DSEC: A Stereo Event Camera Dataset for Driving Scenarios

Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sun...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 6; no. 3; pp. 4947 - 4954
Main Authors: Gehrig, Mathias, Aarents, Willem, Gehrig, Daniel, Scaramuzza, Davide
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sunset remains an open problem. In these cases, standard cameras are being pushed to their limits in terms of low light and high dynamic range performance. To address these challenges, we propose, DSEC, a new dataset that contains such demanding illumination conditions and provides a rich set of sensory data. DSEC offers data from a wide-baseline stereo setup of two color frame cameras and two high-resolution monochrome event cameras. In addition, we collect lidar data and RTK GPS measurements, both hardware synchronized with all camera data. One of the distinctive features of this dataset is the inclusion of high-resolution event cameras. Event cameras have received increasing attention for their high temporal resolution and high dynamic range performance. However, due to their novelty, event camera datasets in driving scenarios are rare. This work presents the first high resolution, large scale stereo dataset with event cameras. The dataset contains 53 sequences collected by driving in a variety of illumination conditions and provides ground truth disparity for the development and evaluation of event-based stereo algorithms.
AbstractList Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sunset remains an open problem. In these cases, standard cameras are being pushed to their limits in terms of low light and high dynamic range performance. To address these challenges, we propose, DSEC, a new dataset that contains such demanding illumination conditions and provides a rich set of sensory data. DSEC offers data from a wide-baseline stereo setup of two color frame cameras and two high-resolution monochrome event cameras. In addition, we collect lidar data and RTK GPS measurements, both hardware synchronized with all camera data. One of the distinctive features of this dataset is the inclusion of high-resolution event cameras. Event cameras have received increasing attention for their high temporal resolution and high dynamic range performance. However, due to their novelty, event camera datasets in driving scenarios are rare. This work presents the first high resolution, large scale stereo dataset with event cameras. The dataset contains 53 sequences collected by driving in a variety of illumination conditions and provides ground truth disparity for the development and evaluation of event-based stereo algorithms.
Author Aarents, Willem
Gehrig, Mathias
Gehrig, Daniel
Scaramuzza, Davide
Author_xml – sequence: 1
  givenname: Mathias
  orcidid: 0000-0003-2223-4265
  surname: Gehrig
  fullname: Gehrig, Mathias
  email: mgehrig@ifi.uzh.ch
  organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland
– sequence: 2
  givenname: Willem
  surname: Aarents
  fullname: Aarents, Willem
  email: aarentsw@student.ethz.ch
  organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0001-9952-3335
  surname: Gehrig
  fullname: Gehrig, Daniel
  email: daniel.gehrig18@gmail.com
  organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland
– sequence: 4
  givenname: Davide
  orcidid: 0000-0002-3831-6778
  surname: Scaramuzza
  fullname: Scaramuzza, Davide
  email: davide.scaramuzza@ieee.org
  organization: Department of Informatics, Robotics and Perception Group, University of Zurich, Zürich, Switzerland
BookMark eNp9kE1LAzEQhoNUsNbeBS8Bz1vzsZtsvJVt_YCCYPUcstmJpLSbmk0L_nu3tIh48DRzeJ93hucSDdrQAkLXlEwoJepu8TqdMMLohBNRqpydoSHjUmZcCjH4tV-gcdetCCG0YJKrYojUbDmv7vEULxNECHi-hzbhymwgGjwzyXSQsAsRz6Lf-_YDLy20JvrQXaFzZ9YdjE9zhN4f5m_VU7Z4eXyupovMcs5TVjdNzoSpnSxqpgh1damsyFUJwnLasKaUhcpdYbkogDiuWP8ZqFqCsya3ho_Q7bF3G8PnDrqkV2EX2_6kZgWVhDOVl31KHFM2hq6L4LT1ySQf2hSNX2tK9MGU7k3pgyl9MtWD5A-4jX5j4td_yM0R8QDwE1e8lEQo_g1jd3L-
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TMM_2025_3557612
crossref_primary_10_1109_TPAMI_2023_3311534
crossref_primary_10_1109_LSP_2022_3196599
crossref_primary_10_1109_LRA_2025_3565150
crossref_primary_10_1177_02783649241273554
crossref_primary_10_1038_s41586_024_07409_w
crossref_primary_10_3389_fnins_2023_1160034
crossref_primary_10_1109_LRA_2025_3572777
crossref_primary_10_3389_fnins_2022_813555
crossref_primary_10_1109_TITS_2023_3312355
crossref_primary_10_1109_TCDS_2024_3422873
crossref_primary_10_1109_TITS_2024_3456108
crossref_primary_10_1109_TNNLS_2023_3289051
crossref_primary_10_1109_LRA_2023_3279622
crossref_primary_10_1109_TIP_2024_3374074
crossref_primary_10_1109_TPAMI_2024_3396116
crossref_primary_10_1109_TPAMI_2025_3545936
crossref_primary_10_1016_j_cscm_2025_e04440
crossref_primary_10_3390_electronics14132603
crossref_primary_10_3390_jsan14010007
crossref_primary_10_1109_LRA_2022_3186770
crossref_primary_10_1016_j_commtr_2025_100202
crossref_primary_10_3390_s25103158
crossref_primary_10_1109_JPROC_2023_3308088
crossref_primary_10_1109_TCI_2023_3281202
crossref_primary_10_1002_aisy_202400265
crossref_primary_10_3390_s23083967
crossref_primary_10_1109_TPAMI_2024_3361671
crossref_primary_10_3390_rs17173112
crossref_primary_10_1109_TIM_2025_3566813
crossref_primary_10_1016_j_inffus_2023_101806
crossref_primary_10_1109_LRA_2025_3576070
crossref_primary_10_3390_s23041998
crossref_primary_10_1016_j_conengprac_2023_105530
crossref_primary_10_1109_LRA_2025_3589145
crossref_primary_10_1109_TCSVT_2023_3335457
crossref_primary_10_32604_cmc_2024_047240
crossref_primary_10_3390_electronics12102302
crossref_primary_10_1109_TCC_2022_3149963
crossref_primary_10_3390_rs15112740
crossref_primary_10_1002_aisy_202401065
crossref_primary_10_3389_fmed_2025_1564678
crossref_primary_10_1109_ACCESS_2024_3523411
crossref_primary_10_1109_TIV_2024_3394735
crossref_primary_10_1016_j_aej_2025_04_098
crossref_primary_10_1177_02783649241303525
crossref_primary_10_1109_LSP_2024_3493801
crossref_primary_10_1109_TCSVT_2022_3189480
crossref_primary_10_1109_TIM_2022_3144229
crossref_primary_10_1631_FITEE_2400011
crossref_primary_10_1016_j_inffus_2025_103697
crossref_primary_10_1109_LRA_2025_3609095
crossref_primary_10_1109_TIV_2024_3393749
crossref_primary_10_1109_TITS_2023_3248483
crossref_primary_10_1109_TIV_2023_3339144
crossref_primary_10_1109_TCSVT_2025_3559299
crossref_primary_10_1109_LSENS_2022_3216894
crossref_primary_10_3390_electronics13214280
crossref_primary_10_1109_JSEN_2023_3293821
crossref_primary_10_3390_vehicles7020053
crossref_primary_10_3390_eng6070153
crossref_primary_10_1002_aisy_202400243
crossref_primary_10_1109_ACCESS_2025_3536524
crossref_primary_10_1109_TPAMI_2022_3230727
crossref_primary_10_1109_TIP_2025_3550008
crossref_primary_10_1109_LRA_2022_3168335
crossref_primary_10_1002_aisy_202200221
crossref_primary_10_1109_TPAMI_2025_3586559
crossref_primary_10_1109_LRA_2024_3416791
crossref_primary_10_1007_s11263_024_02331_0
crossref_primary_10_1016_j_compeleceng_2024_109432
crossref_primary_10_1016_j_neunet_2024_106330
crossref_primary_10_3390_s25102957
crossref_primary_10_1109_ACCESS_2023_3316143
crossref_primary_10_1109_LRA_2024_3355648
crossref_primary_10_1016_j_neucom_2023_127010
crossref_primary_10_1016_j_eswa_2024_124342
crossref_primary_10_1109_JSEN_2024_3411088
crossref_primary_10_1109_LRA_2022_3223020
crossref_primary_10_3390_s222410014
crossref_primary_10_1109_TRO_2025_3584544
crossref_primary_10_1109_ACCESS_2024_3386032
crossref_primary_10_3390_rs17040717
crossref_primary_10_1145_3656469
crossref_primary_10_1016_j_sigpro_2024_109580
crossref_primary_10_1109_LPT_2024_3477614
crossref_primary_10_1109_TPAMI_2023_3328188
crossref_primary_10_1007_s11263_025_02511_6
crossref_primary_10_1109_TPAMI_2023_3323858
crossref_primary_10_1109_LSP_2024_3398531
crossref_primary_10_3390_s25154540
crossref_primary_10_1088_2634_4386_add0da
crossref_primary_10_1109_JSEN_2025_3530925
crossref_primary_10_1016_j_inffus_2024_102891
crossref_primary_10_1109_LRA_2025_3583486
crossref_primary_10_1109_TMM_2024_3387690
crossref_primary_10_3390_s22145190
crossref_primary_10_1109_LRA_2025_3565379
crossref_primary_10_1007_s10846_022_01753_7
crossref_primary_10_1109_TRO_2025_3548523
crossref_primary_10_1109_LRA_2023_3269950
crossref_primary_10_3390_biomimetics10090569
crossref_primary_10_1109_JPROC_2024_3429360
crossref_primary_10_1109_TPAMI_2024_3444912
crossref_primary_10_1016_j_neucom_2025_129899
crossref_primary_10_1016_j_neucom_2025_129776
crossref_primary_10_1109_TCASAI_2024_3520905
crossref_primary_10_1002_aisy_202200251
crossref_primary_10_1007_s11263_025_02488_2
crossref_primary_10_1109_TITS_2025_3545479
crossref_primary_10_1049_ipr2_13131
crossref_primary_10_1016_j_measurement_2024_115203
crossref_primary_10_1016_j_cviu_2022_103489
crossref_primary_10_1109_TIP_2022_3220938
crossref_primary_10_1109_TNNLS_2024_3437415
crossref_primary_10_1016_j_neucom_2024_128657
crossref_primary_10_1109_TIP_2024_3426469
crossref_primary_10_1109_TIM_2024_3470063
crossref_primary_10_1016_j_robot_2022_104304
Cites_doi 10.1109/CVPRW.2018.00141
10.1109/LRA.2019.2893427
10.1109/ICCV.2019.00161
10.1109/CVPR.2019.00099
10.2514/1.28949
10.1109/CVPR.2016.352
10.1109/ICCV.2017.534
10.1109/CVPR42600.2020.00271
10.1109/IROS.2013.6696514
10.1109/CVPR42600.2020.00256
10.1109/LRA.2018.2800793
10.1109/CVPR42600.2020.00174
10.1177/0278364919843996
10.1016/0262-8856(92)90066-C
10.1109/CVPR42600.2020.00338
10.1109/TIP.2006.884928
10.1109/CVPRW.2019.00210
10.1007/978-3-030-01231-1_27
10.1109/TPAMI.2019.2963386
10.1109/CVPR.2008.4587671
10.1109/CVPR.2015.7298925
10.1109/CVPR.2019.00698
10.1007/978-3-030-01246-5_15
10.1109/TPAMI.2020.3008413
10.1177/0278364916679498
10.1007/s11263-019-01209-w
10.1109/CVPR.2016.401
10.1109/CVPR.2015.7298644
10.3389/fnbot.2019.00028
10.1109/TPAMI.2007.1166
10.1109/CVPR.2018.00786
10.1109/3DV.2017.00012
10.1109/ICRA.2019.8793511
10.1109/LRA.2020.3025505
10.1109/CVPR.2018.00186
10.1109/CVPR.2016.350
10.1109/CVPR.2019.00108
10.1109/CVPR42600.2020.01164
10.1109/JSSC.2014.2342715
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2021.3068942
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 4954
ExternalDocumentID 10_1109_LRA_2021_3068942
9387069
Genre orig-research
GrantInformation_xml – fundername: National Center of Competence in Research (NCCR) Robotics
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; Swiss National Science Foundation
  funderid: 10.13039/501100001711
– fundername: SNSF-ERC Starting
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-bdd426abf75b2901fb89c6498e6c31d2d87594f5c365e0f392273e9b7efca4ca3
IEDL.DBID RIE
ISICitedReferencesCount 216
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642765100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 09 08:49:35 EST 2025
Tue Nov 18 22:23:56 EST 2025
Sat Nov 29 06:03:11 EST 2025
Wed Aug 27 02:51:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-bdd426abf75b2901fb89c6498e6c31d2d87594f5c365e0f392273e9b7efca4ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2223-4265
0000-0002-3831-6778
0000-0001-9952-3335
PQID 2517032948
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_9387069
crossref_citationtrail_10_1109_LRA_2021_3068942
proquest_journals_2517032948
crossref_primary_10_1109_LRA_2021_3068942
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
scharstein (ref47) 0
ref11
ref10
binas (ref35) 2017
geyer (ref23) 2020
ref17
ref16
ref18
ref46
ref45
ref48
ref42
ref41
ref44
ref43
geiger (ref3) 0
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref34
ref37
sun (ref25) 0
ref30
ref2
ref1
ref39
ref38
perot (ref33) 2020
ref24
ref26
ref20
ref22
ref21
ref28
ref27
ref29
gaidon (ref31) 0
finateu (ref19) 0
tournemire (ref32) 2020
hu (ref36) 0
References_xml – ident: ref22
  doi: 10.1109/CVPRW.2018.00141
– year: 2017
  ident: ref35
  article-title: Ddd17: End-to-end davis driving dataset
– ident: ref15
  doi: 10.1109/LRA.2019.2893427
– ident: ref48
  doi: 10.1109/ICCV.2019.00161
– ident: ref6
  doi: 10.1109/CVPR.2019.00099
– ident: ref44
  doi: 10.2514/1.28949
– ident: ref30
  doi: 10.1109/CVPR.2016.352
– ident: ref21
  doi: 10.1109/ICCV.2017.534
– ident: ref24
  doi: 10.1109/CVPR42600.2020.00271
– ident: ref41
  doi: 10.1109/IROS.2013.6696514
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00256
– ident: ref2
  doi: 10.1109/LRA.2018.2800793
– ident: ref17
  doi: 10.1109/CVPR42600.2020.00174
– ident: ref28
  doi: 10.1177/0278364919843996
– ident: ref43
  doi: 10.1016/0262-8856(92)90066-C
– ident: ref14
  doi: 10.1109/CVPR42600.2020.00338
– start-page: 31
  year: 0
  ident: ref47
  article-title: High-resolution stereo datasets with subpixel-accurate ground truth
  publication-title: Proc German Conf Pattern Recognit
– ident: ref39
  doi: 10.1109/TIP.2006.884928
– ident: ref37
  doi: 10.1109/CVPRW.2019.00210
– ident: ref10
  doi: 10.1007/978-3-030-01231-1_27
– ident: ref40
  doi: 10.1109/TPAMI.2019.2963386
– ident: ref7
  doi: 10.1109/CVPR.2008.4587671
– year: 2020
  ident: ref23
  article-title: A2d2: Audi autonomous driving dataset
– ident: ref4
  doi: 10.1109/CVPR.2015.7298925
– ident: ref16
  doi: 10.1109/CVPR.2019.00698
– ident: ref8
  doi: 10.1007/978-3-030-01246-5_15
– start-page: 112
  year: 0
  ident: ref19
  article-title: 5.10 a 1280× 720 back-illuminated stacked temporal contrast event-based vision sensor with 4.86 $\mu$m pixels, 1.066 geps readout, programmable event-rate controller and compressive data-formatting pipeline
  publication-title: Proc IEEE Int Solid-State Circuits Conf -(ISSCC)
– ident: ref1
  doi: 10.1109/TPAMI.2020.3008413
– start-page: 3354
  year: 0
  ident: ref3
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 2446
  year: 0
  ident: ref25
  article-title: Scalability in perception for autonomous driving: Waymo open dataset
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 1
  year: 0
  ident: ref36
  article-title: Ddd20 end-to-end event camera driving dataset: Fusing frames and events with deep learning for improved steering prediction
  publication-title: Proc IEEE 23rd Int Conf Intell Transp Syst (ITSC)
– ident: ref27
  doi: 10.1177/0278364916679498
– ident: ref13
  doi: 10.1007/s11263-019-01209-w
– year: 2020
  ident: ref32
  article-title: A large scale event-based detection dataset for automotive
– ident: ref5
  doi: 10.1109/CVPR.2016.401
– start-page: 4340
  year: 0
  ident: ref31
  article-title: Virtual worlds as proxy for multi-object tracking analysis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref9
  doi: 10.1109/CVPR.2015.7298644
– ident: ref12
  doi: 10.3389/fnbot.2019.00028
– ident: ref42
  doi: 10.1109/TPAMI.2007.1166
– year: 2020
  ident: ref33
  article-title: Learning to detect objects with a 1 megapixel event camera
– ident: ref11
  doi: 10.1109/CVPR.2018.00786
– ident: ref46
  doi: 10.1109/3DV.2017.00012
– ident: ref45
  doi: 10.1109/ICRA.2019.8793511
– ident: ref38
  doi: 10.1109/LRA.2020.3025505
– ident: ref34
  doi: 10.1109/CVPR.2018.00186
– ident: ref20
  doi: 10.1109/CVPR.2016.350
– ident: ref49
  doi: 10.1109/CVPR.2019.00108
– ident: ref26
  doi: 10.1109/CVPR42600.2020.01164
– ident: ref18
  doi: 10.1109/JSSC.2014.2342715
SSID ssj0001527395
Score 2.6486547
Snippet Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4947
SubjectTerms Algorithms
Autonomous cars
Cameras
computer vision for transportation
data sets for robot learning
Data sets for robotic vision
Datasets
Dynamic range
Global Positioning System
High resolution
Illumination
Image color analysis
Lighting
Robot vision systems
Sunset
Temporal resolution
Title DSEC: A Stereo Event Camera Dataset for Driving Scenarios
URI https://ieeexplore.ieee.org/document/9387069
https://www.proquest.com/docview/2517032948
Volume 6
WOSCitedRecordID wos000642765100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridI4cvAh2q0368byNfeBBhziF3Ur7ksBAOtk6j_7tJl03FUXwlkMSwi9p3_fvAVygxsQKEselhBwRCOlEZIvdhdLcS0mkgS6aTYSjUTSZ4EMFrja1MEqpIvlMte2wiOXLGS2tq6yD3EblsArVMAxXtVqf_hTLJIb-OhLpYufusWvsP--6bbTiCIX3TfIUrVR-_H8LoTLc-99x9mG3VB5Zd3XbB1BR2SHsfKEUrAP2x4PeDeuysQFMzdjA5jOyXmJ9T6yf5EZo5cwoqqw_n1pfAhuTyoy9PFscwfNw8NS7dcr2CA5xznMnldKI1yTVoZ_aaKhOI6RAYKQC4tfSk8YUQaF94oGvXG0UIYOQwjRUmhJBCT-GWjbL1AkwP3EDyX0uCIUlNIskl0iRIhe12VA2oLOGLqaSO9y2sHiJCxvCxdiAHVuw4xLsBlxuVryueDP-mFu34G7mlbg2oLm-nbj8sBaxZVhzuYciOv191Rls271XGbVNqOXzpTqHLXrLp4t5C6r374NW8XI-ALeUvxQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_4BerBrylOp-bgRbBb16Rdn7exTSbOIW7CbqV9SWAgq2zVv9-k66aiCN56SJryS5r3_XsAl6gxtoLEcSkmRwRCOiHZYnehNPcSEkmg82YTjX4_HI3wcQWul7UwSqk8-UxV7WMey5cpvVlXWQ25jcrhKqz7Qnj1ebXWp0fFcomhv4hFuljrPTWNBejVq0YvDlF432RP3kzlxw2ci5Xb3f990B7sFOoja873ex9W1OQAtr-QCpYA24NO64Y12cBAplLWsRmNrBVb7xNrx5kRWxkzqiprT8fWm8AGpCbGYk5nh_B82xm2uk7RIMEhznnmJFIaARsnuuEnNh6qkxApEBiqgHhdetIYIyi0TzzwlauNKmQQUpg0lKZYUMyPYG2STtQxMD92A8l9LgiFpTQLJZdIoSIXtXmhLENtAV1EBXu4bWLxEuVWhIuRATuyYEcF2GW4Ws54nTNn_DG2ZMFdjitwLUNlsTtR8WvNIsux5nIPRXjy-6wL2OwOH3pR765_fwpbdp15fm0F1rLpmzqDDXrPxrPpeX5-PgBO1MEq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DSEC%3A+A+Stereo+Event+Camera+Dataset+for+Driving+Scenarios&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Gehrig%2C+Mathias&rft.au=Aarents%2C+Willem&rft.au=Gehrig%2C+Daniel&rft.au=Scaramuzza%2C+Davide&rft.date=2021-07-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=6&rft.issue=3&rft.spage=4947&rft.epage=4954&rft_id=info:doi/10.1109%2FLRA.2021.3068942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2021_3068942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon