Distributional logic programming for Bayesian knowledge representation

We present a formalism for combining logic programming and its flavour of nondeterminism with probabilistic reasoning. In particular, we focus on representing prior knowledge for Bayesian inference. Distributional logic programming (Dlp), is considered in the context of a class of generative probabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of approximate reasoning Jg. 80; S. 52 - 66
Hauptverfasser: Angelopoulos, Nicos, Cussens, James
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.01.2017
Schlagworte:
ISSN:0888-613X, 1873-4731
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a formalism for combining logic programming and its flavour of nondeterminism with probabilistic reasoning. In particular, we focus on representing prior knowledge for Bayesian inference. Distributional logic programming (Dlp), is considered in the context of a class of generative probabilistic languages. A characterisation based on probabilistic paths which can play a central role in clausal probabilistic reasoning is presented. We illustrate how the characterisation can be utilised to clarify derived distributions with regards to mixing the logical and probabilistic constituents of generative languages. We use this operational characterisation to define a class of programs that exhibit probabilistic determinism. We show how Dlp can be used to define generative priors over statistical model spaces. For example, a single program can generate all possible Bayesian networks having N nodes while at the same time it defines a prior that penalises networks with large families. Two classes of statistical models are considered: Bayesian networks and classification and regression trees. Finally we discuss: (1) a Metropolis–Hastings algorithm that can take advantage of the defined priors and the probabilistic choice points in the prior programs and (2) its application to real-world machine learning tasks. •Knowledge representation for Bayesian machine learning.•Probabilistic logic programming for modelling prior over model structure.•Implementation of a system for likelihood based learning.•Effect of prior information to proposal model structures.•Proposal free MCMC simulations.
AbstractList We present a formalism for combining logic programming and its flavour of nondeterminism with probabilistic reasoning. In particular, we focus on representing prior knowledge for Bayesian inference. Distributional logic programming (Dlp), is considered in the context of a class of generative probabilistic languages. A characterisation based on probabilistic paths which can play a central role in clausal probabilistic reasoning is presented. We illustrate how the characterisation can be utilised to clarify derived distributions with regards to mixing the logical and probabilistic constituents of generative languages. We use this operational characterisation to define a class of programs that exhibit probabilistic determinism. We show how Dlp can be used to define generative priors over statistical model spaces. For example, a single program can generate all possible Bayesian networks having N nodes while at the same time it defines a prior that penalises networks with large families. Two classes of statistical models are considered: Bayesian networks and classification and regression trees. Finally we discuss: (1) a Metropolis–Hastings algorithm that can take advantage of the defined priors and the probabilistic choice points in the prior programs and (2) its application to real-world machine learning tasks. •Knowledge representation for Bayesian machine learning.•Probabilistic logic programming for modelling prior over model structure.•Implementation of a system for likelihood based learning.•Effect of prior information to proposal model structures.•Proposal free MCMC simulations.
We present a formalism for combining logic programming and its flavour of nondeterminism with probabilistic reasoning. In particular, we focus on representing prior knowledge for Bayesian inference. Distributional logic programming (Dlp), is considered in the context of a class of generative probabilistic languages. A characterisation based on probabilistic paths which can play a central role in clausal probabilistic reasoning is presented. We illustrate how the characterisation can be utilised to clarify derived distributions with regards to mixing the logical and probabilistic constituents of generative languages. We use this operational characterisation to define a class of programs that exhibit probabilistic determinism. We show how Dlp can be used to define generative priors over statistical model spaces. For example, a single program can generate all possible Bayesian networks having N nodes while at the same time it defines a prior that penalises networks with large families. Two classes of statistical models are considered: Bayesian networks and classification and regression trees. Finally we discuss: (1) a Metropolis-Hastings algorithm that can take advantage of the defined priors and the probabilistic choice points in the prior programs and (2) its application to real-world machine learning tasks.
Author Cussens, James
Angelopoulos, Nicos
Author_xml – sequence: 1
  givenname: Nicos
  orcidid: 0000-0002-7507-9177
  surname: Angelopoulos
  fullname: Angelopoulos, Nicos
  email: nicos.angelopoulos@sanger.ac.uk
  organization: Welcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
– sequence: 2
  givenname: James
  surname: Cussens
  fullname: Cussens, James
  organization: Department of Computer Science, University of York, York, UK
BookMark eNp9kD9PwzAQxS0EEm3hCzBlZEk4x_njSCxQKCBVYgGJzXKcS-SQ2MVOQf32JAoTQ5e7G97v6d5bklNjDRJyRSGiQLObNtKtdFE83hHwCCA5IQvKcxYmOaOnZAGc8zCj7OOcLL1vASDLE74gmwftB6fL_aCtkV3Q2UarYOds42Tfa9MEtXXBvTyg19IEn8b-dFg1GDjcOfRoBjmRF-Sslp3Hy7-9Iu-bx7f1c7h9fXpZ321DxRgbxkmxZnGe1ZAXSZwoqMqUclZBSrFMslGEMcZZWkKsKKtrXqR1VihV5KrESrIVuZ59xw-_9ugH0WuvsOukQbv3gnIOwFgyeq5IPEuVs947rMXO6V66g6AgptJEK6bSxFSaAC7G0kaI_4OUnhMOTuruOHo7ozjm_9bohFcajcJKO1SDqKw-hv8CF1OLRw
CitedBy_id crossref_primary_10_1016_j_ins_2024_121051
crossref_primary_10_1109_TKDE_2020_2997175
crossref_primary_10_3233_JIFS_201837
crossref_primary_10_3389_frobt_2020_00100
crossref_primary_10_1016_j_aei_2023_102329
Cites_doi 10.1007/s10472-009-9133-x
10.1101/gr.098822.109
10.1080/01621459.1998.10473750
10.1017/S1471068410000566
10.1023/A:1010924021315
10.2202/1544-6115.1282
10.1023/A:1007665907178
10.1016/0004-3702(93)90061-F
10.1613/jair.912
10.1007/BF00994016
10.1093/bioinformatics/18.suppl_1.S216
10.1093/nar/28.1.27
10.1038/75556
10.1007/BF01889584
10.1021/ci900046u
10.1007/s10994-015-5488-x
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ijar.2016.08.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-4731
EndPage 66
ExternalDocumentID 10_1016_j_ijar_2016_08_004
S0888613X16301232
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-c31ef3276f079424c0db5183d051eb46333e2e265b02c13ff895f69cc97cbeda3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391080100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-613X
IngestDate Sun Sep 28 08:17:27 EDT 2025
Sat Nov 29 04:42:30 EST 2025
Tue Nov 18 22:36:35 EST 2025
Fri Feb 23 02:17:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Logic programming
Bayesian networks
Bayesian inference
Probabilistic logic programming
Classification and regression trees
Knowledge representation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-c31ef3276f079424c0db5183d051eb46333e2e265b02c13ff895f69cc97cbeda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7507-9177
PQID 1880033418
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1880033418
crossref_primary_10_1016_j_ijar_2016_08_004
crossref_citationtrail_10_1016_j_ijar_2016_08_004
elsevier_sciencedirect_doi_10_1016_j_ijar_2016_08_004
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle International journal of approximate reasoning
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chipman, George, McCulloch (br0120) 1998; 93
Poole (br0320) 1997; 94
Sato, Kameya (br0340) 1997
Heckerman, Geiger, Chickering (br0240) 1995; 20
Kimmig, Demoen Luc de Raedt, Santos Costa, Rocha (br0280) 2011; 11
Wood, van de Meent, Mansinghka (br0410) 2014
Jordan, Ghahramani, Jaakkola, Saul (br0260) 1999; 37
Pfeffer (br0300) 2009
Wray (br0090) 1991
Angelopoulos, Cussens (br0060) 2008; 54
Friedman, Koller (br0210) 2000
Angelopoulos, Cussens (br0040) August 2005
Wray (br0100) 1992; 2
Goodman, Mansinghka, Roy, Bonawitz, Tenenbaum (br0230) 2008
Cussens (br0130) 2000
Angelopoulos (br0010) 2001
Cussens (br0150) 2001
Sato, Kameya (br0350) 2001; 15
van Steensel, Braunschweig, Filion, Chen, van Bemmel, Ideker (br0380) 2010; 20
Chakrabarti (br0110) 2007
Di Pierro, Wiklicky (br0180) 1998
Domingos, Lowd (br0190) 2009
Kanehisa, Goto (br0270) 2000; 28
Cussens (br0160) January 2005
Heckerman, Geiger, Chickering (br0250) 1995; 20
Gilks, Richardson, Spiegelhalter (br0220) 1996
Anne Smith, Jarvis, Hartemink (br0360) 2002; 18
Yang Wang, Mazaitis, Lao, Cohen (br0390) 2015; 100
The Gene Ontology Consortium (br0370) May 2000; 25
Cussens (br0140) 2001; 44
Denison, Holmes, Mallick, Smith (br0170) March 2002
Friedman, Getoor, Koller, Pfeffer (br0200) 1999
Riezler (br0330) 1998
Poole (br0310) 1993; 64
Angelopoulos, Wessels (br0080) 2011
Muggleton (br0290) 1996
Angelopoulos, Hadjiprocopis, Walkinshaw (br0070) 2009; 49
Angelopoulos (br0020) 2015
Angelopoulos, Cussens (br0030) 2001
Werhli, Husmeier (br0400) 2007; 6
Angelopoulos, Cussens (br0050) August 2005
Chipman (10.1016/j.ijar.2016.08.004_br0120) 1998; 93
van Steensel (10.1016/j.ijar.2016.08.004_br0380) 2010; 20
Angelopoulos (10.1016/j.ijar.2016.08.004_br0040) 2005
Kanehisa (10.1016/j.ijar.2016.08.004_br0270) 2000; 28
Poole (10.1016/j.ijar.2016.08.004_br0310) 1993; 64
Angelopoulos (10.1016/j.ijar.2016.08.004_br0030) 2001
Angelopoulos (10.1016/j.ijar.2016.08.004_br0010) 2001
Angelopoulos (10.1016/j.ijar.2016.08.004_br0080) 2011
Wray (10.1016/j.ijar.2016.08.004_br0100) 1992; 2
Goodman (10.1016/j.ijar.2016.08.004_br0230) 2008
Muggleton (10.1016/j.ijar.2016.08.004_br0290) 1996
Domingos (10.1016/j.ijar.2016.08.004_br0190) 2009
Heckerman (10.1016/j.ijar.2016.08.004_br0250) 1995; 20
Gilks (10.1016/j.ijar.2016.08.004_br0220) 1996
Pfeffer (10.1016/j.ijar.2016.08.004_br0300) 2009
Angelopoulos (10.1016/j.ijar.2016.08.004_br0070) 2009; 49
Poole (10.1016/j.ijar.2016.08.004_br0320) 1997; 94
Anne Smith (10.1016/j.ijar.2016.08.004_br0360) 2002; 18
Kimmig (10.1016/j.ijar.2016.08.004_br0280) 2011; 11
Yang Wang (10.1016/j.ijar.2016.08.004_br0390) 2015; 100
Cussens (10.1016/j.ijar.2016.08.004_br0130) 2000
Cussens (10.1016/j.ijar.2016.08.004_br0140) 2001; 44
Angelopoulos (10.1016/j.ijar.2016.08.004_br0060) 2008; 54
Heckerman (10.1016/j.ijar.2016.08.004_br0240) 1995; 20
Wood (10.1016/j.ijar.2016.08.004_br0410) 2014
Friedman (10.1016/j.ijar.2016.08.004_br0210) 2000
Denison (10.1016/j.ijar.2016.08.004_br0170) 2002
Jordan (10.1016/j.ijar.2016.08.004_br0260) 1999; 37
Cussens (10.1016/j.ijar.2016.08.004_br0160) 2005
Riezler (10.1016/j.ijar.2016.08.004_br0330) 1998
Cussens (10.1016/j.ijar.2016.08.004_br0150) 2001
Di Pierro (10.1016/j.ijar.2016.08.004_br0180) 1998
Friedman (10.1016/j.ijar.2016.08.004_br0200) 1999
Werhli (10.1016/j.ijar.2016.08.004_br0400) 2007; 6
Angelopoulos (10.1016/j.ijar.2016.08.004_br0020)
Angelopoulos (10.1016/j.ijar.2016.08.004_br0050) 2005
Wray (10.1016/j.ijar.2016.08.004_br0090) 1991
Sato (10.1016/j.ijar.2016.08.004_br0340) 1997
Chakrabarti (10.1016/j.ijar.2016.08.004_br0110) 2007
Sato (10.1016/j.ijar.2016.08.004_br0350) 2001; 15
The Gene Ontology Consortium (10.1016/j.ijar.2016.08.004_br0370) 2000; 25
References_xml – start-page: 1330
  year: 1997
  end-page: 1335
  ident: br0340
  article-title: Prism: a symbolic-statistical modelling language
  publication-title: Proceedings of the 17th International Joint Conference on Artificial Intelligence
– start-page: 220
  year: 2008
  end-page: 229
  ident: br0230
  article-title: Church: a language for generative models
  publication-title: Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence
– year: January 2005
  ident: br0160
  article-title: Integrating by separating: combining probability and logic with ICL, PRISM and SLPs
– volume: 20
  start-page: 197
  year: 1995
  end-page: 243
  ident: br0240
  article-title: Learning Bayesian networks: the combination of knowledge and statistical data
  publication-title: Mach. Learn.
– volume: 93
  start-page: 935
  year: 1998
  end-page: 960
  ident: br0120
  article-title: Bayesian CART model search (with discussion)
  publication-title: J. Am. Stat. Assoc.
– start-page: 1024
  year: 2014
  end-page: 1032
  ident: br0410
  article-title: A new approach to probabilistic programming inference
  publication-title: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics
– start-page: 181
  year: 2001
  end-page: 186
  ident: br0150
  article-title: Statistical aspects of stochastic logic programs
  publication-title: Artificial Intelligence and Statistics
– volume: 6
  year: 2007
  ident: br0400
  article-title: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 2
  start-page: 63
  year: 1992
  end-page: 73
  ident: br0100
  article-title: Learning classification trees
  publication-title: Stat. Comput.
– start-page: 115
  year: 2000
  end-page: 122
  ident: br0130
  article-title: Stochastic logic programs: sampling, inference and applications
  publication-title: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence
– year: 2009
  ident: br0300
  article-title: Figaro: an object-oriented probabilistic programming language
– volume: 44
  start-page: 245
  year: 2001
  end-page: 271
  ident: br0140
  article-title: Parameter estimation in stochastic logic programs
  publication-title: Mach. Learn.
– start-page: 1300
  year: 1999
  end-page: 1309
  ident: br0200
  article-title: Learning probabilistic relational models
  publication-title: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI, vol. 99
– start-page: 254
  year: 1996
  end-page: 264
  ident: br0290
  article-title: Stochastic logic programs
  publication-title: Advances in Inductive Logic Programming
– year: 2015
  ident: br0020
  article-title: Bims: Bayesian inference of model structure
– volume: 94
  start-page: 5
  year: 1997
  end-page: 56
  ident: br0320
  article-title: The independent choice logic for modelling multiple agents under uncertainty
  publication-title: Artif. Intell.
– volume: 25
  start-page: 25
  year: May 2000
  end-page: 29
  ident: br0370
  article-title: Gene ontology: tool for the unification of biology
  publication-title: Nat. Genet.
– volume: 18
  start-page: s216
  year: 2002
  end-page: s224
  ident: br0360
  article-title: Evaluating functional network inference using simulations of complex biological systems
  publication-title: Bioinformatics
– start-page: 201
  year: 2000
  end-page: 210
  ident: br0210
  article-title: Being Bayesian about network structure
  publication-title: 16th Conference on Uncertainty in Artificial Intelligence
– year: 1998
  ident: br0330
  article-title: Probabilistic constraint logic programming
– start-page: 52
  year: 1991
  end-page: 60
  ident: br0090
  article-title: Theory refinement on Bayesian networks
  publication-title: Proceedings of the 7th Conference in Uncertainty in Artificial Intelligence
– volume: 64
  start-page: 81
  year: 1993
  end-page: 129
  ident: br0310
  article-title: Probabilistic horn abduction and Bayesian networks
  publication-title: Artif. Intell.
– volume: 20
  start-page: 190
  year: 2010
  end-page: 200
  ident: br0380
  article-title: Bayesian network analysis of targeting interactions in chromatin
  publication-title: Genome Res.
– year: 1996
  ident: br0220
  article-title: Markov Chain Monte Carlo in Practice
– volume: 20
  start-page: 197
  year: 1995
  end-page: 243
  ident: br0250
  article-title: Learning Bayesian networks: the combination of knowledge and statistical data
  publication-title: Mach. Learn.
– volume: 100
  start-page: 101
  year: 2015
  end-page: 126
  ident: br0390
  article-title: Efficient inference and learning in a large knowledge base
  publication-title: Mach. Learn.
– start-page: 16
  year: 2001
  end-page: 23
  ident: br0030
  article-title: MCMC using tree-based priors on model structure
  publication-title: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence
– year: August 2005
  ident: br0050
  article-title: Tempering for Bayesian C&RT
  publication-title: 22nd International Conference on Machine Learning
– volume: 37
  start-page: 183
  year: 1999
  end-page: 233
  ident: br0260
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
– year: 2011
  ident: br0080
  article-title: Effective priors over model structures applied to DNA binding assay data
  publication-title: Probabilistic Problem Solving in BioMedicine
– volume: 11
  start-page: 235
  year: 2011
  end-page: 262
  ident: br0280
  article-title: On the implementation of the probabilistic LP language ProbLog
  publication-title: Theory Pract. Log. Program.
– year: 2001
  ident: br0010
  article-title: Probabilistic finite domains
– start-page: 174
  year: 1998
  end-page: 183
  ident: br0180
  article-title: An operational semantics for probabilistic concurrent constraint programming
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Languages
– volume: 15
  start-page: 391
  year: 2001
  end-page: 454
  ident: br0350
  article-title: Parameter learning of logic programs for symbolic–statistical modelling
  publication-title: J. Artif. Intell. Res.
– start-page: 641
  year: August 2005
  end-page: 646
  ident: br0040
  article-title: Exploiting informative priors for Bayesian classification and regression trees
  publication-title: 19th International Joint Conference on Artificial Intelligence
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  ident: br0270
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
– year: 2009
  ident: br0190
  article-title: Markov Logic: An Interface Layer for AI
– volume: 49
  start-page: 1547
  year: 2009
  end-page: 1557
  ident: br0070
  article-title: Bayesian ligand discovery from high dimensional descriptor data
  publication-title: J. Chem. Inf. Model.
– start-page: 571
  year: 2007
  end-page: 580
  ident: br0110
  article-title: Dynamic personalized pagerank in entity-relation graphs
  publication-title: Proceedings of the 16th International Conference on World Wide Web
– year: March 2002
  ident: br0170
  article-title: Bayesian Methods for Nonlinear Classification and Regression
– volume: 54
  start-page: 53
  year: 2008
  end-page: 98
  ident: br0060
  article-title: Bayesian learning of Bayesian networks with informative priors
  publication-title: Journal of Annals of Mathematics and Artificial Intelligence
– start-page: 220
  year: 2008
  ident: 10.1016/j.ijar.2016.08.004_br0230
  article-title: Church: a language for generative models
– year: 1998
  ident: 10.1016/j.ijar.2016.08.004_br0330
– volume: 54
  start-page: 53
  issue: 1–3
  year: 2008
  ident: 10.1016/j.ijar.2016.08.004_br0060
  article-title: Bayesian learning of Bayesian networks with informative priors
  publication-title: Journal of Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/s10472-009-9133-x
– volume: 20
  start-page: 190
  issue: 2
  year: 2010
  ident: 10.1016/j.ijar.2016.08.004_br0380
  article-title: Bayesian network analysis of targeting interactions in chromatin
  publication-title: Genome Res.
  doi: 10.1101/gr.098822.109
– volume: 93
  start-page: 935
  year: 1998
  ident: 10.1016/j.ijar.2016.08.004_br0120
  article-title: Bayesian CART model search (with discussion)
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1998.10473750
– start-page: 16
  year: 2001
  ident: 10.1016/j.ijar.2016.08.004_br0030
  article-title: MCMC using tree-based priors on model structure
– year: 2009
  ident: 10.1016/j.ijar.2016.08.004_br0190
– start-page: 115
  year: 2000
  ident: 10.1016/j.ijar.2016.08.004_br0130
  article-title: Stochastic logic programs: sampling, inference and applications
– start-page: 52
  year: 1991
  ident: 10.1016/j.ijar.2016.08.004_br0090
  article-title: Theory refinement on Bayesian networks
– volume: 11
  start-page: 235
  issue: 2–3
  year: 2011
  ident: 10.1016/j.ijar.2016.08.004_br0280
  article-title: On the implementation of the probabilistic LP language ProbLog
  publication-title: Theory Pract. Log. Program.
  doi: 10.1017/S1471068410000566
– start-page: 181
  year: 2001
  ident: 10.1016/j.ijar.2016.08.004_br0150
  article-title: Statistical aspects of stochastic logic programs
– year: 2002
  ident: 10.1016/j.ijar.2016.08.004_br0170
– start-page: 1330
  year: 1997
  ident: 10.1016/j.ijar.2016.08.004_br0340
  article-title: Prism: a symbolic-statistical modelling language
– year: 2009
  ident: 10.1016/j.ijar.2016.08.004_br0300
– start-page: 254
  year: 1996
  ident: 10.1016/j.ijar.2016.08.004_br0290
  article-title: Stochastic logic programs
– year: 1996
  ident: 10.1016/j.ijar.2016.08.004_br0220
– volume: 44
  start-page: 245
  issue: 3
  year: 2001
  ident: 10.1016/j.ijar.2016.08.004_br0140
  article-title: Parameter estimation in stochastic logic programs
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010924021315
– volume: 6
  issue: 1
  year: 2007
  ident: 10.1016/j.ijar.2016.08.004_br0400
  article-title: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1282
– start-page: 571
  year: 2007
  ident: 10.1016/j.ijar.2016.08.004_br0110
  article-title: Dynamic personalized pagerank in entity-relation graphs
– start-page: 201
  year: 2000
  ident: 10.1016/j.ijar.2016.08.004_br0210
  article-title: Being Bayesian about network structure
– volume: 37
  start-page: 183
  issue: 2
  year: 1999
  ident: 10.1016/j.ijar.2016.08.004_br0260
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– start-page: 641
  year: 2005
  ident: 10.1016/j.ijar.2016.08.004_br0040
  article-title: Exploiting informative priors for Bayesian classification and regression trees
– volume: 64
  start-page: 81
  year: 1993
  ident: 10.1016/j.ijar.2016.08.004_br0310
  article-title: Probabilistic horn abduction and Bayesian networks
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(93)90061-F
– volume: 15
  start-page: 391
  year: 2001
  ident: 10.1016/j.ijar.2016.08.004_br0350
  article-title: Parameter learning of logic programs for symbolic–statistical modelling
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.912
– year: 2011
  ident: 10.1016/j.ijar.2016.08.004_br0080
  article-title: Effective priors over model structures applied to DNA binding assay data
– volume: 20
  start-page: 197
  issue: 3
  year: 1995
  ident: 10.1016/j.ijar.2016.08.004_br0250
  article-title: Learning Bayesian networks: the combination of knowledge and statistical data
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994016
– volume: 18
  start-page: s216
  year: 2002
  ident: 10.1016/j.ijar.2016.08.004_br0360
  article-title: Evaluating functional network inference using simulations of complex biological systems
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S216
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 10.1016/j.ijar.2016.08.004_br0270
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– ident: 10.1016/j.ijar.2016.08.004_br0020
– year: 2001
  ident: 10.1016/j.ijar.2016.08.004_br0010
– year: 2005
  ident: 10.1016/j.ijar.2016.08.004_br0050
  article-title: Tempering for Bayesian C&RT
– volume: 20
  start-page: 197
  issue: 3
  year: 1995
  ident: 10.1016/j.ijar.2016.08.004_br0240
  article-title: Learning Bayesian networks: the combination of knowledge and statistical data
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994016
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 10.1016/j.ijar.2016.08.004_br0370
  article-title: Gene ontology: tool for the unification of biology
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– start-page: 1024
  year: 2014
  ident: 10.1016/j.ijar.2016.08.004_br0410
  article-title: A new approach to probabilistic programming inference
– year: 2005
  ident: 10.1016/j.ijar.2016.08.004_br0160
– volume: 2
  start-page: 63
  issue: 2
  year: 1992
  ident: 10.1016/j.ijar.2016.08.004_br0100
  article-title: Learning classification trees
  publication-title: Stat. Comput.
  doi: 10.1007/BF01889584
– start-page: 174
  year: 1998
  ident: 10.1016/j.ijar.2016.08.004_br0180
  article-title: An operational semantics for probabilistic concurrent constraint programming
– start-page: 1300
  year: 1999
  ident: 10.1016/j.ijar.2016.08.004_br0200
  article-title: Learning probabilistic relational models
– volume: 94
  start-page: 5
  issue: 1–2
  year: 1997
  ident: 10.1016/j.ijar.2016.08.004_br0320
  article-title: The independent choice logic for modelling multiple agents under uncertainty
  publication-title: Artif. Intell.
– volume: 49
  start-page: 1547
  issue: 6
  year: 2009
  ident: 10.1016/j.ijar.2016.08.004_br0070
  article-title: Bayesian ligand discovery from high dimensional descriptor data
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci900046u
– volume: 100
  start-page: 101
  issue: 1
  year: 2015
  ident: 10.1016/j.ijar.2016.08.004_br0390
  article-title: Efficient inference and learning in a large knowledge base
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-015-5488-x
SSID ssj0006748
Score 2.1966639
Snippet We present a formalism for combining logic programming and its flavour of nondeterminism with probabilistic reasoning. In particular, we focus on representing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Bayesian analysis
Bayesian inference
Bayesian networks
Classification and regression trees
Knowledge representation
Logic programming
Mathematical models
Probabilistic logic programming
Probabilistic methods
Probability theory
Reasoning
Statistical analysis
Title Distributional logic programming for Bayesian knowledge representation
URI https://dx.doi.org/10.1016/j.ijar.2016.08.004
https://www.proquest.com/docview/1880033418
Volume 80
WOSCitedRecordID wos000391080100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdQx4EL34gxQEbiNgXFcRI7xzE2AUITh4F6s-KPoFZbOi0tKv_9nj-XFm1iBy5WFcVu6vfL8_Pr8--H0HuuNVW8bTJFucxKZmQmNaEZLG0a9mKScadD9vMbOznh02nzPRSxD05OgPU9X6-bi_9qargGxrZHZ-9g7jQoXIDPYHRowezQ_pPhP1kq3KBiBfPvfFsswzqPdZMf2z_GHZ9MObV9R28ZjyL146B1M2s44ppwhOTrGQS9tns7uNTudWLhly1HWqzOfCWfxVwK4A9XA3zVkOp0x8kHwkbJh-ijOOw-naRvcqhemil4RM9PG9ZWL7Dyl9f2CYT5h9m8tRStpHasql6WeJMie2vpSgWFsVZtLuwYwo4hrLymZYrdKVjV8AnaOfhyNP2almmrsuK3GP4XhBNVvvhv-0luilq21m8XlJw-Rg_DbgIfeBQ8QfdM_xQ9ikodODjuZ-h4ExTYgQKPQIEBFDiCAidQ4E1QPEc_jo9ODz9nQUEDXj1Kl9AS09GC1V0OfrcoVa5lBU5cgys2sqzhJlOYoq5kXihCu443VVc3SjVMSaNb-gJN-kVvXiJMdQeRtqmKVvNSMiKJZrrMlYEQlzS63UUkzpBQgV7eqpyciZtts4v2U58LT65y691VnHgRwkMf9gnA0a393kUrCfCd9g-xtjeL1SAsF2FOIY7jr-70JHvowfXL8BpNlpcr8wbdV7-Xs-HybQDaFUljl3g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributional+logic+programming+for+Bayesian+knowledge+representation&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Angelopoulos%2C+Nicos&rft.au=Cussens%2C+James&rft.date=2017-01-01&rft.issn=0888-613X&rft.volume=80&rft.spage=52&rft.epage=66&rft_id=info:doi/10.1016%2Fj.ijar.2016.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijar_2016_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon