zhao, Zhang, Huang (b0130) 2016; 8
Luo, Bai, Li, Yu, Li, Wang, Wu, Liang, Zhao, Liu (b0080) 2019; 66
Zhang, Zhang, Gong (b0300) 2014; 43
Dong, Liu, Liu, Li, Hou, Hao, Bai, Zhao, Liu, Guo (b0120) 2022; 17
Liang, Niu, Guo, Niu, Yang, Liu, Tang, Feng (b0215) 2021; 406
Mehrabanpour, Nezamzadeh-Ejhieh, Ghattavi, Ershadi (b0265) 2023; 614
Wang, Fan, Guo, Gao, Guo, Han, Gao, Zhang, Gu, Wu (b0010) 2024
Hao, Ma, Jia, Wei, Bai, Wei, Ni (b0210) 2022; 109
Tamiji, Nezamzadeh-Ejhieh (b0255) 2019; 104
Ouyang, He, Sun, Luo, Zheng, Chen, Li, Lin, Liu, Asiri, Sun (b0150) 2022; 10
Wang, Jin, Pan, Li, Chen, Liu, Xu (b0280) 2019; 7
Ghattavi, Nezamzadeh-Ejhieh (b0310) 2020; 183
Fu, Zhuang, Chee, Dong, Ye, Shen (b0135) 2019; 7
Mirsalari, Nezamzadeh-Ejhieh (b0290) 2020; 250
Norouzi, Nezamzadeh-Ejhieh (b0180) 2020; 599
Yin, Sun, Zhou, Li, Li, Song, Huo, Wang, Yan (b0250) 2021; 406
Dong, Huang, Bi (b0090) 2022; 61
Song, Sun, Wang, Bai, Wu, Li, Zhang, Zhou, Pang, Liang, Yue, Zhao (b0235) 2021; 21
Ejhieh, Khorsandi (b0070) 2010; 176
Liu, Zhao, Yu, Xiong, Liu, Zhang, Chu, Liu, Liu, Zhou (b0055) 2022; 436
Guo, Zhao, Yang, Huang, Tang, Zhang, Li, Yu, Shen, Zhao (b0125) 2020; 560
Chen, Yu, Huang, Chen, Bi (b0195) 2022; 18
Wang, Zhao, Yuan, Li, Zhang, Hu, Lin, Wu, He (b0040) 2023; 638
Manukumar, Kishore, Manjunath, Nagaraju (b0175) 2018; 43
Wu, Li, Luo, Chen, Huang, Yu, Shen, Li, Shi (b0095) 2023; 325
Chen, Li, Fu, Peng (b0165) 2023; 613
Cheng, Shi, Mao, Dong, Huang, Zong, Liu, Shen, Guo (b0100) 2023; 637
Li, Li, Ai, Jia, Zhang (b0305) 2018; 57
Wang, Cao, Chen, Yang, Fu, Liu, Yin (b0030) 2023; 649
Zhang, Meng, Xie, Ni, Lu, Xia (b0205) 2021; 296
Yu, Huang, Zhao, Zhou, Xin, Guo (b0145) 2022; 304
Meng, Lv, Sun, Hong, Xing, Qiang, Chen, Jin (b0225) 2019; 256
Sun, Zhu, Zhang, Meng, Chen, Feng, Chen, Ding (b0015) 2022; 43
Derikvandi, Nezamzadeh-Ejhieh (b0060) 2017; 490
Derikvandi, Nezamzadeh-Ejhieh (b0270) 2017; 490
Tang, Zhang, Pu, Ge, Li, Huang (b0275) 2019; 96
Rezaei, Nezamzadeh-Ejhieh, Massah (b0065) 2024; 269
Yu, Zhao, Huang, Zhao, Guo, Tang, Ma, Li, Guo, Zhao (b0115) 2020; 572
Zhang, Di, Qian, Ji, Tian, Ye, Zhao, Yin, Li, Xia (b0200) 2021; 299
Hou, Yang, Feng, She, Xin, Li, Yu (b0160) 2023; 160
Ren, Shi, Li, Zhang, Meng (b0110) 2023; 327
Ren, Xia, Chong, Yan, Lin, Yang (b0185) 2022; 257
Zhao, Zhao, Shi, Wang, Waterhouse, Wu, Tung, Zhang (b0035) 2019; 31
Xin, Wang, Yang, Zhao, Yu, Tian (b0295) 2023; 49
Zhang, Di, Zhu, Ji, Chen, Liu, Li, Wei, Li, Xia (b0190) 2023; 323
Song, Wu, Cao, Zhang, Luo, Gao, Li, Sun, Hou (b0260) 2022; 12
Cheng, Liu, Song, Chen, Dai, Yuan, Fu (b0155) 2020; 277
Gao, Wu, Zhao, Bian, Zhou, Tang, Zhang (b0230) 2023
Derikvandi, Nezamzadeh-Ejhieh (b0245) 2017; 490
Zhao, Ren, Liu, Li, Li, Lai, Li (b0085) 2023; 459
Tran, Truong, Phan, Nguyen, Huynh, Agresti, Pescetelli, Le, Di Carlo, Lund, Le, Nguyen (b0170) 2017; 399
Gurylev (b0050) 2022; 18
Fu, Pan, Mu, Li, Zhan, Zhao, Mu, Li (b0285) 2021; 9
Yu, Zhou, Huang, Xin, Lin, Fu, Li, Zhang (b0075) 2023; 325
Ajmal, Rasheed, Tran, Shao, Hwang, Bui, Kim, Kim, Lee (b0025) 2023; 321
Zhao, Wang, Gao, Wen, Feng, Song, Zhu, Luo, Tan, Ge, Zhang, Zhang, Zheng, Li, Chen (b0005) 2021; 60
Liu, Ye, Li, Tao, Zhang, Lian, Zhang, Li (b0220) 2022; 33
Gomes, da Silva, Goncalves, Machado, Alcantara, Caires, Wender (b0140) 2018; 122
Zhang, Li, Li, Shi, Zhou, Ye, Yang, Li, Jiang (b0105) 2023; 62
Tan, Ren, Zhao, Xin, Shi, Yang, Jiang (b0240) 2023; 466
Liu, Zeng, Ma, Dong, Tan, Pan (b0045) 2021; 47
Zhao (10.1016/j.jcis.2024.04.224_b0005) 2021; 60
Luo (10.1016/j.jcis.2024.04.224_b0080) 2019; 66
Mao (10.1016/j.jcis.2024.04.224_b0020) 2023; 145
Song (10.1016/j.jcis.2024.04.224_b0260) 2022; 12
Gurylev (10.1016/j.jcis.2024.04.224_b0050) 2022; 18
Rezaei (10.1016/j.jcis.2024.04.224_b0065) 2024; 269
Wang (10.1016/j.jcis.2024.04.224_b0010) 2024
Derikvandi (10.1016/j.jcis.2024.04.224_b0245) 2017; 490
Fu (10.1016/j.jcis.2024.04.224_b0285) 2021; 9
Dong (10.1016/j.jcis.2024.04.224_b0090) 2022; 61
Tran (10.1016/j.jcis.2024.04.224_b0170) 2017; 399
Ejhieh (10.1016/j.jcis.2024.04.224_b0070) 2010; 176
Xin (10.1016/j.jcis.2024.04.224_b0295) 2023; 49
Cheng (10.1016/j.jcis.2024.04.224_b0155) 2020; 277
Dong (10.1016/j.jcis.2024.04.224_b0120) 2022; 17
Zhang (10.1016/j.jcis.2024.04.224_b0205) 2021; 296
Liu (10.1016/j.jcis.2024.04.224_b0055) 2022; 436
Sun (10.1016/j.jcis.2024.04.224_b0015) 2022; 43
Chen (10.1016/j.jcis.2024.04.224_b0195) 2022; 18
Yu (10.1016/j.jcis.2024.04.224_b0075) 2023; 325
Wang (10.1016/j.jcis.2024.04.224_b0040) 2023; 638
Yin (10.1016/j.jcis.2024.04.224_b0250) 2021; 406
Ajmal (10.1016/j.jcis.2024.04.224_b0025) 2023; 321
Fu (10.1016/j.jcis.2024.04.224_b0135) 2019; 7
Zhao (10.1016/j.jcis.2024.04.224_b0085) 2023; 459
Zhang (10.1016/j.jcis.2024.04.224_b0105) 2023; 62
Liang (10.1016/j.jcis.2024.04.224_b0215) 2021; 406
Norouzi (10.1016/j.jcis.2024.04.224_b0180) 2020; 599
Meng (10.1016/j.jcis.2024.04.224_b0225) 2019; 256
Ren (10.1016/j.jcis.2024.04.224_b0110) 2023; 327
Wu (10.1016/j.jcis.2024.04.224_b0095) 2023; 325
Manukumar (10.1016/j.jcis.2024.04.224_b0175) 2018; 43
Zhang (10.1016/j.jcis.2024.04.224_b0200) 2021; 299
Yu (10.1016/j.jcis.2024.04.224_b0145) 2022; 304
Ouyang (10.1016/j.jcis.2024.04.224_b0150) 2022; 10
Wang (10.1016/j.jcis.2024.04.224_b0030) 2023; 649
Gomes (10.1016/j.jcis.2024.04.224_b0140) 2018; 122
Hao (10.1016/j.jcis.2024.04.224_b0210) 2022; 109
Gao (10.1016/j.jcis.2024.04.224_b0230) 2023
Ghattavi (10.1016/j.jcis.2024.04.224_b0310) 2020; 183
Yu (10.1016/j.jcis.2024.04.224_b0115) 2020; 572
Chen (10.1016/j.jcis.2024.04.224_b0165) 2023; 613
Wang (10.1016/j.jcis.2024.04.224_b0280) 2019; 7
Li (10.1016/j.jcis.2024.04.224_b0305) 2018; 57
Derikvandi (10.1016/j.jcis.2024.04.224_b0060) 2017; 490
Liu (10.1016/j.jcis.2024.04.224_b0220) 2022; 33
Tang (10.1016/j.jcis.2024.04.224_b0275) 2019; 96
Tamiji (10.1016/j.jcis.2024.04.224_b0255) 2019; 104
Derikvandi (10.1016/j.jcis.2024.04.224_b0270) 2017; 490
Ren (10.1016/j.jcis.2024.04.224_b0185) 2022; 257
Mehrabanpour (10.1016/j.jcis.2024.04.224_b0265) 2023; 614
Zhang (10.1016/j.jcis.2024.04.224_b0190) 2023; 323
Cheng (10.1016/j.jcis.2024.04.224_b0100) 2023; 637
Tan (10.1016/j.jcis.2024.04.224_b0240) 2023; 466
Zhao (10.1016/j.jcis.2024.04.224_b0035) 2019; 31
Guo (10.1016/j.jcis.2024.04.224_b0125) 2020; 560
Song (10.1016/j.jcis.2024.04.224_b0235) 2021; 21
Hou (10.1016/j.jcis.2024.04.224_b0160) 2023; 160
Liu (10.1016/j.jcis.2024.04.224_b0045) 2021; 47
Mirsalari (10.1016/j.jcis.2024.04.224_b0290) 2020; 250
Zhu (10.1016/j.jcis.2024.04.224_b0130) 2016; 8
Zhang (10.1016/j.jcis.2024.04.224_b0300) 2014; 43
References_xml – volume: 638
  start-page: 427
  year: 2023
  end-page: 438
  ident: b0040
  article-title: One-step fabrication of Cu-doped Bi
  publication-title: J. Colloid Interface Sci.
– volume: 406
  year: 2021
  ident: b0215
  article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride
  publication-title: Chem. Eng. J.
– volume: 572
  start-page: 141
  year: 2020
  end-page: 150
  ident: b0115
  article-title: Visible light photocatalysis of amorphous Cl-Ta
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 23494
  year: 2022
  end-page: 23498
  ident: b0150
  article-title: Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO
  publication-title: J. Mater. Chem. A
– volume: 323
  year: 2023
  ident: b0190
  article-title: Chemical bonding interface in Bi
  publication-title: Appl. Catal., B
– volume: 257
  year: 2022
  ident: b0185
  article-title: Transition metal modified 3DOM WO
  publication-title: Chem. Eng. Sci.
– volume: 62
  start-page: 12138
  year: 2023
  end-page: 12147
  ident: b0105
  article-title: Synergistic effects of the Ni
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 5702
  year: 2019
  end-page: 5711
  ident: b0280
  article-title: Zr doped mesoporous LaTaON
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 4395
  year: 2014
  end-page: 4422
  ident: b0300
  article-title: Tantalum-based semiconductors for solar water splitting
  publication-title: Chem. Soc. Rev.
– volume: 325
  year: 2023
  ident: b0095
  article-title: Molecular-level insights on NIR-driven photocatalytic H
  publication-title: Appl. Catal., B
– volume: 43
  start-page: 2273
  year: 2022
  end-page: 2300
  ident: b0015
  article-title: Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO
  publication-title: Chin. J. Catal.
– volume: 296
  year: 2021
  ident: b0205
  article-title: Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO
  publication-title: Appl. Catal., B
– volume: 31
  start-page: 1806482
  year: 2019
  ident: b0035
  article-title: Tuning oxygen vacancies in ultrathin TiO
  publication-title: Adv. Mater.
– volume: 399
  start-page: 515
  year: 2017
  end-page: 522
  ident: b0170
  article-title: Application of nitrogen-doped TiO
  publication-title: Appl. Surf. Sci.
– volume: 613
  year: 2023
  ident: b0165
  article-title: (N, F)-co-doped TiO
  publication-title: Appl. Surf. Sci.
– volume: 66
  year: 2019
  ident: b0080
  article-title: Band structure engineering of bioinspired Fe doped SrMoO
  publication-title: Nano Energy
– volume: 459
  year: 2023
  ident: b0085
  article-title: In-depth insights into Fe(III)-doped g-C
  publication-title: J. Hazard. Mater.
– volume: 49
  start-page: 37861
  year: 2023
  end-page: 37871
  ident: b0295
  article-title: Construction of ZnS
  publication-title: Ceram. Int.
– volume: 327
  year: 2023
  ident: b0110
  article-title: Electronic metal-support interaction via defective-induced platinum modified BiOBr for photocatalytic N
  publication-title: Appl. Catal., B
– volume: 57
  start-page: 122
  year: 2018
  end-page: 138
  ident: b0305
  article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives
  publication-title: Angew. Chem. Int. Edi.
– volume: 60
  start-page: 11910
  year: 2021
  end-page: 11918
  ident: b0005
  article-title: Magnetic-field-stimulated efficient photocatalytic N
  publication-title: Angew. Chem. Int. Edit.
– year: 2023
  ident: b0230
  article-title: Tuning the heterostructured interfaces of ZnO/ZnCr
  publication-title: ChemSusChem
– volume: 406
  year: 2021
  ident: b0250
  article-title: Enhanced electron-hole separation in SnS
  publication-title: Chem. Eng. J.
– volume: 436
  year: 2022
  ident: b0055
  article-title: S doped Ta
  publication-title: Chem. Eng. J.
– volume: 599
  year: 2020
  ident: b0180
  article-title: α-Fe
  publication-title: Phys. B
– volume: 160
  year: 2023
  ident: b0160
  article-title: Ultrathin carbon-coated Fe-TiO
  publication-title: Mater. Res. Bull.
– volume: 43
  start-page: 18125
  year: 2018
  end-page: 18135
  ident: b0175
  article-title: Mesoporous Ta
  publication-title: Int. J. Hydrogen Energy
– volume: 560
  start-page: 359
  year: 2020
  end-page: 368
  ident: b0125
  article-title: Mesocrystalline Ta
  publication-title: J. Colloid Interface Sci.
– volume: 490
  start-page: 628
  year: 2017
  end-page: 641
  ident: b0245
  article-title: Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS
  publication-title: J. Colloid Interface Sci.
– volume: 304
  year: 2022
  ident: b0145
  article-title: Topotactic formation of poriferous (Al, C)–Ta
  publication-title: J. Environ. Manage.
– volume: 299
  year: 2021
  ident: b0200
  article-title: Oxygen vacancies in Bi
  publication-title: Appl. Catal., B
– volume: 17
  year: 2022
  ident: b0120
  article-title: Single atomic Pt on amorphous ZrO
  publication-title: Mater. Today Nano
– volume: 122
  start-page: 6014
  year: 2018
  end-page: 6025
  ident: b0140
  article-title: Synthesis and visible-light-driven photocatalytic activity of Ta
  publication-title: J. Phys. Chem. C
– volume: 325
  year: 2023
  ident: b0075
  article-title: Rational design of AgCl@Zr
  publication-title: Appl. Catal., B
– volume: 269
  year: 2024
  ident: b0065
  article-title: A comprehensive review on the boosted effects of anion vacancy in the heterogeneous photocatalytic degradation, part I: Focus on sulfur, nitrogen, carbon, and halogen vacancies
  publication-title: Ecotox. Environ. Safe.
– volume: 104
  start-page: 130
  year: 2019
  end-page: 138
  ident: b0255
  article-title: Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 18
  start-page: 2205388
  year: 2022
  ident: b0195
  article-title: Interlayer charge transfer over graphitized carbon nitride enabling highly-efficient photocatalytic nitrogen fixation
  publication-title: Small
– volume: 33
  start-page: 5162
  year: 2022
  end-page: 5168
  ident: b0220
  article-title: Boosting the photocatalytic nitrogen reduction to ammonia through adsorption-plasmonic synergistic effects
  publication-title: Chin. Chem. Lett.
– volume: 649
  year: 2023
  ident: b0030
  article-title: Facile preparation of perylene imide based supramolecular structure with strong internal electric-field for enhancing photocatalytic nitrogen fixation
  publication-title: Appl. Catal., A
– volume: 321
  year: 2023
  ident: b0025
  article-title: Electron deficient boron-doped amorphous carbon nitride to uphill N
  publication-title: Appl. Catal., B
– volume: 490
  start-page: 652
  year: 2017
  end-page: 664
  ident: b0060
  article-title: Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: Experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 122
  year: 2016
  end-page: 127
  ident: b0130
  article-title: Gray Ta
  publication-title: ACS Appl. Mater. Interfaces
– volume: 614
  year: 2023
  ident: b0265
  article-title: A magnetically separable clinoptilolite supported CdS-PbS photocatalyst: Characterization and photocatalytic activity toward cefotaxime
  publication-title: Appl. Surf. Sci.
– volume: 47
  start-page: 4702
  year: 2021
  end-page: 4706
  ident: b0045
  article-title: Oxygen-defects modified amorphous Ta
  publication-title: Ceram. Int.
– volume: 176
  start-page: 629
  year: 2010
  end-page: 637
  ident: b0070
  article-title: Photodecolorization of eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst
  publication-title: J. Hazard. Mater.
– volume: 21
  year: 2021
  ident: b0235
  article-title: Directed charge transfer in all solid state heterojunction of Fe doped MoS
  publication-title: Mater. Today Phys.
– volume: 145
  start-page: 13134
  year: 2023
  end-page: 13146
  ident: b0020
  article-title: Photochemical acceleration of ammonia production by Pt
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2201782
  year: 2022
  ident: b0260
  article-title: Simultaneous photoelectrocatalytic oxidation and nitrite-ammonia conversion with artificial photoelectrochemistry Cells
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 22827
  year: 2021
  end-page: 22832
  ident: b0285
  article-title: Refining active sites and hydrogen spillover for boosting visible-light-driven ammonia synthesis at room temperature
  publication-title: J. Mater. Chem. A
– volume: 96
  start-page: 487
  year: 2019
  end-page: 495
  ident: b0275
  article-title: Snowflake-like Cu
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 277
  year: 2020
  ident: b0155
  article-title: Visible-light-driven deep oxidation of NO over Fe doped TiO
  publication-title: Appl. Catal., B
– volume: 109
  start-page: 276
  year: 2022
  end-page: 281
  ident: b0210
  article-title: Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr
  publication-title: J. Mater. Sci. Technol.
– volume: 256
  year: 2019
  ident: b0225
  article-title: High-efficiency Fe-Mediated Bi
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 9622
  year: 2019
  end-page: 9628
  ident: b0135
  article-title: Oxygen vacancies in Ta
  publication-title: ACS Sustainable Chem. Eng.
– volume: 250
  year: 2020
  ident: b0290
  article-title: Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents
  publication-title: Sep. Purif. Technol.
– volume: 18
  year: 2022
  ident: b0050
  article-title: A review on the development and advancement of Ta
  publication-title: Mater. Today Sustainability
– volume: 466
  year: 2023
  ident: b0240
  article-title: Ca
  publication-title: Chem. Eng. J.
– volume: 61
  year: 2022
  ident: b0090
  article-title: Anchoring black phosphorus quantum dots on Fe-doped W
  publication-title: Angew. Chem. Int. Edit.
– start-page: e202404258
  year: 2024
  ident: b0010
  article-title: Regulated dual defects of bridging organic and terminal inorganic ligands in iron-based metal-organic framework nodes for efficient photocatalytic ammonia synthesis
  publication-title: Angew. Chem. Int. Edit.
– volume: 490
  start-page: 314
  year: 2017
  end-page: 327
  ident: b0270
  article-title: Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO
  publication-title: J. Colloid Interface Sci.
– volume: 183
  year: 2020
  ident: b0310
  article-title: A visible light driven AgBr/g-C
  publication-title: Compos., Part B
– volume: 637
  start-page: 271
  year: 2023
  end-page: 282
  ident: b0100
  article-title: Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting
  publication-title: J. Colloid Interface Sci.
– volume: 321
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0025
  article-title: Electron deficient boron-doped amorphous carbon nitride to uphill N2 photo-fixation through π back donation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122070
– year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0230
  article-title: Tuning the heterostructured interfaces of ZnO/ZnCr2O4 derived from layered-double-hydroxide precursors to advance nitrogen photofixation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300944
– volume: 466
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0240
  article-title: Ca2+ doped metal organic frameworks for enhanced photocatalytic ammonia synthesis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143259
– volume: 43
  start-page: 18125
  year: 2018
  ident: 10.1016/j.jcis.2024.04.224_b0175
  article-title: Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.08.075
– volume: 560
  start-page: 359
  year: 2020
  ident: 10.1016/j.jcis.2024.04.224_b0125
  article-title: Mesocrystalline Ta3N5 superstructures with long-lived charges for improved visible light photocatalytic hydrogen production
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.09.123
– start-page: e202404258
  year: 2024
  ident: 10.1016/j.jcis.2024.04.224_b0010
  article-title: Regulated dual defects of bridging organic and terminal inorganic ligands in iron-based metal-organic framework nodes for efficient photocatalytic ammonia synthesis
  publication-title: Angew. Chem. Int. Edit.
– volume: 399
  start-page: 515
  year: 2017
  ident: 10.1016/j.jcis.2024.04.224_b0170
  article-title: Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.12.125
– volume: 459
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0085
  article-title: In-depth insights into Fe(III)-doped g-C3N4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.132117
– volume: 277
  year: 2020
  ident: 10.1016/j.jcis.2024.04.224_b0155
  article-title: Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119196
– volume: 96
  start-page: 487
  year: 2019
  ident: 10.1016/j.jcis.2024.04.224_b0275
  article-title: Snowflake-like Cu2S/Zn0.5Cd0.5S p–n heterojunction photocatalyst for enhanced visible light photocatalytic H2 evolution activity
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.12.021
– volume: 122
  start-page: 6014
  year: 2018
  ident: 10.1016/j.jcis.2024.04.224_b0140
  article-title: Synthesis and visible-light-driven photocatalytic activity of Ta4+ self-doped gray Ta2O5 nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11822
– volume: 160
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0160
  article-title: Ultrathin carbon-coated Fe-TiO2-x nanostructures for enhanced photocatalysis under visible-light irradiation
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2022.112143
– volume: 436
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0055
  article-title: S doped Ta2O5 decorated CdS nanosphere via interfacial diffusion for enhanced and stable photocatalytic hydrogen production
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131673
– volume: 9
  start-page: 22827
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0285
  article-title: Refining active sites and hydrogen spillover for boosting visible-light-driven ammonia synthesis at room temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06296D
– volume: 572
  start-page: 141
  year: 2020
  ident: 10.1016/j.jcis.2024.04.224_b0115
  article-title: Visible light photocatalysis of amorphous Cl-Ta2O5-x microspheres for stabilized hydrogen generation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.03.030
– volume: 47
  start-page: 4702
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0045
  article-title: Oxygen-defects modified amorphous Ta2O5 nanoparticles for solar driven hydrogen
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.038
– volume: 183
  year: 2020
  ident: 10.1016/j.jcis.2024.04.224_b0310
  article-title: A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers
  publication-title: Compos., Part B
  doi: 10.1016/j.compositesb.2019.107712
– volume: 250
  year: 2020
  ident: 10.1016/j.jcis.2024.04.224_b0290
  article-title: Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117235
– volume: 257
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0185
  article-title: Transition metal modified 3DOM WO3 with activated NN bond triggering high-efficiency nitrogen photoreduction
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117734
– volume: 599
  year: 2020
  ident: 10.1016/j.jcis.2024.04.224_b0180
  article-title: α-Fe2O3/Cu2O heterostructure: Brief characterization and kinetic aspect of degradation of methylene blue
  publication-title: Phys. B
  doi: 10.1016/j.physb.2020.412422
– volume: 7
  start-page: 5702
  year: 2019
  ident: 10.1016/j.jcis.2024.04.224_b0280
  article-title: Zr doped mesoporous LaTaON2 for efficient photocatalytic water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11561C
– volume: 490
  start-page: 314
  year: 2017
  ident: 10.1016/j.jcis.2024.04.224_b0270
  article-title: Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.11.069
– volume: 104
  start-page: 130
  year: 2019
  ident: 10.1016/j.jcis.2024.04.224_b0255
  article-title: Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2019.08.021
– volume: 43
  start-page: 4395
  year: 2014
  ident: 10.1016/j.jcis.2024.04.224_b0300
  article-title: Tantalum-based semiconductors for solar water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60438A
– volume: 649
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0030
  article-title: Facile preparation of perylene imide based supramolecular structure with strong internal electric-field for enhancing photocatalytic nitrogen fixation
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2022.118978
– volume: 299
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0200
  article-title: Oxygen vacancies in Bi2Sn2O7 quantum dots to trigger efficient photocatalytic nitrogen reduction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120680
– volume: 43
  start-page: 2273
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0015
  article-title: Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63939-6
– volume: 269
  year: 2024
  ident: 10.1016/j.jcis.2024.04.224_b0065
  article-title: A comprehensive review on the boosted effects of anion vacancy in the heterogeneous photocatalytic degradation, part I: Focus on sulfur, nitrogen, carbon, and halogen vacancies
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2024.115927
– volume: 304
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0145
  article-title: Topotactic formation of poriferous (Al, C)–Ta2O5 mesocrystals for improved visible-light photocatalysis
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.114289
– volume: 57
  start-page: 122
  year: 2018
  ident: 10.1016/j.jcis.2024.04.224_b0305
  article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives
  publication-title: Angew. Chem. Int. Edi.
  doi: 10.1002/anie.201705628
– volume: 638
  start-page: 427
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0040
  article-title: One-step fabrication of Cu-doped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.02.005
– volume: 18
  start-page: 2205388
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0195
  article-title: Interlayer charge transfer over graphitized carbon nitride enabling highly-efficient photocatalytic nitrogen fixation
  publication-title: Small
  doi: 10.1002/smll.202205388
– volume: 327
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0110
  article-title: Electronic metal-support interaction via defective-induced platinum modified BiOBr for photocatalytic N2 fixation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.122462
– volume: 7
  start-page: 9622
  year: 2019
  ident: 10.1016/j.jcis.2024.04.224_b0135
  article-title: Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01178
– volume: 176
  start-page: 629
  year: 2010
  ident: 10.1016/j.jcis.2024.04.224_b0070
  article-title: Photodecolorization of eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.11.077
– volume: 325
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0095
  article-title: Molecular-level insights on NIR-driven photocatalytic H2 generation with ultrathin porous S-doped g-C3N4 nanosheets
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122292
– volume: 323
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0190
  article-title: Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122148
– volume: 296
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0205
  article-title: Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO4 single crystals
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120379
– volume: 49
  start-page: 37861
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0295
  article-title: Construction of ZnS1-x layers coated Nb2O5-x mesocrystals for boosted removal of organic contaminant
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.09.114
– volume: 614
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0265
  article-title: A magnetically separable clinoptilolite supported CdS-PbS photocatalyst: Characterization and photocatalytic activity toward cefotaxime
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.156252
– volume: 61
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0090
  article-title: Anchoring black phosphorus quantum dots on Fe-doped W18O49 nanowires for efficient photocatalytic nitrogen fixation
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.202204271
– volume: 406
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0250
  article-title: Enhanced electron-hole separation in SnS2/Au/g-C3N4 embedded structure for efficient CO2 photoreduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126776
– volume: 66
  year: 2019
  ident: 10.1016/j.jcis.2024.04.224_b0080
  article-title: Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104187
– volume: 33
  start-page: 5162
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0220
  article-title: Boosting the photocatalytic nitrogen reduction to ammonia through adsorption-plasmonic synergistic effects
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.01.076
– volume: 17
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0120
  article-title: Single atomic Pt on amorphous ZrO2 nanowires for advanced photocatalytic CO2 reduction
  publication-title: Mater. Today Nano
– volume: 637
  start-page: 271
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0100
  article-title: Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.01.098
– volume: 490
  start-page: 652
  year: 2017
  ident: 10.1016/j.jcis.2024.04.224_b0060
  article-title: Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: Experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.11.105
– volume: 8
  start-page: 122
  year: 2016
  ident: 10.1016/j.jcis.2024.04.224_b0130
  article-title: Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07685
– volume: 109
  start-page: 276
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0210
  article-title: Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.08.085
– volume: 10
  start-page: 23494
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0150
  article-title: Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO2 nanobelt array
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA06933D
– volume: 256
  year: 2019
  ident: 10.1016/j.jcis.2024.04.224_b0225
  article-title: High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117781
– volume: 145
  start-page: 13134
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0020
  article-title: Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01947
– volume: 613
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0165
  article-title: (N, F)-co-doped TiO2-δ beads loaded onto C nanofibers: Excellent visible-light photocatalyst for the degradation of organic dyes and reduction of Cr(VI)
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.155970
– volume: 12
  start-page: 2201782
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0260
  article-title: Simultaneous photoelectrocatalytic oxidation and nitrite-ammonia conversion with artificial photoelectrochemistry Cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201782
– volume: 18
  year: 2022
  ident: 10.1016/j.jcis.2024.04.224_b0050
  article-title: A review on the development and advancement of Ta2O5 as a promising photocatalyst
  publication-title: Mater. Today Sustainability
– volume: 62
  start-page: 12138
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0105
  article-title: Synergistic effects of the Ni3B cocatalyst and N vacancy on g-C3N4 for effectively enhanced photocatalytic N2 fixation
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c01741
– volume: 490
  start-page: 628
  year: 2017
  ident: 10.1016/j.jcis.2024.04.224_b0245
  article-title: Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.11.102
– volume: 60
  start-page: 11910
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0005
  article-title: Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.202100726
– volume: 21
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0235
  article-title: Directed charge transfer in all solid state heterojunction of Fe doped MoS2 and C-TiO2 nanosheet for enhanced nitrogen photofixation
  publication-title: Mater. Today Phys.
– volume: 31
  start-page: 1806482
  year: 2019
  ident: 10.1016/j.jcis.2024.04.224_b0035
  article-title: Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806482
– volume: 325
  year: 2023
  ident: 10.1016/j.jcis.2024.04.224_b0075
  article-title: Rational design of AgCl@Zr3+-ZrO2 nanostructures for ultra-efficient visible-light photodegradation of emerging pollutants
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122308
– volume: 406
  year: 2021
  ident: 10.1016/j.jcis.2024.04.224_b0215
  article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126868
SSID ssj0011559
Score 2.4879122
Snippet [Display omitted] •Ultrathin Fe-Ta2O5-x nanobelts were fabricated.•Fe-Ta2O5-x nanobelts showed highly improved surface areas and solar-light harvesting.•Fe...
Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 477
SubjectTerms Doping
Nanostructure
Oxygen vacancies
Photocatalysis
Ta2O5
Title Designing ultrathin Fe doped Ta2O5-x nanobelts for highly enhanced ammonia photosynthesis
URI https://dx.doi.org/10.1016/j.jcis.2024.04.224
https://www.proquest.com/docview/3053979326
Volume 669
WOSCitedRecordID wos001239136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa6DQl4QDBAbMBkJN6iTHXixM7jGKuAh8FDEeUpchKbpqqcam2nbj-DX8xd7WRb0SZA4iWqrCS1fF_uzr677wh5mximlalkWFRVEnLJdJgVRoRVpuKCiUqmrFg3mxCnp3I0yr70ej_bWpjzqbBWrlbZ7L-KGsZA2Fg6-xfi7l4KA_AbhA5XEDtc_0jw79c5GXgCsJwi9ey4tsFAB1UzA99yqKLPSbgKrLJNoaeLNRtDgJzF04tA27HLB1A421oFs3GzaOYXFpzEeT2_xY9FJDV15WmcsOu1QtpapzNaeY7qNrhvf4yX9VUoyjrbdznW3oSiBlIuHFSrVd1h95s_2H7nh_xJRcS7VCx_fNaW0NzI8HQ5IsIl6R5qp4XB78Mk0fi6mk5dSxevaLlv_uJsNndtf34zB-5kYnI4KWukZo840tpGrmh7g2Ybo9YM54FJtVjtu0V2IpFkoCl3jj6ejD51sSkM5LrEITdxX4rlsgY3_-k2d2fD8K-9meFj8siLjx45-DwhPW13yf3jtvvfLnl4jajyKfnegYp2oKIDTdegoh5UtAMVBVBRByragop6UNGboHpGvg5OhscfQt-UIyzjOF6EJdewbY-1ZCVLI2MybZQQskojoVgRCx4xBptidOS50VpypvsGPCXNU-QBKuPnZNs2Vr8gNFZlUejURAY5g3Qsk6yUES-SMjV90B97hLVrl5eesR4bp0zzNjVxkuN657jeeZ_nsN57JOiemTm-ljvvTlqR5P67cJ5kDgi687k3rfxykAvG2JTVzXKeg_nESDlsivb_8d0vyYOrj-cV2V6cLfVrcq88X9TzswOyJUbywEPyF8VOs7c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+ultrathin+Fe+doped+Ta2O5-x+nanobelts+for+highly+enhanced+ammonia+photosynthesis&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Xin%2C+Changhui&rft.au=Sun%2C+Hezheng&rft.au=Yao%2C+Jiaxin&rft.au=Wang%2C+Bin&rft.date=2024-09-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=669&rft.spage=477&rft.epage=485&rft_id=info:doi/10.1016%2Fj.jcis.2024.04.224&rft.externalDocID=S0021979724009561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon