Artificial-Intelligence-Based Design for Circuit Parameters of Power Converters

Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters consists of two processes: analysis and deduction process and optimization process. The existing approaches for parameter design consist of tw...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 69; no. 11; pp. 11144 - 11155
Main Authors: Li, Xinze, Zhang, Xin, Lin, Fanfan, Blaabjerg, Frede
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0046, 1557-9948
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters consists of two processes: analysis and deduction process and optimization process. The existing approaches for parameter design consist of two types: traditional approach and computer-aided optimization (CAO) approach. In the traditional approaches, heavy human-dependence is required. Even though the emerging CAO approaches automate the optimization process, they still require manual analysis and deduction process. To mitigate human-dependence for the sake of high accuracy and easy implementation, an artificial-intelligence-based design (AI-D) approach is proposed in this article for the parameter design of power converters. In the proposed AI-D approach, to achieve automation in the analysis and deduction process, simulation tools and batch-normalization neural network (BN-NN) are adopted to build data-driven models for the optimization objectives and design constraints. Besides, to achieve automation in the optimization process, genetic algorithm is used to search for optimal design results. The proposed AI-D approach is validated in the circuit parameter design of the synchronous buck converter in the 48 to 12 V accessory-load power supply system in electric vehicle. The design case of an efficiency-optimal synchronous buck converter with constraints in volume, voltage ripple, and current ripple is provided. In the end of this article, feasibility and accuracy of the proposed AI-D approach have been validated by hardware experiments.
AbstractList Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters consists of two processes: analysis and deduction process and optimization process. The existing approaches for parameter design consist of two types: traditional approach and computer-aided optimization (CAO) approach. In the traditional approaches, heavy human-dependence is required. Even though the emerging CAO approaches automate the optimization process, they still require manual analysis and deduction process. To mitigate human-dependence for the sake of high accuracy and easy implementation, an artificial-intelligence-based design (AI-D) approach is proposed in this article for the parameter design of power converters. In the proposed AI-D approach, to achieve automation in the analysis and deduction process, simulation tools and batch-normalization neural network (BN-NN) are adopted to build data-driven models for the optimization objectives and design constraints. Besides, to achieve automation in the optimization process, genetic algorithm is used to search for optimal design results. The proposed AI-D approach is validated in the circuit parameter design of the synchronous buck converter in the 48 to 12 V accessory-load power supply system in electric vehicle. The design case of an efficiency-optimal synchronous buck converter with constraints in volume, voltage ripple, and current ripple is provided. In the end of this article, feasibility and accuracy of the proposed AI-D approach have been validated by hardware experiments.
Author Zhang, Xin
Lin, Fanfan
Blaabjerg, Frede
Li, Xinze
Author_xml – sequence: 1
  givenname: Xinze
  orcidid: 0000-0003-3513-209X
  surname: Li
  fullname: Li, Xinze
  email: xinze001@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-4968-2722
  surname: Zhang
  fullname: Zhang, Xin
  email: zhangxin_ieee@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Fanfan
  orcidid: 0000-0002-5562-2478
  surname: Lin
  fullname: Lin, Fanfan
  email: fanfan001@e.ntu.edu.sg
  organization: ERI@N, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
– sequence: 4
  givenname: Frede
  orcidid: 0000-0001-8311-7412
  surname: Blaabjerg
  fullname: Blaabjerg, Frede
  email: fbl@et.aau.dk
  organization: Department of Energy Technology, Aalborg University, Aalborg, Denmark
BookMark eNp9kMFLwzAUh4NMcJveBS8Fz50vSdM0xzmnDgbbYZ5Lmr6OjK6ZSab439sx8eDB04P3ft_vwTcig851SMgthQmloB42i_mEAaMTDkXBpbwgQyqETJXKigEZApNFCpDlV2QUwg6AZoKKIVlNfbSNNVa36aKL2LZ2i53B9FEHrJMnDHbbJY3zycx6c7QxWWuv9xjRh8Q1ydp9Yn9z3Qf60-6aXDa6DXjzM8fk7Xm-mb2my9XLYjZdpoZzHlNDmwqBihoUgqgzkKqomKlyrmplhMlzBaySBZO80IWmoBmTigmlG2UaDnxM7s-9B-_ejxhiuXNH3_UvS5bLvk_kQvSp_Jwy3oXgsSmNjTpa10WvbVtSKE_yyl5eeZJX_sjrQfgDHrzda__1H3J3Riwi_sZVJiRkjH8D4-F7Eg
CODEN ITIED6
CitedBy_id crossref_primary_10_1049_pel2_70013
crossref_primary_10_1109_TIE_2023_3265027
crossref_primary_10_3390_math12213305
crossref_primary_10_1109_TPEL_2024_3381431
crossref_primary_10_1016_j_ijepes_2024_109967
crossref_primary_10_3390_math11244990
crossref_primary_10_1109_TIE_2024_3454408
crossref_primary_10_3390_designs6040068
crossref_primary_10_1016_j_compeleceng_2024_109731
crossref_primary_10_1109_TPEL_2025_3555147
crossref_primary_10_3390_electronics12234828
crossref_primary_10_1109_TIA_2024_3429455
crossref_primary_10_1109_TPEL_2024_3378184
crossref_primary_10_1007_s13762_024_05725_2
crossref_primary_10_1109_TIE_2024_3352119
crossref_primary_10_1109_JESTPE_2022_3185090
crossref_primary_10_3390_en16186690
crossref_primary_10_3390_ma18081687
crossref_primary_10_1109_TIE_2024_3406858
crossref_primary_10_1109_ACCESS_2023_3332764
crossref_primary_10_1109_OJPEL_2025_3567148
crossref_primary_10_1177_18724981251355872
crossref_primary_10_1109_TIA_2021_3136501
crossref_primary_10_1109_JESTPE_2024_3392684
crossref_primary_10_1109_TIA_2022_3227137
crossref_primary_10_1007_s00202_024_02772_3
crossref_primary_10_1109_TPEL_2024_3396504
crossref_primary_10_1109_TTE_2023_3336288
crossref_primary_10_3390_inventions8010041
crossref_primary_10_3390_math11102384
crossref_primary_10_1007_s00521_024_10293_0
crossref_primary_10_3390_en18081931
crossref_primary_10_1109_JESTPE_2023_3300077
crossref_primary_10_1002_cta_3890
Cites_doi 10.1109/TIE.2018.2835413
10.1109/TPEL.2016.2619690
10.1109/TIE.2012.2224072
10.1109/TII.2020.3025204
10.1109/TIE.2020.3048283
10.1109/TPEL.2018.2799680
10.1109/TIE.2019.2956396
10.1109/JPROC.2020.3031041
10.1109/TVT.2016.2570817
10.4271/2016-01-1247
10.1109/TNNLS.2018.2876179
10.1007/978-1-4615-7646-4
10.1109/TIE.2019.2896235
10.1109/TNNLS.2019.2899744
10.1109/TPEL.2021.3059852
10.1109/TIE.2019.2891466
10.1109/TIE.2014.2336605
10.1109/TIE.2019.2937071
10.1002/9781118824603.ch03
10.1016/j.neucom.2021.03.077
10.1002/9781119183723
10.1109/TIE.2009.2030219
10.1109/TPEL.2015.2397311
10.1109/TIE.2020.3038064
10.1109/TIE.2020.2987275
10.1109/TIA.2019.2938149
10.1109/TIE.2009.2032195
10.1109/ACCESS.2020.3034361
10.1109/TIE.2017.2784344
10.1109/TIE.2012.2227897
10.1109/TIE.2016.2618882
10.1109/TPEL.2003.810866
10.1109/TPEL.2004.833453
10.1109/TVT.2016.2633068
10.1109/TIE.2018.2842777
10.1109/TII.2015.2462805
10.1109/TPEL.2011.2114676
10.1109/TIE.2008.917067
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2021.3088377
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 11155
ExternalDocumentID 10_1109_TIE_2021_3088377
9457042
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 52177198
  funderid: 10.13039/501100001809
– fundername: Delta Research and Education
  grantid: DREG2021002
– fundername: Cao Guangbiao High-tech Development Fund
  grantid: 2020QN012
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c333t-c1fbe015d09e05d40798b2cb639d9c5c66902b782738a8a10a2279259af9cf303
IEDL.DBID RIE
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808129100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:16:59 EDT 2025
Tue Nov 18 21:15:21 EST 2025
Sat Nov 29 01:31:52 EST 2025
Wed Aug 27 02:24:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-c1fbe015d09e05d40798b2cb639d9c5c66902b782738a8a10a2279259af9cf303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8311-7412
0000-0002-4968-2722
0000-0003-3513-209X
0000-0002-5562-2478
OpenAccessLink http://www.scopus.com/inward/record.url?scp=85112590693&partnerID=8YFLogxK
PQID 2674075655
PQPubID 85464
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TIE_2021_3088377
crossref_primary_10_1109_TIE_2021_3088377
ieee_primary_9457042
proquest_journals_2674075655
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/TIE.2018.2835413
– ident: ref25
  doi: 10.1109/TPEL.2016.2619690
– ident: ref16
  doi: 10.1109/TIE.2012.2224072
– ident: ref26
  doi: 10.1109/TII.2020.3025204
– ident: ref19
  doi: 10.1109/TIE.2020.3048283
– ident: ref13
  doi: 10.1109/TPEL.2018.2799680
– ident: ref1
  doi: 10.1109/TIE.2019.2956396
– ident: ref7
  doi: 10.1109/JPROC.2020.3031041
– ident: ref32
  doi: 10.1109/TVT.2016.2570817
– ident: ref35
  doi: 10.4271/2016-01-1247
– ident: ref28
  doi: 10.1109/TNNLS.2018.2876179
– ident: ref34
  doi: 10.1007/978-1-4615-7646-4
– ident: ref23
  doi: 10.1109/TIE.2019.2896235
– ident: ref27
  doi: 10.1109/TNNLS.2019.2899744
– ident: ref4
  doi: 10.1109/TPEL.2021.3059852
– ident: ref12
  doi: 10.1109/TIE.2019.2891466
– ident: ref37
  doi: 10.1109/TIE.2014.2336605
– ident: ref10
  doi: 10.1109/TIE.2019.2937071
– ident: ref38
  doi: 10.1002/9781118824603.ch03
– ident: ref29
  doi: 10.1016/j.neucom.2021.03.077
– ident: ref33
  doi: 10.1002/9781119183723
– ident: ref21
  doi: 10.1109/TIE.2009.2030219
– ident: ref14
  doi: 10.1109/TPEL.2015.2397311
– ident: ref17
  doi: 10.1109/TIE.2020.3038064
– ident: ref6
  doi: 10.1109/TIE.2020.2987275
– ident: ref36
  doi: 10.1109/TIA.2019.2938149
– ident: ref5
  doi: 10.1109/TIE.2009.2032195
– ident: ref8
  doi: 10.1109/ACCESS.2020.3034361
– ident: ref30
  doi: 10.1109/TIE.2017.2784344
– ident: ref9
  doi: 10.1109/TIE.2012.2227897
– ident: ref18
  doi: 10.1109/TIE.2016.2618882
– ident: ref22
  doi: 10.1109/TPEL.2003.810866
– ident: ref2
  doi: 10.1109/TPEL.2004.833453
– ident: ref31
  doi: 10.1109/TVT.2016.2633068
– ident: ref3
  doi: 10.1109/TIE.2018.2842777
– ident: ref24
  doi: 10.1109/TII.2015.2462805
– ident: ref11
  doi: 10.1109/TPEL.2011.2114676
– ident: ref20
  doi: 10.1109/TIE.2008.917067
SSID ssj0014515
Score 2.6224592
Snippet Parameter design is significant in ensuring a satisfactory holistic performance of power converters. Generally, circuit parameter design for power converters...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11144
SubjectTerms Accuracy
Analytical models
Artificial intelligence
Artificial neural networks
Automation
Buck converters
Circuit design
Computational modeling
Deduction
Design optimization
Design parameters
Electric vehicles
evolutionary algorithm (EA)
Genetic algorithms
neural network (NN)
Neural networks
Optimization
parameter design
power converter
Power converters
Ripples
Title Artificial-Intelligence-Based Design for Circuit Parameters of Power Converters
URI https://ieeexplore.ieee.org/document/9457042
https://www.proquest.com/docview/2674075655
Volume 69
WOSCitedRecordID wos000808129100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qeNCDb7G-2IMXwbXJbuJmj1pbLEjtQcFb2CcUpJU-_P3ObtJSUQRvgexCMrOT-SYz8w3ApfJKaeU5lUwXNONMUsWNpOgqM8mdSm0RG4WfRL9fvL3JQQOul70wzrlYfOZuwmXM5duxmYdfZS2Z5QIP2RqsCSGqXq1lxiDLq2kFLDDGYtC3SEkmsvXS62AgyNIbjibFhfjmguJMlR8f4uhdujv_e65d2K5RJLmr1L4HDTfah60VbsEDeA43K3oI2lvh3aT36LcseYiVGwQhK2kPJ2Y-nJGBCoVagW2TjD0ZhPFppB2K0kPV5_QQXrudl_YjracnUMM5n1GTeu3Q2dtEuiS3GLjJQjOjEZJYaXJzi3Ex0wgQBC9UodJERTLBXCovjUfPdgTro_HIHQPJCu1lyrTUXmfc5YW13iTKovFqg3ioCa2FQEtTU4uHCRfvZQwxElmiCsqggrJWQROuljs-KlqNP9YeBJEv19XSbsLZQmdlbXfTkt0KfFEEqfnJ77tOYZOFBobYTXgG67PJ3J3DhvmcDaeTi3ikvgD8vMjJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBt1ife_AiuDbZTUz2qFWxWGsPFbyFfUJBWunD3-_sJi2KIngLZBeSmZ3MN5mZbwDOpJNSScepYCqnCWeCSq4FRVeZCG5lbPLQKNzOOp389VV0F-Bi3gtjrQ3FZ_bSX4Zcvhnqqf9V1hBJmuEhW4SlNElYXHZrzXMGSVrOK2CeMxbDvllSMhKNXusOQ0EWX3I0Kp5l35xQmKry41Mc_Mv9xv-ebBPWKxxJrkvFb8GCHWzD2hd2wR149jdLggja-sK8SW_QcxlyG2o3CIJW0uyP9LQ_IV3pS7U83yYZOtL1A9RI05el-7rP8S683N_1mg-0mp9ANed8QnXslEV3byJho9Rg6CZyxbRCUGKETvUVRsZMIUTIeC5zGUcy0AmmQjqhHfq2PagNhgO7DyTJlRMxU0I5lXCb5sY4HUmD5qs0IqI6NGYCLXRFLu5nXLwVIciIRIEqKLwKikoFdTif73gviTX-WLvjRT5fV0m7DkcznRWV5Y0LdpXhiyJMTQ9-33UKKw-9p3bRbnUeD2GV-XaG0Ft4BLXJaGqPYVl_TPrj0Uk4Xp-aKMwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial-Intelligence-Based+Design+for+Circuit+Parameters+of+Power+Converters&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Li%2C+Xinze&rft.au=Zhang%2C+Xin&rft.au=Lin%2C+Fanfan&rft.au=Blaabjerg%2C+Frede&rft.date=2022-11-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=11&rft.spage=11144&rft.epage=11155&rft_id=info:doi/10.1109%2FTIE.2021.3088377&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2021_3088377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon