Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms
•A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume indicator.•This indicator incorporates DM’s preferences into automatic algorithm configuration.•We demonstrate the effectiveness of our appro...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 289; H. 3; S. 1209 - 1222 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
16.03.2021
|
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume indicator.•This indicator incorporates DM’s preferences into automatic algorithm configuration.•We demonstrate the effectiveness of our approach on a complex real-world problem.
Automatic configuration (AC) methods are increasingly used to tune and design optimisation algorithms for problems with multiple objectives. Most AC methods use unary quality indicators, which assign a single scalar value to an approximation to the Pareto front, to compare the performance of different optimisers. These quality indicators, however, imply preferences beyond Pareto-optimality that may differ from those of the decision maker (DM). Although it is possible to incorporate DM’s preferences into quality indicators, e.g., by means of the weighted hypervolume indicator (HVw), expressing preferences in terms of weight function is not always intuitive nor an easy task for a DM, in particular, when comparing the stochastic outcomes of several algorithm configurations. A more visual approach to compare such outcomes is the visualisation of their empirical attainment functions (EAFs) differences. This paper proposes using such visualisations as a way of eliciting information about regions of the objective space that are preferred by the DM. We present a method to convert the information about EAF differences into a HVw that will assign higher quality values to approximation fronts that result in EAF differences preferred by the DM. We show that the resulting HVw may be used by an AC method to guide the configuration of multi-objective optimisers according to the preferences of the DM. We evaluate the proposed approach on a well-known benchmark problem. Finally, we apply our approach to re-configuring, according to different DM’s preferences, a multi-objective optimiser tackling a real-world production planning problem arising in the manufacturing industry. |
|---|---|
| AbstractList | •A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume indicator.•This indicator incorporates DM’s preferences into automatic algorithm configuration.•We demonstrate the effectiveness of our approach on a complex real-world problem.
Automatic configuration (AC) methods are increasingly used to tune and design optimisation algorithms for problems with multiple objectives. Most AC methods use unary quality indicators, which assign a single scalar value to an approximation to the Pareto front, to compare the performance of different optimisers. These quality indicators, however, imply preferences beyond Pareto-optimality that may differ from those of the decision maker (DM). Although it is possible to incorporate DM’s preferences into quality indicators, e.g., by means of the weighted hypervolume indicator (HVw), expressing preferences in terms of weight function is not always intuitive nor an easy task for a DM, in particular, when comparing the stochastic outcomes of several algorithm configurations. A more visual approach to compare such outcomes is the visualisation of their empirical attainment functions (EAFs) differences. This paper proposes using such visualisations as a way of eliciting information about regions of the objective space that are preferred by the DM. We present a method to convert the information about EAF differences into a HVw that will assign higher quality values to approximation fronts that result in EAF differences preferred by the DM. We show that the resulting HVw may be used by an AC method to guide the configuration of multi-objective optimisers according to the preferences of the DM. We evaluate the proposed approach on a well-known benchmark problem. Finally, we apply our approach to re-configuring, according to different DM’s preferences, a multi-objective optimiser tackling a real-world production planning problem arising in the manufacturing industry. |
| Author | Diaz, Juan Esteban López-Ibáñez, Manuel |
| Author_xml | – sequence: 1 givenname: Juan Esteban surname: Diaz fullname: Diaz, Juan Esteban email: jediaz@usfq.edu.ec organization: USFQ Business School, Universidad San Francisco de Quito, Ecuador – sequence: 2 givenname: Manuel surname: López-Ibáñez fullname: López-Ibáñez, Manuel email: manuel.lopez-ibanez@manchester.ac.uk organization: Alliance Manchester Business School, University of Manchester, UK |
| BookMark | eNp90MFu1DAQxnELFYlt4QU4-QUSxnYTpxIXVAGtVIkLnC1nPNlO2Ngr21uJG6_B6_EkJCwnDj35YP1G-v6X4iKmSEK8VdAqUP27uaU55VaDhhZsC93NC7FTg9VNP_RwIXZgrG20VvaVuCxlBgDVqW4nTvcRUz6m7CvHvQyEXDjFZvHfKf_--avIY6aJMkWkIjnWJOsjSX-qaVkJSkxx4v1p8ynKNMmRmzTOhJWfSKZj5YXL-dMf9ilzfVzKa_Fy8odCb_69V-Lbp49fb--ahy-f728_PDRojKkNQqeAwgjWjjZosAbIX4ceUFtSkw3WoOrN9c3kkUYclEWyxusOB08YgrkS-nwXcyplHeKOmReffzgFbgvnZreFc1s4B9at4VY0_IeQ698FNXs-PE_fnymto56YsivIW7rAeS3iQuLn-B_TxZGC |
| CitedBy_id | crossref_primary_10_1109_TASE_2023_3300922 crossref_primary_10_1016_j_asoc_2024_112614 crossref_primary_10_1109_TII_2021_3128405 crossref_primary_10_1016_j_eswa_2023_120891 crossref_primary_10_1016_j_eswa_2023_121570 crossref_primary_10_1016_j_ejor_2025_07_024 |
| Cites_doi | 10.1109/TEVC.2015.2474158 10.1016/j.tcs.2011.03.012 10.1109/TEVC.2011.2182651 10.1162/evco_a_00263 10.1016/j.cor.2010.10.008 10.1109/MCI.2006.1597059 10.1016/j.ejor.2014.10.062 10.1007/s10479-007-0230-0 10.1109/4235.797969 10.1016/j.ejor.2018.06.009 10.1016/j.orp.2016.09.002 10.1109/TEVC.2003.810758 10.1007/s10852-005-9034-x 10.1371/journal.pone.0136406 10.1155/2014/569346 10.1016/j.ejor.2017.10.062 10.1002/mcda.1502 10.1016/j.cor.2016.06.020 10.1007/s10732-009-9103-9 10.1007/s10472-011-9235-0 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2020.07.059 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 1222 |
| ExternalDocumentID | 10_1016_j_ejor_2020_07_059 S0377221720306858 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c333t-c0510edb077b7d20730ea4d60c27e1f7d73c16349facebc817ce73a25c8aecdd3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596436100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 07:18:55 EST 2025 Tue Nov 18 21:24:21 EST 2025 Fri Feb 23 02:46:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Automatic algorithm design and configuration Decision maker’s preferences Metaheuristics Multi-objective optimisation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-c0510edb077b7d20730ea4d60c27e1f7d73c16349facebc817ce73a25c8aecdd3 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2020_07_059 crossref_citationtrail_10_1016_j_ejor_2020_07_059 elsevier_sciencedirect_doi_10_1016_j_ejor_2020_07_059 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-16 |
| PublicationDateYYYYMMDD | 2021-03-16 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Diaz, Handl, Xu (bib0012) 2017; 79 Grunert da Fonseca, Fonseca, Hall (bib0021) 2001; vol. 1993 Fonseca, Guerreiro, López-Ibáñez, Paquete (bib0019) 2011; 6576 Dubois-Lacoste, López-Ibáñez, Stützle (bib0016) 2015; 243 Fonseca, Fleming (bib0017) 1996; vol. 1141 Brockhoff, Bader, Thiele, Zitzler (bib0008) 2013; 20 Paquete, Schiavinotto, Stützle (bib0034) 2007; 156 Bezerra, López-Ibáñez, Stützle (bib0003) 2016; 20 Jaszkiewicz, Ishibuchi, Zhang (bib0024) 2011; vol. 379 Dubois-Lacoste, López-Ibáñez, Stützle (bib0014) 2011; 38 Diaz, Handl, Xu (bib0013) 2018; 266 Bezerra, López-Ibáñez, Stützle (bib0005) 2020; 28 Blot, Hoos, Jourdan, Kessaci-Marmion, Trautmann (bib0007) 2016; vol. 10079 Fonseca, Grunert da Fonseca, Paquete (bib0018) 2005; vol. 3410 Trianni, López-Ibáñez (bib0037) 2015; 10 Bezerra, López-Ibáñez, Stützle (bib0004) 2020 Miettinen (bib0033) 1999 Auger, Bader, Brockhoff, Zitzler (bib0002) 2012; 425 Coello Coello (bib0009) 2006; 1 Knowles, Thiele, Zitzler (bib0027) 2006 R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical ComputingVienna, Austria. Hoos (bib0022) 2012 Knowles, Corne (bib0026) 2005; vol. 166 Dubois-Lacoste, López-Ibáñez, Stützle (bib0015) 2011; 61 Radulescu, López-Ibáñez, Stützle (bib0035) 2013; vol. 7811 Auger, Bader, Brockhoff, Zitzler (bib0001) 2009 Zitzler, Thiele, Laumanns, Fonseca, Grunert da Fonseca (bib0043) 2003; 7 López-Ibáñez, Dubois-Lacoste, Pérez Cáceres, Stützle, Birattari (bib0028) 2016; 3 Lust, Teghem (bib0032) 2010; 16 . Grunert da Fonseca, Fonseca (bib0020) 2010 Deb (bib0011) 2001 Knowles (bib0025) 2005 López-Ibáñez, Paquete, Stützle (bib0030) 2010 Zitzler, Knowles, Thiele (bib0041) 2008; vol. 5252 Zitzler, Thiele (bib0042) 1999; 3 López-Ibáñez, Stützle (bib0031) 2012; 16 Birattari (bib0006) 2009; 197 Coello Coello (bib0010) 2015 Tušar, Filipič (bib0038) 2014; 2014 López-Ibáñez, Paquete, Stützle (bib0029) 2006; 5 Zhang, Georgiopoulos, Anagnostopoulos (bib0039) 2015 Jaszkiewicz (bib0023) 2018; 271 Zitzler, Brockhoff, Thiele (bib0040) 2007; vol. 4403 Zitzler (10.1016/j.ejor.2020.07.059_bib0043) 2003; 7 Bezerra (10.1016/j.ejor.2020.07.059_bib0004) 2020 Coello Coello (10.1016/j.ejor.2020.07.059_bib0009) 2006; 1 Zhang (10.1016/j.ejor.2020.07.059_bib0039) 2015 Knowles (10.1016/j.ejor.2020.07.059_bib0026) 2005; vol. 166 Trianni (10.1016/j.ejor.2020.07.059_bib0037) 2015; 10 Diaz (10.1016/j.ejor.2020.07.059_bib0012) 2017; 79 Auger (10.1016/j.ejor.2020.07.059_bib0002) 2012; 425 Bezerra (10.1016/j.ejor.2020.07.059_bib0003) 2016; 20 Brockhoff (10.1016/j.ejor.2020.07.059_bib0008) 2013; 20 Knowles (10.1016/j.ejor.2020.07.059_sbref0027) 2006 López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0030) 2010 Tušar (10.1016/j.ejor.2020.07.059_sbref0037) 2014; 2014 Dubois-Lacoste (10.1016/j.ejor.2020.07.059_bib0014) 2011; 38 Jaszkiewicz (10.1016/j.ejor.2020.07.059_bib0023) 2018; 271 Zitzler (10.1016/j.ejor.2020.07.059_bib0042) 1999; 3 Dubois-Lacoste (10.1016/j.ejor.2020.07.059_bib0015) 2011; 61 Zitzler (10.1016/j.ejor.2020.07.059_bib0041) 2008; vol. 5252 Fonseca (10.1016/j.ejor.2020.07.059_bib0018) 2005; vol. 3410 Blot (10.1016/j.ejor.2020.07.059_bib0007) 2016; vol. 10079 Hoos (10.1016/j.ejor.2020.07.059_bib0022) 2012 Auger (10.1016/j.ejor.2020.07.059_bib0001) 2009 López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0028) 2016; 3 Fonseca (10.1016/j.ejor.2020.07.059_bib0019) 2011; 6576 Knowles (10.1016/j.ejor.2020.07.059_bib0025) 2005 Zitzler (10.1016/j.ejor.2020.07.059_bib0040) 2007; vol. 4403 Grunert da Fonseca (10.1016/j.ejor.2020.07.059_bib0020) 2010 López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0031) 2012; 16 Diaz (10.1016/j.ejor.2020.07.059_bib0013) 2018; 266 Jaszkiewicz (10.1016/j.ejor.2020.07.059_bib0024) 2011; vol. 379 Deb (10.1016/j.ejor.2020.07.059_bib0011) 2001 Paquete (10.1016/j.ejor.2020.07.059_bib0034) 2007; 156 Birattari (10.1016/j.ejor.2020.07.059_bib0006) 2009; 197 Fonseca (10.1016/j.ejor.2020.07.059_bib0017) 1996; vol. 1141 Bezerra (10.1016/j.ejor.2020.07.059_bib0005) 2020; 28 10.1016/j.ejor.2020.07.059_bib0036 Grunert da Fonseca (10.1016/j.ejor.2020.07.059_bib0021) 2001; vol. 1993 Lust (10.1016/j.ejor.2020.07.059_bib0032) 2010; 16 López-Ibáñez (10.1016/j.ejor.2020.07.059_bib0029) 2006; 5 Miettinen (10.1016/j.ejor.2020.07.059_bib0033) 1999 Radulescu (10.1016/j.ejor.2020.07.059_bib0035) 2013; vol. 7811 Coello Coello (10.1016/j.ejor.2020.07.059_bib0010) 2015 Dubois-Lacoste (10.1016/j.ejor.2020.07.059_bib0016) 2015; 243 |
| References_xml | – start-page: 69 year: 2020 end-page: 92 ident: bib0004 article-title: Automatic configuration of multi-objective optimizers and multi-objective configuration publication-title: High-performance simulation-based optimization – volume: vol. 1993 start-page: 213 year: 2001 end-page: 225 ident: bib0021 article-title: Inferential performance assessment of stochastic optimisers and the attainment function publication-title: Evolutionary multi-criterion optimization, EMO 2001 – volume: 20 start-page: 291 year: 2013 end-page: 317 ident: bib0008 article-title: Directed multiobjective optimization based on the weighted hypervolume indicator publication-title: Journal of Multi-Criteria Decision Analysis – start-page: 552 year: 2005 end-page: 557 ident: bib0025 article-title: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers publication-title: Proceedings of the 5th international conference on intelligent systems design and applications – volume: 3 start-page: 43 year: 2016 end-page: 58 ident: bib0028 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Operations Research Perspectives – year: 1999 ident: bib0033 article-title: Nonlinear multiobjective optimization – volume: 6576 start-page: 106 year: 2011 end-page: 120 ident: bib0019 article-title: On the computation of the empirical attainment function publication-title: Evolutionary multi-criterion optimization, EMO – year: 2006 ident: bib0027 article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers publication-title: TIK-Report 214 – volume: 197 year: 2009 ident: bib0006 article-title: Tuning Metaheuristics: A Machine Learning Perspective publication-title: Studies in Computational Intelligence – volume: vol. 10079 start-page: 32 year: 2016 end-page: 47 ident: bib0007 article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework publication-title: Proceedings of the 10th international conference on learning and intelligent optimization LION 10 – volume: 266 start-page: 976 year: 2018 end-page: 989 ident: bib0013 article-title: Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system publication-title: European Journal of Operational Research – volume: 2014 year: 2014 ident: bib0038 article-title: Visualizing exact and approximated 3D empirical attainment functions publication-title: Mathematical Problems in Engineering – volume: vol. 1141 start-page: 584 year: 1996 end-page: 593 ident: bib0017 article-title: On the performance assessment and comparison of stochastic multiobjective optimizers publication-title: Parallel problem solving from nature, PPSN IV – volume: 79 start-page: 266 year: 2017 end-page: 278 ident: bib0012 article-title: Evolutionary robust optimization in production planning: interactions between number of objectives, sample size and choice of robustness measure publication-title: Computers & Operations Research – volume: 38 start-page: 1219 year: 2011 end-page: 1236 ident: bib0014 article-title: A hybrid TP + PLS algorithm for bi-objective flow-shop scheduling problems publication-title: Computers & Operations Research – volume: 61 start-page: 125 year: 2011 end-page: 154 ident: bib0015 article-title: Improving the anytime behavior of two-phase local search publication-title: Annals of Mathematics and Artificial Intelligence – start-page: 37 year: 2012 end-page: 71 ident: bib0022 article-title: Automated algorithm configuration and parameter tuning publication-title: Autonomous search – volume: 16 start-page: 861 year: 2012 end-page: 875 ident: bib0031 article-title: The automatic design of multi-objective ant colony optimization algorithms publication-title: IEEE Transactions on Evolutionary Computation – start-page: 3 year: 2015 end-page: 18 ident: bib0010 article-title: Multi-objective evolutionary algorithms in real-world applications: Some recent results and current challenges publication-title: Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: bib0043 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Transactions on Evolutionary Computation – volume: 16 start-page: 475 year: 2010 end-page: 510 ident: bib0032 article-title: Two-phase Pareto local search for the biobjective traveling salesman problem publication-title: Journal of Heuristics – start-page: 1383 year: 2015 end-page: 1390 ident: bib0039 article-title: SPRINT: Multi-objective model racing publication-title: Proceedings of the genetic and evolutionary computation conference, GECCO – volume: vol. 166 start-page: 313 year: 2005 end-page: 352 ident: bib0026 article-title: Memetic algorithms for multiobjective optimization: issues, methods and prospects publication-title: Recent advances in memetic algorithms – volume: 10 start-page: e0136406 year: 2015 ident: bib0037 article-title: Advantages of task-specific multi-objective optimisation in evolutionary robotics publication-title: PLoS One – volume: vol. 5252 start-page: 373 year: 2008 end-page: 404 ident: bib0041 article-title: Quality assessment of Pareto set approximations publication-title: Multi-objective optimization: Interactive and evolutionary approaches – start-page: 209 year: 2010 end-page: 222 ident: bib0030 article-title: Exploratory analysis of stochastic local search algorithms in biobjective optimization publication-title: Experimental methods for the analysis of optimization algorithms – volume: vol. 379 start-page: 201 year: 2011 end-page: 217 ident: bib0024 article-title: Multiobjective memetic algorithms publication-title: Handbook of memetic algorithms – reference: R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical ComputingVienna, Austria. – volume: 271 start-page: 1001 year: 2018 end-page: 1013 ident: bib0023 article-title: Many-objective Pareto local search publication-title: European Journal of Operational Research – start-page: 103 year: 2010 end-page: 130 ident: bib0020 article-title: The attainment-function approach to stochastic multiobjective optimizer assessment and comparison publication-title: Experimental methods for the analysis of optimization algorithms – reference: . – start-page: 555 year: 2009 end-page: 562 ident: bib0001 article-title: Articulating user preferences in many-objective problems by sampling the weighted hypervolume publication-title: Proceedings of the genetic and evolutionary computation conference, GECCO – volume: vol. 7811 start-page: 825 year: 2013 end-page: 840 ident: bib0035 article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms publication-title: Evolutionary multi-criterion optimization, EMO – volume: 5 start-page: 111 year: 2006 end-page: 137 ident: bib0029 article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem publication-title: Journal of Mathematical Modelling and Algorithms – volume: vol. 4403 start-page: 862 year: 2007 end-page: 876 ident: bib0040 article-title: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration publication-title: Evolutionary multi-criterion optimization, EMO – year: 2001 ident: bib0011 article-title: Multi-objective optimization using evolutionary algorithms – volume: 425 start-page: 75 year: 2012 end-page: 103 ident: bib0002 article-title: Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications publication-title: Theoretical Computer Science – volume: 28 start-page: 195 year: 2020 end-page: 226 ident: bib0005 article-title: Automatically designing state-of-the-art multi- and many-objective evolutionary algorithms publication-title: Evolutionary Computation – volume: 243 start-page: 369 year: 2015 end-page: 385 ident: bib0016 article-title: Anytime Pareto local search publication-title: European Journal of Operational Research – volume: 20 start-page: 403 year: 2016 end-page: 417 ident: bib0003 article-title: Automatic component-wise design of multi-objective evolutionary algorithms publication-title: IEEE Transactions on Evolutionary Computation – volume: vol. 3410 start-page: 250 year: 2005 end-page: 264 ident: bib0018 article-title: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function publication-title: Evolutionary multi-criterion optimization, EMO 2005 – volume: 156 start-page: 83 year: 2007 end-page: 97 ident: bib0034 article-title: On local optima in multiobjective combinatorial optimization problems publication-title: Annals of Operations Research – volume: 1 start-page: 28 year: 2006 end-page: 36 ident: bib0009 article-title: Evolutionary multi-objective optimization: a historical view of the field publication-title: IEEE Computational Intelligence Magazine – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib0042 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm publication-title: IEEE Transactions on Evolutionary Computation – volume: 20 start-page: 403 year: 2016 ident: 10.1016/j.ejor.2020.07.059_bib0003 article-title: Automatic component-wise design of multi-objective evolutionary algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2474158 – volume: vol. 1993 start-page: 213 year: 2001 ident: 10.1016/j.ejor.2020.07.059_bib0021 article-title: Inferential performance assessment of stochastic optimisers and the attainment function – volume: vol. 7811 start-page: 825 year: 2013 ident: 10.1016/j.ejor.2020.07.059_bib0035 article-title: Automatically improving the anytime behaviour of multiobjective evolutionary algorithms – volume: 425 start-page: 75 year: 2012 ident: 10.1016/j.ejor.2020.07.059_bib0002 article-title: Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2011.03.012 – volume: 197 year: 2009 ident: 10.1016/j.ejor.2020.07.059_bib0006 article-title: Tuning Metaheuristics: A Machine Learning Perspective – volume: 16 start-page: 861 year: 2012 ident: 10.1016/j.ejor.2020.07.059_bib0031 article-title: The automatic design of multi-objective ant colony optimization algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2011.2182651 – volume: 28 start-page: 195 year: 2020 ident: 10.1016/j.ejor.2020.07.059_bib0005 article-title: Automatically designing state-of-the-art multi- and many-objective evolutionary algorithms publication-title: Evolutionary Computation doi: 10.1162/evco_a_00263 – volume: 38 start-page: 1219 year: 2011 ident: 10.1016/j.ejor.2020.07.059_bib0014 article-title: A hybrid TP + PLS algorithm for bi-objective flow-shop scheduling problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2010.10.008 – volume: vol. 3410 start-page: 250 year: 2005 ident: 10.1016/j.ejor.2020.07.059_bib0018 article-title: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function – volume: 1 start-page: 28 year: 2006 ident: 10.1016/j.ejor.2020.07.059_bib0009 article-title: Evolutionary multi-objective optimization: a historical view of the field publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2006.1597059 – volume: 243 start-page: 369 year: 2015 ident: 10.1016/j.ejor.2020.07.059_bib0016 article-title: Anytime Pareto local search publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.10.062 – volume: 156 start-page: 83 year: 2007 ident: 10.1016/j.ejor.2020.07.059_bib0034 article-title: On local optima in multiobjective combinatorial optimization problems publication-title: Annals of Operations Research doi: 10.1007/s10479-007-0230-0 – volume: 3 start-page: 257 year: 1999 ident: 10.1016/j.ejor.2020.07.059_bib0042 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: vol. 4403 start-page: 862 year: 2007 ident: 10.1016/j.ejor.2020.07.059_bib0040 article-title: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration – year: 2001 ident: 10.1016/j.ejor.2020.07.059_bib0011 – volume: vol. 166 start-page: 313 year: 2005 ident: 10.1016/j.ejor.2020.07.059_bib0026 article-title: Memetic algorithms for multiobjective optimization: issues, methods and prospects – volume: 271 start-page: 1001 year: 2018 ident: 10.1016/j.ejor.2020.07.059_bib0023 article-title: Many-objective Pareto local search publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2018.06.009 – volume: 3 start-page: 43 year: 2016 ident: 10.1016/j.ejor.2020.07.059_bib0028 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Operations Research Perspectives doi: 10.1016/j.orp.2016.09.002 – volume: 7 start-page: 117 year: 2003 ident: 10.1016/j.ejor.2020.07.059_bib0043 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.810758 – start-page: 103 year: 2010 ident: 10.1016/j.ejor.2020.07.059_bib0020 article-title: The attainment-function approach to stochastic multiobjective optimizer assessment and comparison – year: 2006 ident: 10.1016/j.ejor.2020.07.059_sbref0027 article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers – year: 1999 ident: 10.1016/j.ejor.2020.07.059_bib0033 – volume: 6576 start-page: 106 year: 2011 ident: 10.1016/j.ejor.2020.07.059_bib0019 article-title: On the computation of the empirical attainment function – ident: 10.1016/j.ejor.2020.07.059_bib0036 – start-page: 3 year: 2015 ident: 10.1016/j.ejor.2020.07.059_bib0010 article-title: Multi-objective evolutionary algorithms in real-world applications: Some recent results and current challenges – start-page: 209 year: 2010 ident: 10.1016/j.ejor.2020.07.059_bib0030 article-title: Exploratory analysis of stochastic local search algorithms in biobjective optimization – start-page: 69 year: 2020 ident: 10.1016/j.ejor.2020.07.059_bib0004 article-title: Automatic configuration of multi-objective optimizers and multi-objective configuration – start-page: 1383 year: 2015 ident: 10.1016/j.ejor.2020.07.059_bib0039 article-title: SPRINT: Multi-objective model racing – volume: 5 start-page: 111 year: 2006 ident: 10.1016/j.ejor.2020.07.059_bib0029 article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1007/s10852-005-9034-x – volume: 10 start-page: e0136406 year: 2015 ident: 10.1016/j.ejor.2020.07.059_bib0037 article-title: Advantages of task-specific multi-objective optimisation in evolutionary robotics publication-title: PLoS One doi: 10.1371/journal.pone.0136406 – volume: vol. 1141 start-page: 584 year: 1996 ident: 10.1016/j.ejor.2020.07.059_bib0017 article-title: On the performance assessment and comparison of stochastic multiobjective optimizers – start-page: 555 year: 2009 ident: 10.1016/j.ejor.2020.07.059_bib0001 article-title: Articulating user preferences in many-objective problems by sampling the weighted hypervolume – volume: 2014 year: 2014 ident: 10.1016/j.ejor.2020.07.059_sbref0037 article-title: Visualizing exact and approximated 3D empirical attainment functions publication-title: Mathematical Problems in Engineering doi: 10.1155/2014/569346 – volume: 266 start-page: 976 year: 2018 ident: 10.1016/j.ejor.2020.07.059_bib0013 article-title: Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.10.062 – volume: 20 start-page: 291 year: 2013 ident: 10.1016/j.ejor.2020.07.059_bib0008 article-title: Directed multiobjective optimization based on the weighted hypervolume indicator publication-title: Journal of Multi-Criteria Decision Analysis doi: 10.1002/mcda.1502 – volume: 79 start-page: 266 year: 2017 ident: 10.1016/j.ejor.2020.07.059_bib0012 article-title: Evolutionary robust optimization in production planning: interactions between number of objectives, sample size and choice of robustness measure publication-title: Computers & Operations Research doi: 10.1016/j.cor.2016.06.020 – volume: vol. 379 start-page: 201 year: 2011 ident: 10.1016/j.ejor.2020.07.059_bib0024 article-title: Multiobjective memetic algorithms – volume: vol. 10079 start-page: 32 year: 2016 ident: 10.1016/j.ejor.2020.07.059_bib0007 article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework – start-page: 37 year: 2012 ident: 10.1016/j.ejor.2020.07.059_bib0022 article-title: Automated algorithm configuration and parameter tuning – volume: 16 start-page: 475 year: 2010 ident: 10.1016/j.ejor.2020.07.059_bib0032 article-title: Two-phase Pareto local search for the biobjective traveling salesman problem publication-title: Journal of Heuristics doi: 10.1007/s10732-009-9103-9 – volume: 61 start-page: 125 year: 2011 ident: 10.1016/j.ejor.2020.07.059_bib0015 article-title: Improving the anytime behavior of two-phase local search publication-title: Annals of Mathematics and Artificial Intelligence doi: 10.1007/s10472-011-9235-0 – start-page: 552 year: 2005 ident: 10.1016/j.ejor.2020.07.059_bib0025 article-title: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers – volume: vol. 5252 start-page: 373 year: 2008 ident: 10.1016/j.ejor.2020.07.059_bib0041 article-title: Quality assessment of Pareto set approximations |
| SSID | ssj0001515 |
| Score | 2.4128718 |
| Snippet | •A visual way of eliciting decision-maker's (DM's) preferences is described.•Empirical attainment differences are mapped into a weighted hypervolume... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1209 |
| SubjectTerms | Automatic algorithm design and configuration Decision maker’s preferences Metaheuristics Multi-objective optimisation |
| Title | Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms |
| URI | https://dx.doi.org/10.1016/j.ejor.2020.07.059 |
| Volume | 289 |
| WOSCitedRecordID | wos000596436100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbKhhBc8FNAjD_5grvKKLHTOrkcUEQRTFwM1LvIdpwtVZdUaTJNu-I1eAheiifhOHbSdIyJXXATRVbtpjlffY6Pz_cZoVdSMyN6FxKRTgQJwAGTiPqSwGLLZ2kAM2AjPP_tEz84COfz6Mtg8LPlwpwueZ6HZ2fR6r-aGtrA2IY6ew1zd4NCA9yD0eEKZofrPxl-ZpQpG3VikwVI3Bk65ESY-glX2hCtjTiAo_qZiiwXgYq6KqyGKyyT0-yoLruIUmakkAs7PY4KmGhOXCHQSCyPijKrjp3u-WVpfhfyQkPZJh-dylCXjX6XiXNLE4E-U8Ce7FULme38N2ylz8lMNlv7ftPi2_T3Z5HXrvLf5S9oU8Bl6ZUtb4tzQqllcLZzMrXnCjnwsd4Ma7i-PW_tU0tr_sMT2KTE4rVeFEb2lXpWozXa-L12r_-CO-yKFNv6t0VsxojNGLHHYxjjBtqlfByBH9jdn03nHzvXb6LDZtvK_STH0rIFhRef5PJIqBfdHN5Hd92yBO9bOD1AA50P0a2WFTFE99rTP7BzBkN0pydl-RDVW7DD27D79f3HGvcAhw3gMAAOd4DDW4DDRYr7gMN9wOEN4B6hr--nh28_EHekB1GMsYoo4wN0Ij3OJU-o8S9aBMnEU5RrP-UJZwpWCEGUCqWlCn2uNGeCjlUotEoS9hjt5EWunyAcSaW9iYoSRVUgfS0nvgpTlY49ZpbNbA_57euNldO7N8euLOO_G3YPjbo-K6v2cuWnx63VYhev2jg0BhBe0e_ptb7lGbq9-ds8RztVWesX6KY6rbJ1-dIh8DeuaLxM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+decision-maker%E2%80%99s+preferences+into+the+automatic+configuration+of+bi-objective+optimisation+algorithms&rft.jtitle=European+journal+of+operational+research&rft.au=Diaz%2C+Juan+Esteban&rft.au=L%C3%B3pez-Ib%C3%A1%C3%B1ez%2C+Manuel&rft.date=2021-03-16&rft.issn=0377-2217&rft.volume=289&rft.issue=3&rft.spage=1209&rft.epage=1222&rft_id=info:doi/10.1016%2Fj.ejor.2020.07.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2020_07_059 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |