Virtual Network Function Embedding under Nodal Outage Using Deep Q-Learning

With the emergence of various types of applications such as delay-sensitive applications, future communication networks are expected to be increasingly complex and dynamic. Network Function Virtualization (NFV) provides the necessary support towards efficient management of such complex networks, by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future internet Ročník 13; číslo 3; s. 82
Hlavní autoři: Chetty, Swarna Bindu, Ahmadi, Hamed, Sharma, Sachin, Nag, Avishek
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 01.03.2021
Témata:
ISSN:1999-5903, 1999-5903
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the emergence of various types of applications such as delay-sensitive applications, future communication networks are expected to be increasingly complex and dynamic. Network Function Virtualization (NFV) provides the necessary support towards efficient management of such complex networks, by virtualizing network functions and placing them on shared commodity servers. However, one of the critical issues in NFV is the resource allocation for the highly complex services; moreover, this problem is classified as an NP-Hard problem. To solve this problem, our work investigates the potential of Deep Reinforcement Learning (DRL) as a swift yet accurate approach (as compared to integer linear programming) for deploying Virtualized Network Functions (VNFs) under several Quality-of-Service (QoS) constraints such as latency, memory, CPU, and failure recovery requirements. More importantly, the failure recovery requirements are focused on the node-outage problem where outage can be either due to a disaster or unavailability of network topology information (e.g., due to proprietary and ownership issues). In DRL, we adopt a Deep Q-Learning (DQL) based algorithm where the primary network estimates the action-value function Q, as well as the predicted Q, highly causing divergence in Q-value’s updates. This divergence increases for the larger-scale action and state-space causing inconsistency in learning, resulting in an inaccurate output. Thus, to overcome this divergence, our work has adopted a well-known approach, i.e., introducing Target Neural Networks and Experience Replay algorithms in DQL. The constructed model is simulated for two real network topologies—Netrail Topology and BtEurope Topology—with various capacities of the nodes (e.g., CPU core, VNFs per Core), links (e.g., bandwidth and latency), several VNF Forwarding Graph (VNF-FG) complexities, and different degrees of the nodal outage from 0% to 50%. We can conclude from our work that, with the increase in network density or nodal capacity or VNF-FG’s complexity, the model took extremely high computation time to execute the desirable results. Moreover, with the rise in complexity of the VNF-FG, the resources decline much faster. In terms of the nodal outage, our model provided almost 70–90% Service Acceptance Rate (SAR) even with a 50% nodal outage for certain combinations of scenarios.
AbstractList With the emergence of various types of applications such as delay-sensitive applications, future communication networks are expected to be increasingly complex and dynamic. Network Function Virtualization (NFV) provides the necessary support towards efficient management of such complex networks, by virtualizing network functions and placing them on shared commodity servers. However, one of the critical issues in NFV is the resource allocation for the highly complex services; moreover, this problem is classified as an NP-Hard problem. To solve this problem, our work investigates the potential of Deep Reinforcement Learning (DRL) as a swift yet accurate approach (as compared to integer linear programming) for deploying Virtualized Network Functions (VNFs) under several Quality-of-Service (QoS) constraints such as latency, memory, CPU, and failure recovery requirements. More importantly, the failure recovery requirements are focused on the node-outage problem where outage can be either due to a disaster or unavailability of network topology information (e.g., due to proprietary and ownership issues). In DRL, we adopt a Deep Q-Learning (DQL) based algorithm where the primary network estimates the action-value function Q, as well as the predicted Q, highly causing divergence in Q-value’s updates. This divergence increases for the larger-scale action and state-space causing inconsistency in learning, resulting in an inaccurate output. Thus, to overcome this divergence, our work has adopted a well-known approach, i.e., introducing Target Neural Networks and Experience Replay algorithms in DQL. The constructed model is simulated for two real network topologies—Netrail Topology and BtEurope Topology—with various capacities of the nodes (e.g., CPU core, VNFs per Core), links (e.g., bandwidth and latency), several VNF Forwarding Graph (VNF-FG) complexities, and different degrees of the nodal outage from 0% to 50%. We can conclude from our work that, with the increase in network density or nodal capacity or VNF-FG’s complexity, the model took extremely high computation time to execute the desirable results. Moreover, with the rise in complexity of the VNF-FG, the resources decline much faster. In terms of the nodal outage, our model provided almost 70–90% Service Acceptance Rate (SAR) even with a 50% nodal outage for certain combinations of scenarios.
Author Ahmadi, Hamed
Nag, Avishek
Chetty, Swarna Bindu
Sharma, Sachin
Author_xml – sequence: 1
  givenname: Swarna Bindu
  surname: Chetty
  fullname: Chetty, Swarna Bindu
– sequence: 2
  givenname: Hamed
  orcidid: 0000-0001-5508-8757
  surname: Ahmadi
  fullname: Ahmadi, Hamed
– sequence: 3
  givenname: Sachin
  orcidid: 0000-0002-8358-2258
  surname: Sharma
  fullname: Sharma, Sachin
– sequence: 4
  givenname: Avishek
  orcidid: 0000-0003-1702-1492
  surname: Nag
  fullname: Nag, Avishek
BookMark eNptkE1Lw0AQhhepYK29-AtyFqKTbDabPUpttVhaBOs1THYnZWubLZsE8d-bWFERB4b5euc5vOdsULmKGLuM4JpzBTeljThwgCw-YcNIKRUKBXzwqz9j47reQhdcxWkqh-zxxfqmxV2wpObN-ddg1la6sa4KpvuCjLHVJmgrQz5YOtPJVm2DGwrWdX-4IzoET-GC0FfdfMFOS9zVNP6qI7aeTZ8nD-FidT-f3C5CzTlvwgJBSVEoTEGjSbtEBUqAzgpleEYglNE6kVnfYElCcg4ySWRKEsqY-IjNj1zjcJsfvN2jf88d2vxz4fwmR99YvaNcxHFRlpHGIuEJosooQlPEQkmKuMhMx7o6srR3de2p_OZFkPeu5j-udmL4I9a2wd6txqPd_ffyAQqKewM
CitedBy_id crossref_primary_10_1016_j_comcom_2022_08_005
crossref_primary_10_3390_fi15020078
crossref_primary_10_1109_ACCESS_2022_3215744
Cites_doi 10.1007/s00521-019-04376-6
10.1109/TNSM.2018.2867827
10.1109/ANTS50601.2020.9342803
10.1109/TNSM.2019.2947905
10.1109/TNSM.2018.2876623
10.23919/INM.2017.7987271
10.1109/COMST.2015.2477041
10.1109/JSAC.2011.111002
10.1109/MNET.001.1900287
10.1109/TNET.2018.2890631
10.1109/COMST.2019.2916583
10.1016/j.comnet.2018.01.028
10.1109/MCOM.2019.1900271
10.1109/JSAC.2018.2815318
10.1109/NETSOFT.2015.7116120
10.1109/TNSM.2016.2598420
10.1038/nature14236
10.1109/INM.2015.7140281
10.1109/JSAC.2019.2906744
10.1109/JSAC.2017.2760162
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/fi13030082
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_522bff1cab434aa98e1adb2597e1358d
10_3390_fi13030082
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
RNS
TR2
ID FETCH-LOGICAL-c333t-ba0975b9a60cad6cada90950c8b9d38e059dcc478059dafe5733074476e70f2e3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633683400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-5903
IngestDate Fri Oct 03 12:53:18 EDT 2025
Sat Nov 29 07:08:05 EST 2025
Tue Nov 18 22:16:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-ba0975b9a60cad6cada90950c8b9d38e059dcc478059dafe5733074476e70f2e3
ORCID 0000-0001-5508-8757
0000-0002-8358-2258
0000-0003-1702-1492
OpenAccessLink https://doaj.org/article/522bff1cab434aa98e1adb2597e1358d
ParticipantIDs doaj_primary_oai_doaj_org_article_522bff1cab434aa98e1adb2597e1358d
crossref_primary_10_3390_fi13030082
crossref_citationtrail_10_3390_fi13030082
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Future internet
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gupta (ref_21) 2018; 133
Yuan (ref_15) 2020; 32
Saad (ref_1) 2019; 34
Knight (ref_22) 2011; 29
Quang (ref_7) 2018; 16
Mijumbi (ref_2) 2015; 18
Sciancalepore (ref_16) 2018; 15
ref_14
Quang (ref_5) 2019; 16
ref_24
Herrera (ref_4) 2016; 13
ref_10
Jang (ref_13) 2017; 35
Mnih (ref_20) 2015; 518
Letaief (ref_3) 2019; 57
ref_19
Nejad (ref_6) 2018; 36
Agarwal (ref_12) 2019; 27
ref_17
ref_9
ref_8
Dehury (ref_11) 2019; 37
Luong (ref_18) 2019; 21
(ref_23) 1959; 6
References_xml – volume: 32
  start-page: 1995
  year: 2020
  ident: ref_15
  article-title: A Q-learning-based approach for virtual network embedding in data center
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04376-6
– volume: 15
  start-page: 1292
  year: 2018
  ident: ref_16
  article-title: z-TORCH: An automated NFV orchestration and monitoring solution
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2018.2867827
– ident: ref_17
  doi: 10.1109/ANTS50601.2020.9342803
– volume: 16
  start-page: 1318
  year: 2019
  ident: ref_5
  article-title: A deep reinforcement learning approach for VNF Forwarding Graph Embedding
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2019.2947905
– volume: 16
  start-page: 98
  year: 2018
  ident: ref_7
  article-title: Single and multi-domain adaptive allocation algorithms for vnf forwarding graph embedding
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2018.2876623
– ident: ref_9
  doi: 10.23919/INM.2017.7987271
– ident: ref_24
– volume: 18
  start-page: 236
  year: 2015
  ident: ref_2
  article-title: Network function virtualization: State-of-the-art and research challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2477041
– ident: ref_10
– volume: 29
  start-page: 1765
  year: 2011
  ident: ref_22
  article-title: The Internet Topology Zoo
  publication-title: Sel. Areas Commun. IEEE J.
  doi: 10.1109/JSAC.2011.111002
– volume: 34
  start-page: 134
  year: 2019
  ident: ref_1
  article-title: A vision of 6G wireless systems: Applications, trends, technologies, and open research problems
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.001.1900287
– volume: 27
  start-page: 433
  year: 2019
  ident: ref_12
  article-title: VNF placement and resource allocation for the support of vertical services in 5G networks
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2018.2890631
– volume: 21
  start-page: 3133
  year: 2019
  ident: ref_18
  article-title: Applications of deep reinforcement learning in communications and networking: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2916583
– volume: 133
  start-page: 1
  year: 2018
  ident: ref_21
  article-title: On service-chaining strategies using virtual network functions in operator networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.01.028
– volume: 57
  start-page: 84
  year: 2019
  ident: ref_3
  article-title: The roadmap to 6G: AI empowered wireless networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2019.1900271
– volume: 36
  start-page: 542
  year: 2018
  ident: ref_6
  article-title: vSPACE: VNF simultaneous placement, admission control and embedding
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2815318
– ident: ref_14
  doi: 10.1109/NETSOFT.2015.7116120
– ident: ref_19
– volume: 13
  start-page: 518
  year: 2016
  ident: ref_4
  article-title: Resource allocation in NFV: A comprehensive survey
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2016.2598420
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_20
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref_8
  doi: 10.1109/INM.2015.7140281
– volume: 37
  start-page: 1029
  year: 2019
  ident: ref_11
  article-title: DYVINE: Fitness-based dynamic virtual network embedding in cloud computing
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2019.2906744
– volume: 35
  start-page: 2532
  year: 2017
  ident: ref_13
  article-title: Joint optimization of service function placement and flow distribution for service function chaining
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2760162
– volume: 6
  start-page: 18
  year: 1959
  ident: ref_23
  article-title: On random graphs I
  publication-title: Publ. Math. Debr.
SSID ssj0000392667
Score 2.1862338
Snippet With the emergence of various types of applications such as delay-sensitive applications, future communication networks are expected to be increasingly complex...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 82
SubjectTerms deep Q-learning
network function virtualization
virtual network function forwarding graph embedding (VNF-FGE)
Title Virtual Network Function Embedding under Nodal Outage Using Deep Q-Learning
URI https://doaj.org/article/522bff1cab434aa98e1adb2597e1358d
Volume 13
WOSCitedRecordID wos000633683400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M0C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: 7WY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6ketCD-MT6KAt68bA0yW72cfTRooixgko9hX1KQdsSU3-_u0msFQQvHnIZhhC-DfN9A7PfAHCCfZzKWCEnqUWEGIe4dQZJH9VEUq2tqZZNsCzjw6EYLKz6CjNhtT1wDVzX6wPlXKylIphIKbiNpVFetDMb45SbUH0jJhaaqaoGe9qnlNV-pNj39V03CtU6MN4PBlow6q8Ypb8B1hspCM_qT9gES3a8BdYWDAK3wc3TqAgXPGBWT2vDvqehACXsvSlrAu_AcAusgNnE-LS7WenrA6zmAOCltVN4jxoH1Zcd8NjvPVxcoWb9AdIY4xIpGQmWKiFppKWh_pHCC6JIcyUM5tYLI6M1CUsJhJHOBmdDLwgIo5ZFLrF4F7TGk7HdAzDRXMuUaitiQSSXQqXYEWaUiR3XSdIGp1-Q5LrxBg8rKl5z3yME-PJv-NrgeJ47rR0xfs06D8jOM4KLdRXwZ5s3Z5v_dbb7__GSA7CahDmUam7sELTKYmaPwIr-KEfvRaf6bTpgeXB9O3j-BE3Vy7Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Network+Function+Embedding+under+Nodal+Outage+Using+Deep+Q-Learning&rft.jtitle=Future+internet&rft.au=Chetty%2C+Swarna+Bindu&rft.au=Ahmadi%2C+Hamed&rft.au=Sharma%2C+Sachin&rft.au=Nag%2C+Avishek&rft.date=2021-03-01&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=13&rft.issue=3&rft.spage=82&rft_id=info:doi/10.3390%2Ffi13030082&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fi13030082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon