Artificial-Intelligence-Based Design for Circuit Parameters of Power Converters
Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters consists of two processes: analysis and deduction process and optimization process. The existing approaches for parameter design consist of tw...
Saved in:
| Published in: | IEEE transactions on industrial electronics (1982) Vol. 69; no. 11; pp. 11144 - 11155 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0278-0046, 1557-9948 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters consists of two processes: analysis and deduction process and optimization process. The existing approaches for parameter design consist of two types: traditional approach and computer-aided optimization (CAO) approach. In the traditional approaches, heavy human-dependence is required. Even though the emerging CAO approaches automate the optimization process, they still require manual analysis and deduction process. To mitigate human-dependence for the sake of high accuracy and easy implementation, an artificial-intelligence-based design (AI-D) approach is proposed in this article for the parameter design of power converters. In the proposed AI-D approach, to achieve automation in the analysis and deduction process, simulation tools and batch-normalization neural network (BN-NN) are adopted to build data-driven models for the optimization objectives and design constraints. Besides, to achieve automation in the optimization process, genetic algorithm is used to search for optimal design results. The proposed AI-D approach is validated in the circuit parameter design of the synchronous buck converter in the 48 to 12 V accessory-load power supply system in electric vehicle. The design case of an efficiency-optimal synchronous buck converter with constraints in volume, voltage ripple, and current ripple is provided. In the end of this article, feasibility and accuracy of the proposed AI-D approach have been validated by hardware experiments. |
|---|---|
| AbstractList | Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters consists of two processes: analysis and deduction process and optimization process. The existing approaches for parameter design consist of two types: traditional approach and computer-aided optimization (CAO) approach. In the traditional approaches, heavy human-dependence is required. Even though the emerging CAO approaches automate the optimization process, they still require manual analysis and deduction process. To mitigate human-dependence for the sake of high accuracy and easy implementation, an artificial-intelligence-based design (AI-D) approach is proposed in this article for the parameter design of power converters. In the proposed AI-D approach, to achieve automation in the analysis and deduction process, simulation tools and batch-normalization neural network (BN-NN) are adopted to build data-driven models for the optimization objectives and design constraints. Besides, to achieve automation in the optimization process, genetic algorithm is used to search for optimal design results. The proposed AI-D approach is validated in the circuit parameter design of the synchronous buck converter in the 48 to 12 V accessory-load power supply system in electric vehicle. The design case of an efficiency-optimal synchronous buck converter with constraints in volume, voltage ripple, and current ripple is provided. In the end of this article, feasibility and accuracy of the proposed AI-D approach have been validated by hardware experiments. |
| Author | Zhang, Xin Lin, Fanfan Blaabjerg, Frede Li, Xinze |
| Author_xml | – sequence: 1 givenname: Xinze orcidid: 0000-0003-3513-209X surname: Li fullname: Li, Xinze email: xinze001@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore – sequence: 2 givenname: Xin orcidid: 0000-0002-4968-2722 surname: Zhang fullname: Zhang, Xin email: zhangxin_ieee@zju.edu.cn organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Fanfan orcidid: 0000-0002-5562-2478 surname: Lin fullname: Lin, Fanfan email: fanfan001@e.ntu.edu.sg organization: ERI@N, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore – sequence: 4 givenname: Frede orcidid: 0000-0001-8311-7412 surname: Blaabjerg fullname: Blaabjerg, Frede email: fbl@et.aau.dk organization: Department of Energy Technology, Aalborg University, Aalborg, Denmark |
| BookMark | eNp9kMFLwzAUh4NMcJveBS8Fz50vSdM0xzmnDgbbYZ5Lmr6OjK6ZSab439sx8eDB04P3ft_vwTcig851SMgthQmloB42i_mEAaMTDkXBpbwgQyqETJXKigEZApNFCpDlV2QUwg6AZoKKIVlNfbSNNVa36aKL2LZ2i53B9FEHrJMnDHbbJY3zycx6c7QxWWuv9xjRh8Q1ydp9Yn9z3Qf60-6aXDa6DXjzM8fk7Xm-mb2my9XLYjZdpoZzHlNDmwqBihoUgqgzkKqomKlyrmplhMlzBaySBZO80IWmoBmTigmlG2UaDnxM7s-9B-_ejxhiuXNH3_UvS5bLvk_kQvSp_Jwy3oXgsSmNjTpa10WvbVtSKE_yyl5eeZJX_sjrQfgDHrzda__1H3J3Riwi_sZVJiRkjH8D4-F7Eg |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1049_pel2_70013 crossref_primary_10_1109_TIE_2023_3265027 crossref_primary_10_3390_math12213305 crossref_primary_10_1109_TPEL_2024_3381431 crossref_primary_10_1016_j_ijepes_2024_109967 crossref_primary_10_3390_math11244990 crossref_primary_10_1109_TIE_2024_3454408 crossref_primary_10_3390_designs6040068 crossref_primary_10_1016_j_compeleceng_2024_109731 crossref_primary_10_1109_TPEL_2025_3555147 crossref_primary_10_3390_electronics12234828 crossref_primary_10_1109_TIA_2024_3429455 crossref_primary_10_1109_TPEL_2024_3378184 crossref_primary_10_1007_s13762_024_05725_2 crossref_primary_10_1109_TIE_2024_3352119 crossref_primary_10_1109_JESTPE_2022_3185090 crossref_primary_10_3390_en16186690 crossref_primary_10_3390_ma18081687 crossref_primary_10_1109_TIE_2024_3406858 crossref_primary_10_1109_ACCESS_2023_3332764 crossref_primary_10_1109_OJPEL_2025_3567148 crossref_primary_10_1177_18724981251355872 crossref_primary_10_1109_TIA_2021_3136501 crossref_primary_10_1109_JESTPE_2024_3392684 crossref_primary_10_1109_TIA_2022_3227137 crossref_primary_10_1007_s00202_024_02772_3 crossref_primary_10_1109_TPEL_2024_3396504 crossref_primary_10_1109_TTE_2023_3336288 crossref_primary_10_3390_inventions8010041 crossref_primary_10_3390_math11102384 crossref_primary_10_1007_s00521_024_10293_0 crossref_primary_10_3390_en18081931 crossref_primary_10_1109_JESTPE_2023_3300077 crossref_primary_10_1002_cta_3890 |
| Cites_doi | 10.1109/TIE.2018.2835413 10.1109/TPEL.2016.2619690 10.1109/TIE.2012.2224072 10.1109/TII.2020.3025204 10.1109/TIE.2020.3048283 10.1109/TPEL.2018.2799680 10.1109/TIE.2019.2956396 10.1109/JPROC.2020.3031041 10.1109/TVT.2016.2570817 10.4271/2016-01-1247 10.1109/TNNLS.2018.2876179 10.1007/978-1-4615-7646-4 10.1109/TIE.2019.2896235 10.1109/TNNLS.2019.2899744 10.1109/TPEL.2021.3059852 10.1109/TIE.2019.2891466 10.1109/TIE.2014.2336605 10.1109/TIE.2019.2937071 10.1002/9781118824603.ch03 10.1016/j.neucom.2021.03.077 10.1002/9781119183723 10.1109/TIE.2009.2030219 10.1109/TPEL.2015.2397311 10.1109/TIE.2020.3038064 10.1109/TIE.2020.2987275 10.1109/TIA.2019.2938149 10.1109/TIE.2009.2032195 10.1109/ACCESS.2020.3034361 10.1109/TIE.2017.2784344 10.1109/TIE.2012.2227897 10.1109/TIE.2016.2618882 10.1109/TPEL.2003.810866 10.1109/TPEL.2004.833453 10.1109/TVT.2016.2633068 10.1109/TIE.2018.2842777 10.1109/TII.2015.2462805 10.1109/TPEL.2011.2114676 10.1109/TIE.2008.917067 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2021.3088377 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 11155 |
| ExternalDocumentID | 10_1109_TIE_2021_3088377 9457042 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; NSFC grantid: 52177198 funderid: 10.13039/501100001809 – fundername: Delta Research and Education grantid: DREG2021002 – fundername: Cao Guangbiao High-tech Development Fund grantid: 2020QN012 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c333t-c1fbe015d09e05d40798b2cb639d9c5c66902b782738a8a10a2279259af9cf303 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808129100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:16:59 EDT 2025 Tue Nov 18 21:15:21 EST 2025 Sat Nov 29 01:31:52 EST 2025 Wed Aug 27 02:24:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-c1fbe015d09e05d40798b2cb639d9c5c66902b782738a8a10a2279259af9cf303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8311-7412 0000-0002-4968-2722 0000-0003-3513-209X 0000-0002-5562-2478 |
| OpenAccessLink | http://www.scopus.com/inward/record.url?scp=85112590693&partnerID=8YFLogxK |
| PQID | 2674075655 |
| PQPubID | 85464 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIE_2021_3088377 crossref_primary_10_1109_TIE_2021_3088377 ieee_primary_9457042 proquest_journals_2674075655 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref15 doi: 10.1109/TIE.2018.2835413 – ident: ref25 doi: 10.1109/TPEL.2016.2619690 – ident: ref16 doi: 10.1109/TIE.2012.2224072 – ident: ref26 doi: 10.1109/TII.2020.3025204 – ident: ref19 doi: 10.1109/TIE.2020.3048283 – ident: ref13 doi: 10.1109/TPEL.2018.2799680 – ident: ref1 doi: 10.1109/TIE.2019.2956396 – ident: ref7 doi: 10.1109/JPROC.2020.3031041 – ident: ref32 doi: 10.1109/TVT.2016.2570817 – ident: ref35 doi: 10.4271/2016-01-1247 – ident: ref28 doi: 10.1109/TNNLS.2018.2876179 – ident: ref34 doi: 10.1007/978-1-4615-7646-4 – ident: ref23 doi: 10.1109/TIE.2019.2896235 – ident: ref27 doi: 10.1109/TNNLS.2019.2899744 – ident: ref4 doi: 10.1109/TPEL.2021.3059852 – ident: ref12 doi: 10.1109/TIE.2019.2891466 – ident: ref37 doi: 10.1109/TIE.2014.2336605 – ident: ref10 doi: 10.1109/TIE.2019.2937071 – ident: ref38 doi: 10.1002/9781118824603.ch03 – ident: ref29 doi: 10.1016/j.neucom.2021.03.077 – ident: ref33 doi: 10.1002/9781119183723 – ident: ref21 doi: 10.1109/TIE.2009.2030219 – ident: ref14 doi: 10.1109/TPEL.2015.2397311 – ident: ref17 doi: 10.1109/TIE.2020.3038064 – ident: ref6 doi: 10.1109/TIE.2020.2987275 – ident: ref36 doi: 10.1109/TIA.2019.2938149 – ident: ref5 doi: 10.1109/TIE.2009.2032195 – ident: ref8 doi: 10.1109/ACCESS.2020.3034361 – ident: ref30 doi: 10.1109/TIE.2017.2784344 – ident: ref9 doi: 10.1109/TIE.2012.2227897 – ident: ref18 doi: 10.1109/TIE.2016.2618882 – ident: ref22 doi: 10.1109/TPEL.2003.810866 – ident: ref2 doi: 10.1109/TPEL.2004.833453 – ident: ref31 doi: 10.1109/TVT.2016.2633068 – ident: ref3 doi: 10.1109/TIE.2018.2842777 – ident: ref24 doi: 10.1109/TII.2015.2462805 – ident: ref11 doi: 10.1109/TPEL.2011.2114676 – ident: ref20 doi: 10.1109/TIE.2008.917067 |
| SSID | ssj0014515 |
| Score | 2.6224592 |
| Snippet | Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11144 |
| SubjectTerms | Accuracy Analytical models Artificial intelligence Artificial neural networks Automation Buck converters Circuit design Computational modeling Deduction Design optimization Design parameters Electric vehicles evolutionary algorithm (EA) Genetic algorithms neural network (NN) Neural networks Optimization parameter design power converter Power converters Ripples |
| Title | Artificial-Intelligence-Based Design for Circuit Parameters of Power Converters |
| URI | https://ieeexplore.ieee.org/document/9457042 https://www.proquest.com/docview/2674075655 |
| Volume | 69 |
| WOSCitedRecordID | wos000808129100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qeNCDb7G-2IMXwbXJbuJmj1pbLEjtQcFb2CcUpJU-_P3ObtJSUQRvgexCMrOT-SYz8w3ApfJKaeU5lUwXNONMUsWNpOgqM8mdSm0RG4WfRL9fvL3JQQOul70wzrlYfOZuwmXM5duxmYdfZS2Z5QIP2RqsCSGqXq1lxiDLq2kFLDDGYtC3SEkmsvXS62AgyNIbjibFhfjmguJMlR8f4uhdujv_e65d2K5RJLmr1L4HDTfah60VbsEDeA43K3oI2lvh3aT36LcseYiVGwQhK2kPJ2Y-nJGBCoVagW2TjD0ZhPFppB2K0kPV5_QQXrudl_YjracnUMM5n1GTeu3Q2dtEuiS3GLjJQjOjEZJYaXJzi3Ex0wgQBC9UodJERTLBXCovjUfPdgTro_HIHQPJCu1lyrTUXmfc5YW13iTKovFqg3ioCa2FQEtTU4uHCRfvZQwxElmiCsqggrJWQROuljs-KlqNP9YeBJEv19XSbsLZQmdlbXfTkt0KfFEEqfnJ77tOYZOFBobYTXgG67PJ3J3DhvmcDaeTi3ikvgD8vMjJ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBt1ife_AiuDbZTUz2qFWxWGsPFbyFfUJBWunD3-_sJi2KIngLZBeSmZ3MN5mZbwDOpJNSScepYCqnCWeCSq4FRVeZCG5lbPLQKNzOOp389VV0F-Bi3gtjrQ3FZ_bSX4Zcvhnqqf9V1hBJmuEhW4SlNElYXHZrzXMGSVrOK2CeMxbDvllSMhKNXusOQ0EWX3I0Kp5l35xQmKry41Mc_Mv9xv-ebBPWKxxJrkvFb8GCHWzD2hd2wR149jdLggja-sK8SW_QcxlyG2o3CIJW0uyP9LQ_IV3pS7U83yYZOtL1A9RI05el-7rP8S683N_1mg-0mp9ANed8QnXslEV3byJho9Rg6CZyxbRCUGKETvUVRsZMIUTIeC5zGUcy0AmmQjqhHfq2PagNhgO7DyTJlRMxU0I5lXCb5sY4HUmD5qs0IqI6NGYCLXRFLu5nXLwVIciIRIEqKLwKikoFdTif73gviTX-WLvjRT5fV0m7DkcznRWV5Y0LdpXhiyJMTQ9-33UKKw-9p3bRbnUeD2GV-XaG0Ft4BLXJaGqPYVl_TPrj0Uk4Xp-aKMwQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial-Intelligence-Based+Design+for+Circuit+Parameters+of+Power+Converters&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Li%2C+Xinze&rft.au=Zhang%2C+Xin&rft.au=Lin%2C+Fanfan&rft.au=Blaabjerg%2C+Frede&rft.date=2022-11-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=11&rft.spage=11144&rft.epage=11155&rft_id=info:doi/10.1109%2FTIE.2021.3088377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2021_3088377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |