DSEC: A Stereo Event Camera Dataset for Driving Scenarios
Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sun...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 6; no. 3; pp. 4947 - 4954 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sunset remains an open problem. In these cases, standard cameras are being pushed to their limits in terms of low light and high dynamic range performance. To address these challenges, we propose, DSEC, a new dataset that contains such demanding illumination conditions and provides a rich set of sensory data. DSEC offers data from a wide-baseline stereo setup of two color frame cameras and two high-resolution monochrome event cameras. In addition, we collect lidar data and RTK GPS measurements, both hardware synchronized with all camera data. One of the distinctive features of this dataset is the inclusion of high-resolution event cameras. Event cameras have received increasing attention for their high temporal resolution and high dynamic range performance. However, due to their novelty, event camera datasets in driving scenarios are rare. This work presents the first high resolution, large scale stereo dataset with event cameras. The dataset contains 53 sequences collected by driving in a variety of illumination conditions and provides ground truth disparity for the development and evaluation of event-based stereo algorithms. |
|---|---|
| AbstractList | Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sunset remains an open problem. In these cases, standard cameras are being pushed to their limits in terms of low light and high dynamic range performance. To address these challenges, we propose, DSEC, a new dataset that contains such demanding illumination conditions and provides a rich set of sensory data. DSEC offers data from a wide-baseline stereo setup of two color frame cameras and two high-resolution monochrome event cameras. In addition, we collect lidar data and RTK GPS measurements, both hardware synchronized with all camera data. One of the distinctive features of this dataset is the inclusion of high-resolution event cameras. Event cameras have received increasing attention for their high temporal resolution and high dynamic range performance. However, due to their novelty, event camera datasets in driving scenarios are rare. This work presents the first high resolution, large scale stereo dataset with event cameras. The dataset contains 53 sequences collected by driving in a variety of illumination conditions and provides ground truth disparity for the development and evaluation of event-based stereo algorithms. |
| Author | Aarents, Willem Gehrig, Mathias Gehrig, Daniel Scaramuzza, Davide |
| Author_xml | – sequence: 1 givenname: Mathias orcidid: 0000-0003-2223-4265 surname: Gehrig fullname: Gehrig, Mathias email: mgehrig@ifi.uzh.ch organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland – sequence: 2 givenname: Willem surname: Aarents fullname: Aarents, Willem email: aarentsw@student.ethz.ch organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland – sequence: 3 givenname: Daniel orcidid: 0000-0001-9952-3335 surname: Gehrig fullname: Gehrig, Daniel email: daniel.gehrig18@gmail.com organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland – sequence: 4 givenname: Davide orcidid: 0000-0002-3831-6778 surname: Scaramuzza fullname: Scaramuzza, Davide email: davide.scaramuzza@ieee.org organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland |
| BookMark | eNp9kE1LAzEQhoNUsNbeBS8Bz1vzsZtsvJVt_YCCYPUcstmJpLSbmk0L_nu3tIh48DRzeJ93hucSDdrQAkLXlEwoJepu8TqdMMLohBNRqpydoSHjUmZcCjH4tV-gcdetCCG0YJKrYojUbDmv7vEULxNECHi-hzbhymwgGjwzyXSQsAsRz6Lf-_YDLy20JvrQXaFzZ9YdjE9zhN4f5m_VU7Z4eXyupovMcs5TVjdNzoSpnSxqpgh1damsyFUJwnLasKaUhcpdYbkogDiuWP8ZqFqCsya3ho_Q7bF3G8PnDrqkV2EX2_6kZgWVhDOVl31KHFM2hq6L4LT1ySQf2hSNX2tK9MGU7k3pgyl9MtWD5A-4jX5j4td_yM0R8QDwE1e8lEQo_g1jd3L- |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1109_TMM_2025_3557612 crossref_primary_10_1109_TPAMI_2023_3311534 crossref_primary_10_1109_LSP_2022_3196599 crossref_primary_10_1109_LRA_2025_3565150 crossref_primary_10_1177_02783649241273554 crossref_primary_10_1038_s41586_024_07409_w crossref_primary_10_3389_fnins_2023_1160034 crossref_primary_10_1109_LRA_2025_3572777 crossref_primary_10_3389_fnins_2022_813555 crossref_primary_10_1109_TITS_2023_3312355 crossref_primary_10_1109_TCDS_2024_3422873 crossref_primary_10_1109_TITS_2024_3456108 crossref_primary_10_1109_TNNLS_2023_3289051 crossref_primary_10_1109_LRA_2023_3279622 crossref_primary_10_1109_TIP_2024_3374074 crossref_primary_10_1109_TPAMI_2024_3396116 crossref_primary_10_1109_TPAMI_2025_3545936 crossref_primary_10_1016_j_cscm_2025_e04440 crossref_primary_10_3390_electronics14132603 crossref_primary_10_3390_jsan14010007 crossref_primary_10_1109_LRA_2022_3186770 crossref_primary_10_1016_j_commtr_2025_100202 crossref_primary_10_3390_s25103158 crossref_primary_10_1109_JPROC_2023_3308088 crossref_primary_10_1109_TCI_2023_3281202 crossref_primary_10_1002_aisy_202400265 crossref_primary_10_3390_s23083967 crossref_primary_10_1109_TPAMI_2024_3361671 crossref_primary_10_3390_rs17173112 crossref_primary_10_1109_TIM_2025_3566813 crossref_primary_10_1016_j_inffus_2023_101806 crossref_primary_10_1109_LRA_2025_3576070 crossref_primary_10_3390_s23041998 crossref_primary_10_1016_j_conengprac_2023_105530 crossref_primary_10_1109_LRA_2025_3589145 crossref_primary_10_1109_TCSVT_2023_3335457 crossref_primary_10_32604_cmc_2024_047240 crossref_primary_10_3390_electronics12102302 crossref_primary_10_1109_TCC_2022_3149963 crossref_primary_10_3390_rs15112740 crossref_primary_10_1002_aisy_202401065 crossref_primary_10_3389_fmed_2025_1564678 crossref_primary_10_1109_ACCESS_2024_3523411 crossref_primary_10_1109_TIV_2024_3394735 crossref_primary_10_1016_j_aej_2025_04_098 crossref_primary_10_1177_02783649241303525 crossref_primary_10_1109_LSP_2024_3493801 crossref_primary_10_1109_TCSVT_2022_3189480 crossref_primary_10_1109_TIM_2022_3144229 crossref_primary_10_1631_FITEE_2400011 crossref_primary_10_1016_j_inffus_2025_103697 crossref_primary_10_1109_LRA_2025_3609095 crossref_primary_10_1109_TIV_2024_3393749 crossref_primary_10_1109_TITS_2023_3248483 crossref_primary_10_1109_TIV_2023_3339144 crossref_primary_10_1109_TCSVT_2025_3559299 crossref_primary_10_1109_LSENS_2022_3216894 crossref_primary_10_3390_electronics13214280 crossref_primary_10_1109_JSEN_2023_3293821 crossref_primary_10_3390_vehicles7020053 crossref_primary_10_3390_eng6070153 crossref_primary_10_1002_aisy_202400243 crossref_primary_10_1109_ACCESS_2025_3536524 crossref_primary_10_1109_TPAMI_2022_3230727 crossref_primary_10_1109_TIP_2025_3550008 crossref_primary_10_1109_LRA_2022_3168335 crossref_primary_10_1002_aisy_202200221 crossref_primary_10_1109_TPAMI_2025_3586559 crossref_primary_10_1109_LRA_2024_3416791 crossref_primary_10_1007_s11263_024_02331_0 crossref_primary_10_1016_j_compeleceng_2024_109432 crossref_primary_10_1016_j_neunet_2024_106330 crossref_primary_10_3390_s25102957 crossref_primary_10_1109_ACCESS_2023_3316143 crossref_primary_10_1109_LRA_2024_3355648 crossref_primary_10_1016_j_neucom_2023_127010 crossref_primary_10_1016_j_eswa_2024_124342 crossref_primary_10_1109_JSEN_2024_3411088 crossref_primary_10_1109_LRA_2022_3223020 crossref_primary_10_3390_s222410014 crossref_primary_10_1109_TRO_2025_3584544 crossref_primary_10_1109_ACCESS_2024_3386032 crossref_primary_10_3390_rs17040717 crossref_primary_10_1145_3656469 crossref_primary_10_1016_j_sigpro_2024_109580 crossref_primary_10_1109_LPT_2024_3477614 crossref_primary_10_1109_TPAMI_2023_3328188 crossref_primary_10_1007_s11263_025_02511_6 crossref_primary_10_1109_TPAMI_2023_3323858 crossref_primary_10_1109_LSP_2024_3398531 crossref_primary_10_3390_s25154540 crossref_primary_10_1088_2634_4386_add0da crossref_primary_10_1109_JSEN_2025_3530925 crossref_primary_10_1016_j_inffus_2024_102891 crossref_primary_10_1109_LRA_2025_3583486 crossref_primary_10_1109_TMM_2024_3387690 crossref_primary_10_3390_s22145190 crossref_primary_10_1109_LRA_2025_3565379 crossref_primary_10_1007_s10846_022_01753_7 crossref_primary_10_1109_TRO_2025_3548523 crossref_primary_10_1109_LRA_2023_3269950 crossref_primary_10_3390_biomimetics10090569 crossref_primary_10_1109_JPROC_2024_3429360 crossref_primary_10_1109_TPAMI_2024_3444912 crossref_primary_10_1016_j_neucom_2025_129899 crossref_primary_10_1016_j_neucom_2025_129776 crossref_primary_10_1109_TCASAI_2024_3520905 crossref_primary_10_1002_aisy_202200251 crossref_primary_10_1007_s11263_025_02488_2 crossref_primary_10_1109_TITS_2025_3545479 crossref_primary_10_1049_ipr2_13131 crossref_primary_10_1016_j_measurement_2024_115203 crossref_primary_10_1016_j_cviu_2022_103489 crossref_primary_10_1109_TIP_2022_3220938 crossref_primary_10_1109_TNNLS_2024_3437415 crossref_primary_10_1016_j_neucom_2024_128657 crossref_primary_10_1109_TIP_2024_3426469 crossref_primary_10_1109_TIM_2024_3470063 crossref_primary_10_1016_j_robot_2022_104304 |
| Cites_doi | 10.1109/CVPRW.2018.00141 10.1109/LRA.2019.2893427 10.1109/ICCV.2019.00161 10.1109/CVPR.2019.00099 10.2514/1.28949 10.1109/CVPR.2016.352 10.1109/ICCV.2017.534 10.1109/CVPR42600.2020.00271 10.1109/IROS.2013.6696514 10.1109/CVPR42600.2020.00256 10.1109/LRA.2018.2800793 10.1109/CVPR42600.2020.00174 10.1177/0278364919843996 10.1016/0262-8856(92)90066-C 10.1109/CVPR42600.2020.00338 10.1109/TIP.2006.884928 10.1109/CVPRW.2019.00210 10.1007/978-3-030-01231-1_27 10.1109/TPAMI.2019.2963386 10.1109/CVPR.2008.4587671 10.1109/CVPR.2015.7298925 10.1109/CVPR.2019.00698 10.1007/978-3-030-01246-5_15 10.1109/TPAMI.2020.3008413 10.1177/0278364916679498 10.1007/s11263-019-01209-w 10.1109/CVPR.2016.401 10.1109/CVPR.2015.7298644 10.3389/fnbot.2019.00028 10.1109/TPAMI.2007.1166 10.1109/CVPR.2018.00786 10.1109/3DV.2017.00012 10.1109/ICRA.2019.8793511 10.1109/LRA.2020.3025505 10.1109/CVPR.2018.00186 10.1109/CVPR.2016.350 10.1109/CVPR.2019.00108 10.1109/CVPR42600.2020.01164 10.1109/JSSC.2014.2342715 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2021.3068942 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 4954 |
| ExternalDocumentID | 10_1109_LRA_2021_3068942 9387069 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Center of Competence in Research (NCCR) Robotics – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; Swiss National Science Foundation funderid: 10.13039/501100001711 – fundername: SNSF-ERC Starting |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-bdd426abf75b2901fb89c6498e6c31d2d87594f5c365e0f392273e9b7efca4ca3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 216 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642765100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sun Nov 09 08:49:35 EST 2025 Tue Nov 18 22:23:56 EST 2025 Sat Nov 29 06:03:11 EST 2025 Wed Aug 27 02:51:10 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-bdd426abf75b2901fb89c6498e6c31d2d87594f5c365e0f392273e9b7efca4ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2223-4265 0000-0002-3831-6778 0000-0001-9952-3335 |
| PQID | 2517032948 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9387069 crossref_citationtrail_10_1109_LRA_2021_3068942 proquest_journals_2517032948 crossref_primary_10_1109_LRA_2021_3068942 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 scharstein (ref47) 0 ref11 ref10 binas (ref35) 2017 geyer (ref23) 2020 ref17 ref16 ref18 ref46 ref45 ref48 ref42 ref41 ref44 ref43 geiger (ref3) 0 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref34 ref37 sun (ref25) 0 ref30 ref2 ref1 ref39 ref38 perot (ref33) 2020 ref24 ref26 ref20 ref22 ref21 ref28 ref27 ref29 gaidon (ref31) 0 finateu (ref19) 0 tournemire (ref32) 2020 hu (ref36) 0 |
| References_xml | – ident: ref22 doi: 10.1109/CVPRW.2018.00141 – year: 2017 ident: ref35 article-title: Ddd17: End-to-end davis driving dataset – ident: ref15 doi: 10.1109/LRA.2019.2893427 – ident: ref48 doi: 10.1109/ICCV.2019.00161 – ident: ref6 doi: 10.1109/CVPR.2019.00099 – ident: ref44 doi: 10.2514/1.28949 – ident: ref30 doi: 10.1109/CVPR.2016.352 – ident: ref21 doi: 10.1109/ICCV.2017.534 – ident: ref24 doi: 10.1109/CVPR42600.2020.00271 – ident: ref41 doi: 10.1109/IROS.2013.6696514 – ident: ref29 doi: 10.1109/CVPR42600.2020.00256 – ident: ref2 doi: 10.1109/LRA.2018.2800793 – ident: ref17 doi: 10.1109/CVPR42600.2020.00174 – ident: ref28 doi: 10.1177/0278364919843996 – ident: ref43 doi: 10.1016/0262-8856(92)90066-C – ident: ref14 doi: 10.1109/CVPR42600.2020.00338 – start-page: 31 year: 0 ident: ref47 article-title: High-resolution stereo datasets with subpixel-accurate ground truth publication-title: Proc German Conf Pattern Recognit – ident: ref39 doi: 10.1109/TIP.2006.884928 – ident: ref37 doi: 10.1109/CVPRW.2019.00210 – ident: ref10 doi: 10.1007/978-3-030-01231-1_27 – ident: ref40 doi: 10.1109/TPAMI.2019.2963386 – ident: ref7 doi: 10.1109/CVPR.2008.4587671 – year: 2020 ident: ref23 article-title: A2d2: Audi autonomous driving dataset – ident: ref4 doi: 10.1109/CVPR.2015.7298925 – ident: ref16 doi: 10.1109/CVPR.2019.00698 – ident: ref8 doi: 10.1007/978-3-030-01246-5_15 – start-page: 112 year: 0 ident: ref19 article-title: 5.10 a 1280× 720 back-illuminated stacked temporal contrast event-based vision sensor with 4.86 $\mu$m pixels, 1.066 geps readout, programmable event-rate controller and compressive data-formatting pipeline publication-title: Proc IEEE Int Solid-State Circuits Conf -(ISSCC) – ident: ref1 doi: 10.1109/TPAMI.2020.3008413 – start-page: 3354 year: 0 ident: ref3 publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 2446 year: 0 ident: ref25 article-title: Scalability in perception for autonomous driving: Waymo open dataset publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 1 year: 0 ident: ref36 article-title: Ddd20 end-to-end event camera driving dataset: Fusing frames and events with deep learning for improved steering prediction publication-title: Proc IEEE 23rd Int Conf Intell Transp Syst (ITSC) – ident: ref27 doi: 10.1177/0278364916679498 – ident: ref13 doi: 10.1007/s11263-019-01209-w – year: 2020 ident: ref32 article-title: A large scale event-based detection dataset for automotive – ident: ref5 doi: 10.1109/CVPR.2016.401 – start-page: 4340 year: 0 ident: ref31 article-title: Virtual worlds as proxy for multi-object tracking analysis publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref9 doi: 10.1109/CVPR.2015.7298644 – ident: ref12 doi: 10.3389/fnbot.2019.00028 – ident: ref42 doi: 10.1109/TPAMI.2007.1166 – year: 2020 ident: ref33 article-title: Learning to detect objects with a 1 megapixel event camera – ident: ref11 doi: 10.1109/CVPR.2018.00786 – ident: ref46 doi: 10.1109/3DV.2017.00012 – ident: ref45 doi: 10.1109/ICRA.2019.8793511 – ident: ref38 doi: 10.1109/LRA.2020.3025505 – ident: ref34 doi: 10.1109/CVPR.2018.00186 – ident: ref20 doi: 10.1109/CVPR.2016.350 – ident: ref49 doi: 10.1109/CVPR.2019.00108 – ident: ref26 doi: 10.1109/CVPR42600.2020.01164 – ident: ref18 doi: 10.1109/JSSC.2014.2342715 |
| SSID | ssj0001527395 |
| Score | 2.6486547 |
| Snippet | Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4947 |
| SubjectTerms | Algorithms Autonomous cars Cameras computer vision for transportation data sets for robot learning Data sets for robotic vision Datasets Dynamic range Global Positioning System High resolution Illumination Image color analysis Lighting Robot vision systems Sunset Temporal resolution |
| Title | DSEC: A Stereo Event Camera Dataset for Driving Scenarios |
| URI | https://ieeexplore.ieee.org/document/9387069 https://www.proquest.com/docview/2517032948 |
| Volume | 6 |
| WOSCitedRecordID | wos000642765100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridI4cvAh2q0368byNfeBBhziF3Ur7ksBAOtk6j_7tJl03FUXwlkMSwi9p3_fvAVygxsQKEselhBwRCOlEZIvdhdLcS0mkgS6aTYSjUTSZ4EMFrja1MEqpIvlMte2wiOXLGS2tq6yD3EblsArVMAxXtVqf_hTLJIb-OhLpYufusWvsP--6bbTiCIX3TfIUrVR-_H8LoTLc-99x9mG3VB5Zd3XbB1BR2SHsfKEUrAP2x4PeDeuysQFMzdjA5jOyXmJ9T6yf5EZo5cwoqqw_n1pfAhuTyoy9PFscwfNw8NS7dcr2CA5xznMnldKI1yTVoZ_aaKhOI6RAYKQC4tfSk8YUQaF94oGvXG0UIYOQwjRUmhJBCT-GWjbL1AkwP3EDyX0uCIUlNIskl0iRIhe12VA2oLOGLqaSO9y2sHiJCxvCxdiAHVuw4xLsBlxuVryueDP-mFu34G7mlbg2oLm-nbj8sBaxZVhzuYciOv191Rls271XGbVNqOXzpTqHLXrLp4t5C6r374NW8XI-ALeUvxQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_4BerBrylOp-bgRbBb16Rdn7exTSbOIW7CbqV9SWAgq2zVv9-k66aiCN56SJryS5r3_XsAl6gxtoLEcSkmRwRCOiHZYnehNPcSEkmg82YTjX4_HI3wcQWul7UwSqk8-UxV7WMey5cpvVlXWQ25jcrhKqz7Qnj1ebXWp0fFcomhv4hFuljrPTWNBejVq0YvDlF432RP3kzlxw2ci5Xb3f990B7sFOoja873ex9W1OQAtr-QCpYA24NO64Y12cBAplLWsRmNrBVb7xNrx5kRWxkzqiprT8fWm8AGpCbGYk5nh_B82xm2uk7RIMEhznnmJFIaARsnuuEnNh6qkxApEBiqgHhdetIYIyi0TzzwlauNKmQQUpg0lKZYUMyPYG2STtQxMD92A8l9LgiFpTQLJZdIoSIXtXmhLENtAV1EBXu4bWLxEuVWhIuRATuyYEcF2GW4Ws54nTNn_DG2ZMFdjitwLUNlsTtR8WvNIsux5nIPRXjy-6wL2OwOH3pR765_fwpbdp15fm0F1rLpmzqDDXrPxrPpeX5-PgBO1MEq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DSEC%3A+A+Stereo+Event+Camera+Dataset+for+Driving+Scenarios&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Gehrig%2C+Mathias&rft.au=Aarents%2C+Willem&rft.au=Gehrig%2C+Daniel&rft.au=Scaramuzza%2C+Davide&rft.date=2021-07-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=6&rft.issue=3&rft.spage=4947&rft.epage=4954&rft_id=info:doi/10.1109%2FLRA.2021.3068942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2021_3068942 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |