Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms

•A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume indicator.•This indicator incorporates DM’s preferences into automatic algorithm configuration.•We demonstrate the effectiveness of our appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 289; H. 3; S. 1209 - 1222
Hauptverfasser: Diaz, Juan Esteban, López-Ibáñez, Manuel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 16.03.2021
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume indicator.•This indicator incorporates DM’s preferences into automatic algorithm configuration.•We demonstrate the effectiveness of our approach on a complex real-world problem. Automatic configuration (AC) methods are increasingly used to tune and design optimisation algorithms for problems with multiple objectives. Most AC methods use unary quality indicators, which assign a single scalar value to an approximation to the Pareto front, to compare the performance of different optimisers. These quality indicators, however, imply preferences beyond Pareto-optimality that may differ from those of the decision maker (DM). Although it is possible to incorporate DM’s preferences into quality indicators, e.g., by means of the weighted hypervolume indicator (HVw), expressing preferences in terms of weight function is not always intuitive nor an easy task for a DM, in particular, when comparing the stochastic outcomes of several algorithm configurations. A more visual approach to compare such outcomes is the visualisation of their empirical attainment functions (EAFs) differences. This paper proposes using such visualisations as a way of eliciting information about regions of the objective space that are preferred by the DM. We present a method to convert the information about EAF differences into a HVw that will assign higher quality values to approximation fronts that result in EAF differences preferred by the DM. We show that the resulting HVw may be used by an AC method to guide the configuration of multi-objective optimisers according to the preferences of the DM. We evaluate the proposed approach on a well-known benchmark problem. Finally, we apply our approach to re-configuring, according to different DM’s preferences, a multi-objective optimiser tackling a real-world production planning problem arising in the manufacturing industry.
AbstractList •A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume indicator.•This indicator incorporates DM’s preferences into automatic algorithm configuration.•We demonstrate the effectiveness of our approach on a complex real-world problem. Automatic configuration (AC) methods are increasingly used to tune and design optimisation algorithms for problems with multiple objectives. Most AC methods use unary quality indicators, which assign a single scalar value to an approximation to the Pareto front, to compare the performance of different optimisers. These quality indicators, however, imply preferences beyond Pareto-optimality that may differ from those of the decision maker (DM). Although it is possible to incorporate DM’s preferences into quality indicators, e.g., by means of the weighted hypervolume indicator (HVw), expressing preferences in terms of weight function is not always intuitive nor an easy task for a DM, in particular, when comparing the stochastic outcomes of several algorithm configurations. A more visual approach to compare such outcomes is the visualisation of their empirical attainment functions (EAFs) differences. This paper proposes using such visualisations as a way of eliciting information about regions of the objective space that are preferred by the DM. We present a method to convert the information about EAF differences into a HVw that will assign higher quality values to approximation fronts that result in EAF differences preferred by the DM. We show that the resulting HVw may be used by an AC method to guide the configuration of multi-objective optimisers according to the preferences of the DM. We evaluate the proposed approach on a well-known benchmark problem. Finally, we apply our approach to re-configuring, according to different DM’s preferences, a multi-objective optimiser tackling a real-world production planning problem arising in the manufacturing industry.
Author Diaz, Juan Esteban
López-Ibáñez, Manuel
Author_xml – sequence: 1
  givenname: Juan Esteban
  surname: Diaz
  fullname: Diaz, Juan Esteban
  email: jediaz@usfq.edu.ec
  organization: USFQ Business School, Universidad San Francisco de Quito, Ecuador
– sequence: 2
  givenname: Manuel
  surname: López-Ibáñez
  fullname: López-Ibáñez, Manuel
  email: manuel.lopez-ibanez@manchester.ac.uk
  organization: Alliance Manchester Business School, University of Manchester, UK
BookMark eNp90MFu1DAQxnELFYlt4QU4-QUSxnYTpxIXVAGtVIkLnC1nPNlO2Ngr21uJG6_B6_EkJCwnDj35YP1G-v6X4iKmSEK8VdAqUP27uaU55VaDhhZsC93NC7FTg9VNP_RwIXZgrG20VvaVuCxlBgDVqW4nTvcRUz6m7CvHvQyEXDjFZvHfKf_--avIY6aJMkWkIjnWJOsjSX-qaVkJSkxx4v1p8ynKNMmRmzTOhJWfSKZj5YXL-dMf9ilzfVzKa_Fy8odCb_69V-Lbp49fb--ahy-f728_PDRojKkNQqeAwgjWjjZosAbIX4ceUFtSkw3WoOrN9c3kkUYclEWyxusOB08YgrkS-nwXcyplHeKOmReffzgFbgvnZreFc1s4B9at4VY0_IeQ698FNXs-PE_fnymto56YsivIW7rAeS3iQuLn-B_TxZGC
CitedBy_id crossref_primary_10_1109_TASE_2023_3300922
crossref_primary_10_1016_j_asoc_2024_112614
crossref_primary_10_1109_TII_2021_3128405
crossref_primary_10_1016_j_eswa_2023_120891
crossref_primary_10_1016_j_eswa_2023_121570
crossref_primary_10_1016_j_ejor_2025_07_024
Cites_doi 10.1109/TEVC.2015.2474158
10.1016/j.tcs.2011.03.012
10.1109/TEVC.2011.2182651
10.1162/evco_a_00263
10.1016/j.cor.2010.10.008
10.1109/MCI.2006.1597059
10.1016/j.ejor.2014.10.062
10.1007/s10479-007-0230-0
10.1109/4235.797969
10.1016/j.ejor.2018.06.009
10.1016/j.orp.2016.09.002
10.1109/TEVC.2003.810758
10.1007/s10852-005-9034-x
10.1371/journal.pone.0136406
10.1155/2014/569346
10.1016/j.ejor.2017.10.062
10.1002/mcda.1502
10.1016/j.cor.2016.06.020
10.1007/s10732-009-9103-9
10.1007/s10472-011-9235-0
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2020.07.059
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 1222
ExternalDocumentID 10_1016_j_ejor_2020_07_059
S0377221720306858
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c333t-c0510edb077b7d20730ea4d60c27e1f7d73c16349facebc817ce73a25c8aecdd3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596436100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 07:18:55 EST 2025
Tue Nov 18 21:24:21 EST 2025
Fri Feb 23 02:46:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Automatic algorithm design and configuration
Decision maker’s preferences
Metaheuristics
Multi-objective optimisation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-c0510edb077b7d20730ea4d60c27e1f7d73c16349facebc817ce73a25c8aecdd3
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_ejor_2020_07_059
crossref_citationtrail_10_1016_j_ejor_2020_07_059
elsevier_sciencedirect_doi_10_1016_j_ejor_2020_07_059
PublicationCentury 2000
PublicationDate 2021-03-16
PublicationDateYYYYMMDD 2021-03-16
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-16
  day: 16
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Diaz, Handl, Xu (bib0012) 2017; 79
Grunert da Fonseca, Fonseca, Hall (bib0021) 2001; vol. 1993
Fonseca, Guerreiro, López-Ibáñez, Paquete (bib0019) 2011; 6576
Dubois-Lacoste, López-Ibáñez, Stützle (bib0016) 2015; 243
Fonseca, Fleming (bib0017) 1996; vol. 1141
Brockhoff, Bader, Thiele, Zitzler (bib0008) 2013; 20
Paquete, Schiavinotto, Stützle (bib0034) 2007; 156
Bezerra, López-Ibáñez, Stützle (bib0003) 2016; 20
Jaszkiewicz, Ishibuchi, Zhang (bib0024) 2011; vol. 379
Dubois-Lacoste, López-Ibáñez, Stützle (bib0014) 2011; 38
Diaz, Handl, Xu (bib0013) 2018; 266
Bezerra, López-Ibáñez, Stützle (bib0005) 2020; 28
Blot, Hoos, Jourdan, Kessaci-Marmion, Trautmann (bib0007) 2016; vol. 10079
Fonseca, Grunert da Fonseca, Paquete (bib0018) 2005; vol. 3410
Trianni, López-Ibáñez (bib0037) 2015; 10
Bezerra, López-Ibáñez, Stützle (bib0004) 2020
Miettinen (bib0033) 1999
Auger, Bader, Brockhoff, Zitzler (bib0002) 2012; 425
Coello Coello (bib0009) 2006; 1
Knowles, Thiele, Zitzler (bib0027) 2006
R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical ComputingVienna, Austria.
Hoos (bib0022) 2012
Knowles, Corne (bib0026) 2005; vol. 166
Dubois-Lacoste, López-Ibáñez, Stützle (bib0015) 2011; 61
Radulescu, López-Ibáñez, Stützle (bib0035) 2013; vol. 7811
Auger, Bader, Brockhoff, Zitzler (bib0001) 2009
Zitzler, Thiele, Laumanns, Fonseca, Grunert da Fonseca (bib0043) 2003; 7
López-Ibáñez, Dubois-Lacoste, Pérez Cáceres, Stützle, Birattari (bib0028) 2016; 3
Lust, Teghem (bib0032) 2010; 16
.
Grunert da Fonseca, Fonseca (bib0020) 2010
Deb (bib0011) 2001
Knowles (bib0025) 2005
López-Ibáñez, Paquete, Stützle (bib0030) 2010
Zitzler, Knowles, Thiele (bib0041) 2008; vol. 5252
Zitzler, Thiele (bib0042) 1999; 3
López-Ibáñez, Stützle (bib0031) 2012; 16
Birattari (bib0006) 2009; 197
Coello Coello (bib0010) 2015
Tušar, Filipič (bib0038) 2014; 2014
López-Ibáñez, Paquete, Stützle (bib0029) 2006; 5
Zhang, Georgiopoulos, Anagnostopoulos (bib0039) 2015
Jaszkiewicz (bib0023) 2018; 271
Zitzler, Brockhoff, Thiele (bib0040) 2007; vol. 4403
Zitzler (10.1016/j.ejor.2020.07.059_bib0043) 2003; 7
Bezerra (10.1016/j.ejor.2020.07.059_bib0004) 2020
Coello Coello (10.1016/j.ejor.2020.07.059_bib0009) 2006; 1
Zhang (10.1016/j.ejor.2020.07.059_bib0039) 2015
Knowles (10.1016/j.ejor.2020.07.059_bib0026) 2005; vol. 166
Trianni (10.1016/j.ejor.2020.07.059_bib0037) 2015; 10
Diaz (10.1016/j.ejor.2020.07.059_bib0012) 2017; 79
Auger (10.1016/j.ejor.2020.07.059_bib0002) 2012; 425
Bezerra (10.1016/j.ejor.2020.07.059_bib0003) 2016; 20
Brockhoff (10.1016/j.ejor.2020.07.059_bib0008) 2013; 20
Knowles (10.1016/j.ejor.2020.07.059_sbref0027) 2006
López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0030) 2010
Tušar (10.1016/j.ejor.2020.07.059_sbref0037) 2014; 2014
Dubois-Lacoste (10.1016/j.ejor.2020.07.059_bib0014) 2011; 38
Jaszkiewicz (10.1016/j.ejor.2020.07.059_bib0023) 2018; 271
Zitzler (10.1016/j.ejor.2020.07.059_bib0042) 1999; 3
Dubois-Lacoste (10.1016/j.ejor.2020.07.059_bib0015) 2011; 61
Zitzler (10.1016/j.ejor.2020.07.059_bib0041) 2008; vol. 5252
Fonseca (10.1016/j.ejor.2020.07.059_bib0018) 2005; vol. 3410
Blot (10.1016/j.ejor.2020.07.059_bib0007) 2016; vol. 10079
Hoos (10.1016/j.ejor.2020.07.059_bib0022) 2012
Auger (10.1016/j.ejor.2020.07.059_bib0001) 2009
López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0028) 2016; 3
Fonseca (10.1016/j.ejor.2020.07.059_bib0019) 2011; 6576
Knowles (10.1016/j.ejor.2020.07.059_bib0025) 2005
Zitzler (10.1016/j.ejor.2020.07.059_bib0040) 2007; vol. 4403
Grunert da Fonseca (10.1016/j.ejor.2020.07.059_bib0020) 2010
López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0031) 2012; 16
Diaz (10.1016/j.ejor.2020.07.059_bib0013) 2018; 266
Jaszkiewicz (10.1016/j.ejor.2020.07.059_bib0024) 2011; vol. 379
Deb (10.1016/j.ejor.2020.07.059_bib0011) 2001
Paquete (10.1016/j.ejor.2020.07.059_bib0034) 2007; 156
Birattari (10.1016/j.ejor.2020.07.059_bib0006) 2009; 197
Fonseca (10.1016/j.ejor.2020.07.059_bib0017) 1996; vol. 1141
Bezerra (10.1016/j.ejor.2020.07.059_bib0005) 2020; 28
10.1016/j.ejor.2020.07.059_bib0036
Grunert da Fonseca (10.1016/j.ejor.2020.07.059_bib0021) 2001; vol. 1993
Lust (10.1016/j.ejor.2020.07.059_bib0032) 2010; 16
López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0029) 2006; 5
Miettinen (10.1016/j.ejor.2020.07.059_bib0033) 1999
Radulescu (10.1016/j.ejor.2020.07.059_bib0035) 2013; vol. 7811
Coello Coello (10.1016/j.ejor.2020.07.059_bib0010) 2015
Dubois-Lacoste (10.1016/j.ejor.2020.07.059_bib0016) 2015; 243
References_xml – start-page: 69
  year: 2020
  end-page: 92
  ident: bib0004
  article-title: Automatic configuration of multi-objective optimizers and multi-objective configuration
  publication-title: High-performance simulation-based optimization
– volume: vol. 1993
  start-page: 213
  year: 2001
  end-page: 225
  ident: bib0021
  article-title: Inferential performance assessment of stochastic optimisers and the attainment function
  publication-title: Evolutionary multi-criterion optimization, EMO 2001
– volume: 20
  start-page: 291
  year: 2013
  end-page: 317
  ident: bib0008
  article-title: Directed multiobjective optimization based on the weighted hypervolume indicator
  publication-title: Journal of Multi-Criteria Decision Analysis
– start-page: 552
  year: 2005
  end-page: 557
  ident: bib0025
  article-title: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
  publication-title: Proceedings of the 5th international conference on intelligent systems design and applications
– volume: 3
  start-page: 43
  year: 2016
  end-page: 58
  ident: bib0028
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
– year: 1999
  ident: bib0033
  article-title: Nonlinear multiobjective optimization
– volume: 6576
  start-page: 106
  year: 2011
  end-page: 120
  ident: bib0019
  article-title: On the computation of the empirical attainment function
  publication-title: Evolutionary multi-criterion optimization, EMO
– year: 2006
  ident: bib0027
  article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers
  publication-title: TIK-Report 214
– volume: 197
  year: 2009
  ident: bib0006
  article-title: Tuning Metaheuristics: A Machine Learning Perspective
  publication-title: Studies in Computational Intelligence
– volume: vol. 10079
  start-page: 32
  year: 2016
  end-page: 47
  ident: bib0007
  article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework
  publication-title: Proceedings of the 10th international conference on learning and intelligent optimization LION 10
– volume: 266
  start-page: 976
  year: 2018
  end-page: 989
  ident: bib0013
  article-title: Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system
  publication-title: European Journal of Operational Research
– volume: 2014
  year: 2014
  ident: bib0038
  article-title: Visualizing exact and approximated 3D empirical attainment functions
  publication-title: Mathematical Problems in Engineering
– volume: vol. 1141
  start-page: 584
  year: 1996
  end-page: 593
  ident: bib0017
  article-title: On the performance assessment and comparison of stochastic multiobjective optimizers
  publication-title: Parallel problem solving from nature, PPSN IV
– volume: 79
  start-page: 266
  year: 2017
  end-page: 278
  ident: bib0012
  article-title: Evolutionary robust optimization in production planning: interactions between number of objectives, sample size and choice of robustness measure
  publication-title: Computers & Operations Research
– volume: 38
  start-page: 1219
  year: 2011
  end-page: 1236
  ident: bib0014
  article-title: A hybrid TP + PLS algorithm for bi-objective flow-shop scheduling problems
  publication-title: Computers & Operations Research
– volume: 61
  start-page: 125
  year: 2011
  end-page: 154
  ident: bib0015
  article-title: Improving the anytime behavior of two-phase local search
  publication-title: Annals of Mathematics and Artificial Intelligence
– start-page: 37
  year: 2012
  end-page: 71
  ident: bib0022
  article-title: Automated algorithm configuration and parameter tuning
  publication-title: Autonomous search
– volume: 16
  start-page: 861
  year: 2012
  end-page: 875
  ident: bib0031
  article-title: The automatic design of multi-objective ant colony optimization algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 3
  year: 2015
  end-page: 18
  ident: bib0010
  article-title: Multi-objective evolutionary algorithms in real-world applications: Some recent results and current challenges
  publication-title: Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib0043
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 16
  start-page: 475
  year: 2010
  end-page: 510
  ident: bib0032
  article-title: Two-phase Pareto local search for the biobjective traveling salesman problem
  publication-title: Journal of Heuristics
– start-page: 1383
  year: 2015
  end-page: 1390
  ident: bib0039
  article-title: SPRINT: Multi-objective model racing
  publication-title: Proceedings of the genetic and evolutionary computation conference, GECCO
– volume: vol. 166
  start-page: 313
  year: 2005
  end-page: 352
  ident: bib0026
  article-title: Memetic algorithms for multiobjective optimization: issues, methods and prospects
  publication-title: Recent advances in memetic algorithms
– volume: 10
  start-page: e0136406
  year: 2015
  ident: bib0037
  article-title: Advantages of task-specific multi-objective optimisation in evolutionary robotics
  publication-title: PLoS One
– volume: vol. 5252
  start-page: 373
  year: 2008
  end-page: 404
  ident: bib0041
  article-title: Quality assessment of Pareto set approximations
  publication-title: Multi-objective optimization: Interactive and evolutionary approaches
– start-page: 209
  year: 2010
  end-page: 222
  ident: bib0030
  article-title: Exploratory analysis of stochastic local search algorithms in biobjective optimization
  publication-title: Experimental methods for the analysis of optimization algorithms
– volume: vol. 379
  start-page: 201
  year: 2011
  end-page: 217
  ident: bib0024
  article-title: Multiobjective memetic algorithms
  publication-title: Handbook of memetic algorithms
– reference: R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical ComputingVienna, Austria.
– volume: 271
  start-page: 1001
  year: 2018
  end-page: 1013
  ident: bib0023
  article-title: Many-objective Pareto local search
  publication-title: European Journal of Operational Research
– start-page: 103
  year: 2010
  end-page: 130
  ident: bib0020
  article-title: The attainment-function approach to stochastic multiobjective optimizer assessment and comparison
  publication-title: Experimental methods for the analysis of optimization algorithms
– reference: .
– start-page: 555
  year: 2009
  end-page: 562
  ident: bib0001
  article-title: Articulating user preferences in many-objective problems by sampling the weighted hypervolume
  publication-title: Proceedings of the genetic and evolutionary computation conference, GECCO
– volume: vol. 7811
  start-page: 825
  year: 2013
  end-page: 840
  ident: bib0035
  article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms
  publication-title: Evolutionary multi-criterion optimization, EMO
– volume: 5
  start-page: 111
  year: 2006
  end-page: 137
  ident: bib0029
  article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem
  publication-title: Journal of Mathematical Modelling and Algorithms
– volume: vol. 4403
  start-page: 862
  year: 2007
  end-page: 876
  ident: bib0040
  article-title: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration
  publication-title: Evolutionary multi-criterion optimization, EMO
– year: 2001
  ident: bib0011
  article-title: Multi-objective optimization using evolutionary algorithms
– volume: 425
  start-page: 75
  year: 2012
  end-page: 103
  ident: bib0002
  article-title: Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications
  publication-title: Theoretical Computer Science
– volume: 28
  start-page: 195
  year: 2020
  end-page: 226
  ident: bib0005
  article-title: Automatically designing state-of-the-art multi- and many-objective evolutionary algorithms
  publication-title: Evolutionary Computation
– volume: 243
  start-page: 369
  year: 2015
  end-page: 385
  ident: bib0016
  article-title: Anytime Pareto local search
  publication-title: European Journal of Operational Research
– volume: 20
  start-page: 403
  year: 2016
  end-page: 417
  ident: bib0003
  article-title: Automatic component-wise design of multi-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: vol. 3410
  start-page: 250
  year: 2005
  end-page: 264
  ident: bib0018
  article-title: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function
  publication-title: Evolutionary multi-criterion optimization, EMO 2005
– volume: 156
  start-page: 83
  year: 2007
  end-page: 97
  ident: bib0034
  article-title: On local optima in multiobjective combinatorial optimization problems
  publication-title: Annals of Operations Research
– volume: 1
  start-page: 28
  year: 2006
  end-page: 36
  ident: bib0009
  article-title: Evolutionary multi-objective optimization: a historical view of the field
  publication-title: IEEE Computational Intelligence Magazine
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0042
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 403
  year: 2016
  ident: 10.1016/j.ejor.2020.07.059_bib0003
  article-title: Automatic component-wise design of multi-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2474158
– volume: vol. 1993
  start-page: 213
  year: 2001
  ident: 10.1016/j.ejor.2020.07.059_bib0021
  article-title: Inferential performance assessment of stochastic optimisers and the attainment function
– volume: vol. 7811
  start-page: 825
  year: 2013
  ident: 10.1016/j.ejor.2020.07.059_bib0035
  article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms
– volume: 425
  start-page: 75
  year: 2012
  ident: 10.1016/j.ejor.2020.07.059_bib0002
  article-title: Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2011.03.012
– volume: 197
  year: 2009
  ident: 10.1016/j.ejor.2020.07.059_bib0006
  article-title: Tuning Metaheuristics: A Machine Learning Perspective
– volume: 16
  start-page: 861
  year: 2012
  ident: 10.1016/j.ejor.2020.07.059_bib0031
  article-title: The automatic design of multi-objective ant colony optimization algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2182651
– volume: 28
  start-page: 195
  year: 2020
  ident: 10.1016/j.ejor.2020.07.059_bib0005
  article-title: Automatically designing state-of-the-art multi- and many-objective evolutionary algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco_a_00263
– volume: 38
  start-page: 1219
  year: 2011
  ident: 10.1016/j.ejor.2020.07.059_bib0014
  article-title: A hybrid TP + PLS algorithm for bi-objective flow-shop scheduling problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2010.10.008
– volume: vol. 3410
  start-page: 250
  year: 2005
  ident: 10.1016/j.ejor.2020.07.059_bib0018
  article-title: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function
– volume: 1
  start-page: 28
  year: 2006
  ident: 10.1016/j.ejor.2020.07.059_bib0009
  article-title: Evolutionary multi-objective optimization: a historical view of the field
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.1597059
– volume: 243
  start-page: 369
  year: 2015
  ident: 10.1016/j.ejor.2020.07.059_bib0016
  article-title: Anytime Pareto local search
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.10.062
– volume: 156
  start-page: 83
  year: 2007
  ident: 10.1016/j.ejor.2020.07.059_bib0034
  article-title: On local optima in multiobjective combinatorial optimization problems
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-007-0230-0
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.ejor.2020.07.059_bib0042
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: vol. 4403
  start-page: 862
  year: 2007
  ident: 10.1016/j.ejor.2020.07.059_bib0040
  article-title: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration
– year: 2001
  ident: 10.1016/j.ejor.2020.07.059_bib0011
– volume: vol. 166
  start-page: 313
  year: 2005
  ident: 10.1016/j.ejor.2020.07.059_bib0026
  article-title: Memetic algorithms for multiobjective optimization: issues, methods and prospects
– volume: 271
  start-page: 1001
  year: 2018
  ident: 10.1016/j.ejor.2020.07.059_bib0023
  article-title: Many-objective Pareto local search
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.06.009
– volume: 3
  start-page: 43
  year: 2016
  ident: 10.1016/j.ejor.2020.07.059_bib0028
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2016.09.002
– volume: 7
  start-page: 117
  year: 2003
  ident: 10.1016/j.ejor.2020.07.059_bib0043
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– start-page: 103
  year: 2010
  ident: 10.1016/j.ejor.2020.07.059_bib0020
  article-title: The attainment-function approach to stochastic multiobjective optimizer assessment and comparison
– year: 2006
  ident: 10.1016/j.ejor.2020.07.059_sbref0027
  article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers
– year: 1999
  ident: 10.1016/j.ejor.2020.07.059_bib0033
– volume: 6576
  start-page: 106
  year: 2011
  ident: 10.1016/j.ejor.2020.07.059_bib0019
  article-title: On the computation of the empirical attainment function
– ident: 10.1016/j.ejor.2020.07.059_bib0036
– start-page: 3
  year: 2015
  ident: 10.1016/j.ejor.2020.07.059_bib0010
  article-title: Multi-objective evolutionary algorithms in real-world applications: Some recent results and current challenges
– start-page: 209
  year: 2010
  ident: 10.1016/j.ejor.2020.07.059_bib0030
  article-title: Exploratory analysis of stochastic local search algorithms in biobjective optimization
– start-page: 69
  year: 2020
  ident: 10.1016/j.ejor.2020.07.059_bib0004
  article-title: Automatic configuration of multi-objective optimizers and multi-objective configuration
– start-page: 1383
  year: 2015
  ident: 10.1016/j.ejor.2020.07.059_bib0039
  article-title: SPRINT: Multi-objective model racing
– volume: 5
  start-page: 111
  year: 2006
  ident: 10.1016/j.ejor.2020.07.059_bib0029
  article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-005-9034-x
– volume: 10
  start-page: e0136406
  year: 2015
  ident: 10.1016/j.ejor.2020.07.059_bib0037
  article-title: Advantages of task-specific multi-objective optimisation in evolutionary robotics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0136406
– volume: vol. 1141
  start-page: 584
  year: 1996
  ident: 10.1016/j.ejor.2020.07.059_bib0017
  article-title: On the performance assessment and comparison of stochastic multiobjective optimizers
– start-page: 555
  year: 2009
  ident: 10.1016/j.ejor.2020.07.059_bib0001
  article-title: Articulating user preferences in many-objective problems by sampling the weighted hypervolume
– volume: 2014
  year: 2014
  ident: 10.1016/j.ejor.2020.07.059_sbref0037
  article-title: Visualizing exact and approximated 3D empirical attainment functions
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2014/569346
– volume: 266
  start-page: 976
  year: 2018
  ident: 10.1016/j.ejor.2020.07.059_bib0013
  article-title: Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.10.062
– volume: 20
  start-page: 291
  year: 2013
  ident: 10.1016/j.ejor.2020.07.059_bib0008
  article-title: Directed multiobjective optimization based on the weighted hypervolume indicator
  publication-title: Journal of Multi-Criteria Decision Analysis
  doi: 10.1002/mcda.1502
– volume: 79
  start-page: 266
  year: 2017
  ident: 10.1016/j.ejor.2020.07.059_bib0012
  article-title: Evolutionary robust optimization in production planning: interactions between number of objectives, sample size and choice of robustness measure
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.06.020
– volume: vol. 379
  start-page: 201
  year: 2011
  ident: 10.1016/j.ejor.2020.07.059_bib0024
  article-title: Multiobjective memetic algorithms
– volume: vol. 10079
  start-page: 32
  year: 2016
  ident: 10.1016/j.ejor.2020.07.059_bib0007
  article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework
– start-page: 37
  year: 2012
  ident: 10.1016/j.ejor.2020.07.059_bib0022
  article-title: Automated algorithm configuration and parameter tuning
– volume: 16
  start-page: 475
  year: 2010
  ident: 10.1016/j.ejor.2020.07.059_bib0032
  article-title: Two-phase Pareto local search for the biobjective traveling salesman problem
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-009-9103-9
– volume: 61
  start-page: 125
  year: 2011
  ident: 10.1016/j.ejor.2020.07.059_bib0015
  article-title: Improving the anytime behavior of two-phase local search
  publication-title: Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/s10472-011-9235-0
– start-page: 552
  year: 2005
  ident: 10.1016/j.ejor.2020.07.059_bib0025
  article-title: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
– volume: vol. 5252
  start-page: 373
  year: 2008
  ident: 10.1016/j.ejor.2020.07.059_bib0041
  article-title: Quality assessment of Pareto set approximations
SSID ssj0001515
Score 2.4128718
Snippet •A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1209
SubjectTerms Automatic algorithm design and configuration
Decision maker’s preferences
Metaheuristics
Multi-objective optimisation
Title Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms
URI https://dx.doi.org/10.1016/j.ejor.2020.07.059
Volume 289
WOSCitedRecordID wos000596436100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbKhhBc8FNAjD_5grvKKLHTOrkcUEQRTFwM1LvIdpwtVZdUaTJNu-I1eAheiifhOHbSdIyJXXATRVbtpjlffY6Pz_cZoVdSMyN6FxKRTgQJwAGTiPqSwGLLZ2kAM2AjPP_tEz84COfz6Mtg8LPlwpwueZ6HZ2fR6r-aGtrA2IY6ew1zd4NCA9yD0eEKZofrPxl-ZpQpG3VikwVI3Bk65ESY-glX2hCtjTiAo_qZiiwXgYq6KqyGKyyT0-yoLruIUmakkAs7PY4KmGhOXCHQSCyPijKrjp3u-WVpfhfyQkPZJh-dylCXjX6XiXNLE4E-U8Ce7FULme38N2ylz8lMNlv7ftPi2_T3Z5HXrvLf5S9oU8Bl6ZUtb4tzQqllcLZzMrXnCjnwsd4Ma7i-PW_tU0tr_sMT2KTE4rVeFEb2lXpWozXa-L12r_-CO-yKFNv6t0VsxojNGLHHYxjjBtqlfByBH9jdn03nHzvXb6LDZtvK_STH0rIFhRef5PJIqBfdHN5Hd92yBO9bOD1AA50P0a2WFTFE99rTP7BzBkN0pydl-RDVW7DD27D79f3HGvcAhw3gMAAOd4DDW4DDRYr7gMN9wOEN4B6hr--nh28_EHekB1GMsYoo4wN0Ij3OJU-o8S9aBMnEU5RrP-UJZwpWCEGUCqWlCn2uNGeCjlUotEoS9hjt5EWunyAcSaW9iYoSRVUgfS0nvgpTlY49ZpbNbA_57euNldO7N8euLOO_G3YPjbo-K6v2cuWnx63VYhev2jg0BhBe0e_ptb7lGbq9-ds8RztVWesX6KY6rbJ1-dIh8DeuaLxM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+decision-maker%E2%80%99s+preferences+into+the+automatic+configuration+of+bi-objective+optimisation+algorithms&rft.jtitle=European+journal+of+operational+research&rft.au=Diaz%2C+Juan+Esteban&rft.au=L%C3%B3pez-Ib%C3%A1%C3%B1ez%2C+Manuel&rft.date=2021-03-16&rft.issn=0377-2217&rft.volume=289&rft.issue=3&rft.spage=1209&rft.epage=1222&rft_id=info:doi/10.1016%2Fj.ejor.2020.07.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2020_07_059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon