FPGA based fast and high-throughput 2-slow retiming 128-bit AES encryption algorithm

This paper presents a high throughput digital design of the 128-bit Advanced Encryption Standard (AES) algorithm based on the 2-slow retiming technique on FPGA. The C-slow retiming is a well-known optimization and high performance technique. It can enhance designs with feedback loops and automatical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics Jg. 45; H. 8; S. 1014 - 1025
Hauptverfasser: Farashahi, Reza Rezaeian, Rashidi, Bahram, Sayedi, Sayed Masoud
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2014
Schlagworte:
ISSN:1879-2391, 0026-2692
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a high throughput digital design of the 128-bit Advanced Encryption Standard (AES) algorithm based on the 2-slow retiming technique on FPGA. The C-slow retiming is a well-known optimization and high performance technique. It can enhance designs with feedback loops and automatically rebalances the registers in the design. The C-slow retiming can break the critical path of the design into finer pieces to improve the throughput of the design. The complexity of the C-slow retiming on FPGA is to find the best register allocation in the data path of the design so that by increasing the number of registers, relocation of the registers to balance the AES architecture be in the best mode, and the critical path be optimally pipelined and improved. In this paper, architecture of the AES algorithm is implemented in the gate level by high-speed and breakable structures that are desirable for the 2-slow retiming. The Mix-columns transformation is implemented based on multiplication by constants 2 and 3 modules with combinational logic circuits. This work has been successfully verified and synthesized using Xilinx ISE 11 byVirtex-5, XC5VLX85 FPGA. The proposed implementation achieves a high throughput of 86Gb/s and high maximum operation frequency of 671.524MHz whereas the highest throughput and the highest operation frequency reported in the literature are 73.737Gb/s and 576.07MHz, respectively.
AbstractList This paper presents a high throughput digital design of the 128-bit Advanced Encryption Standard (AES) algorithm based on the 2-slow retiming technique on FPGA. The C-slow retiming is a well-known optimization and high performance technique. It can enhance designs with feedback loops and automatically rebalances the registers in the design. The C-slow retiming can break the critical path of the design into finer pieces to improve the throughput of the design. The complexity of the C-slow retiming on FPGA is to find the best register allocation in the data path of the design so that by increasing the number of registers, relocation of the registers to balance the AES architecture be in the best mode, and the critical path be optimally pipelined and improved. In this paper, architecture of the AES algorithm is implemented in the gate level by high-speed and breakable structures that are desirable for the 2-slow retiming. The Mix-columns transformation is implemented based on multiplication by constants 2 and 3 modules with combinational logic circuits. This work has been successfully verified and synthesized using Xilinx ISE 11 byVirtex-5, XC5VLX85 FPGA. The proposed implementation achieves a high throughput of 86 Gb/s and high maximum operation frequency of 671.524 MHz whereas the highest throughput and the highest operation frequency reported in the literature are 73.737 Gb/s and 576.07 MHz, respectively.
This paper presents a high throughput digital design of the 128-bit Advanced Encryption Standard (AES) algorithm based on the 2-slow retiming technique on FPGA. The C-slow retiming is a well-known optimization and high performance technique. It can enhance designs with feedback loops and automatically rebalances the registers in the design. The C-slow retiming can break the critical path of the design into finer pieces to improve the throughput of the design. The complexity of the C-slow retiming on FPGA is to find the best register allocation in the data path of the design so that by increasing the number of registers, relocation of the registers to balance the AES architecture be in the best mode, and the critical path be optimally pipelined and improved. In this paper, architecture of the AES algorithm is implemented in the gate level by high-speed and breakable structures that are desirable for the 2-slow retiming. The Mix-columns transformation is implemented based on multiplication by constants 2 and 3 modules with combinational logic circuits. This work has been successfully verified and synthesized using Xilinx ISE 11 byVirtex-5, XC5VLX85 FPGA. The proposed implementation achieves a high throughput of 86Gb/s and high maximum operation frequency of 671.524MHz whereas the highest throughput and the highest operation frequency reported in the literature are 73.737Gb/s and 576.07MHz, respectively.
Author Farashahi, Reza Rezaeian
Rashidi, Bahram
Sayedi, Sayed Masoud
Author_xml – sequence: 1
  givenname: Reza Rezaeian
  surname: Farashahi
  fullname: Farashahi, Reza Rezaeian
  email: farashahi@cc.iut.ac.ir
  organization: Department of Mathematics, Isfahan University of Technology, Isfahan 84156-83111, Iran
– sequence: 2
  givenname: Bahram
  surname: Rashidi
  fullname: Rashidi, Bahram
  email: b.rashidi@ec.iut.ac.ir, b_rashidi86@yahoo.com
  organization: Department of Electrical & Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
– sequence: 3
  givenname: Sayed Masoud
  surname: Sayedi
  fullname: Sayedi, Sayed Masoud
  email: m_sayedi@cc.iut.ac.ir
  organization: Department of Electrical & Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
BookMark eNp9kD1PwzAQhj0UibbwB5g8siT4Kx-VWKqqLUiVQKLMlmM7iaMkDrYL6r8nUZkYOp1OuufuvWcBZr3tNQAPGMUY4fSpiTvd2JggzGKUxAixGZjjPFtFhK7wLVh43yCEkoywOTju3vdrWAivFSyFD1D0CtamqqNQO3uq6uEUIIl8a3-g08F0pq8gJnlUmADX2w-oe-nOQzC2h6KtrDOh7u7ATSlar-__6hJ87rbHzUt0eNu_btaHSFJKQ1SkK5SN8ZDEslQpwaliOqOMlAVlScFyLbBQtGRq7JKCUFywTLASJwJRIgq6BI-XvYOzXyftA--Ml7ptRa_tyXOcpNl4AWf5OJpfRqWz3jtdcmmCmGIHJ0zLMeKTPN7wSR6f5HGU8DHdiJJ_6OBMJ9z5OvR8gfT4_7fRjntpRldaGadl4Mqaa_gvXuSLow
CitedBy_id crossref_primary_10_1002_cpe_5287
crossref_primary_10_1364_JOCN_439677
crossref_primary_10_1016_j_jisa_2018_01_001
crossref_primary_10_1016_j_vlsi_2023_102057
crossref_primary_10_3390_electronics10162023
crossref_primary_10_1049_iet_cdt_2019_0157
crossref_primary_10_1049_iet_cdt_2019_0179
crossref_primary_10_1109_TPDS_2015_2407896
crossref_primary_10_1080_00051144_2020_1816388
crossref_primary_10_1007_s10470_020_01691_0
crossref_primary_10_1016_j_micpro_2019_102972
crossref_primary_10_1002_cta_2832
crossref_primary_10_1007_s10470_021_01959_z
crossref_primary_10_1007_s13369_017_2925_0
crossref_primary_10_1016_j_ifacol_2018_07_172
crossref_primary_10_1007_s12652_020_02658_9
crossref_primary_10_1016_j_micpro_2015_07_005
crossref_primary_10_1186_s13677_020_00215_5
crossref_primary_10_3390_s21248347
crossref_primary_10_3390_computation7040063
crossref_primary_10_1016_j_jksuci_2016_01_004
crossref_primary_10_1002_cta_2645
crossref_primary_10_1049_iet_cds_2018_5457
crossref_primary_10_1016_j_mejo_2019_06_012
crossref_primary_10_1155_2018_4804729
crossref_primary_10_1002_spy2_254
crossref_primary_10_1016_j_mejo_2021_105085
crossref_primary_10_1117_1_JEI_32_1_013012
crossref_primary_10_1007_s11277_016_3385_7
crossref_primary_10_4018_IJERTCS_2020070105
crossref_primary_10_1002_cta_4264
crossref_primary_10_1002_spy2_292
crossref_primary_10_1109_ACCESS_2025_3570727
Cites_doi 10.1109/ISCAS.2004.1329342
10.11591/ijins.v1i2.530
10.1007/978-3-540-45238-6_27
10.1016/j.microrel.2012.04.020
10.1007/11545262_31
10.1109/ISCAS.2009.5118159
10.1016/j.micpro.2011.03.001
10.1109/LES.2010.2052401
10.1016/j.micpro.2006.02.018
10.1109/ICEMI.2009.5274272
10.1016/j.compeleceng.2011.06.003
10.1109/ICM.2006.373298
10.1109/IECON.2007.4460363
10.1109/SPL.2007.371748
10.1109/ISIE.2006.296142
10.1109/rivf.2012.6169845
10.1109/MCOM.2003.1252803
10.1109/TVLSI.2004.832943
10.1109/ISDPE.2007.131
10.1109/ACT.2009.88
10.1145/611817.611848
10.1109/CCECE.2005.1557161
10.1109/ICITIS.2010.5688757
10.1109/IEEC.2009.120
10.1109/ICSPC.2007.4728419
10.1109/TENCON.2007.4429126
10.1145/611817.611845
10.1016/j.jpdc.2011.04.006
10.1109/ICSES.2008.4673377
10.1016/j.sysarc.2009.12.001
10.1109/ICCIMA.2007.250
10.1016/j.micpro.2004.12.001
10.1109/MMIT.2010.105
10.1016/j.vlsi.2009.05.003
10.1109/NRSC.2008.4542373
10.1109/APCCAS.2008.4746393
10.1049/iet-ifs:20060059
10.1016/S0167-9260(97)00002-3
10.1109/ICM.2008.5393805
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.mejo.2014.05.004
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EndPage 1025
ExternalDocumentID 10_1016_j_mejo_2014_05_004
S0026269214001505
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABXRA
ACDAQ
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SP
8FD
L7M
ID FETCH-LOGICAL-c333t-b69070040c1cfd6216d4e7342fb345b48ea1ad3f4d45b5b231b47a4f15a032ab3
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340219700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1879-2391
0026-2692
IngestDate Sun Sep 28 07:28:51 EDT 2025
Sat Nov 29 07:57:51 EST 2025
Tue Nov 18 22:13:47 EST 2025
Sat Mar 22 15:53:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 8
Keywords High-throughput
C-Slow retiming
Pipelining
Combinational logic circuits
AES
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-b69070040c1cfd6216d4e7342fb345b48ea1ad3f4d45b5b231b47a4f15a032ab3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1567070178
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1567070178
crossref_citationtrail_10_1016_j_mejo_2014_05_004
crossref_primary_10_1016_j_mejo_2014_05_004
elsevier_sciencedirect_doi_10_1016_j_mejo_2014_05_004
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Banraplang Jyrwa, R.o.y. Paily, An Area-Throughput Efficient FPGA implementation of Block Cipher AES algorithm, in: Proceedings of the International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2009, pp. 328–332.
Shanxin Qu, Guochu Shou,Yihong Hu,Zhigang Guo, Zongjue Qian, High ThroughputPipelined Implementation of AES on FPGA, in: Proceedings of the IEEE International Symposium on Information Engineering and Electronic Commerce, 2009, pp. 542–545.
Chi-Jeng Chang, Chi-Wu Huang, Hung-Yun Tai, Mao-Yuan Lin, 8-bit AES implementation in FPGA by multiplexing 32-bit AES operation, in: Proceedings of the First IEEE International Symposium on Data, Privacy and E-Commerce, 2007, pp. 505–507.
Shenoy (bib47) 1997; 22
Kimmo U. Jarvinen, Matti T. Tommiska, Jorma O. Skytta, A Fully Pipelined Memoryless 17.8
Zhang, Parhi (bib1) 2004; 12
Abdel Alim Kamal, Amr M. Youssef, An area optimized implementation of the advanced encryption standard, in: Proceedings of the IEEE International Conference on Microelectronics, 2008, pp. 159–162.
Yi-Cheng Chen, Chung-Cheng Hsieh, Chi-Wu Huang and Chi-Jeng Chang, Kuo-Huang Chang, Embedded a low area 32-bit AES for image encryption/decryption application, in: Proceedings of the IEEE International Symposium on Circuits and Systems ISCAS, 2009, pp. 1922–1925.
Good, Benaissa (bib2) 2007; 1
Van Dyken, Delgado-Frias (bib42) 2010; 56
Swinder Kaur, Renu Vig, Efficient Implementation of AES Algorithm in FPGA Device, in: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, 2007, pp. 179–187.
Rizk, Morsy (bib51) 2007
Dazhong Wang, Xiaoni Li, Improved Method to Increase AES system Speed, in: Proceedings of the the Ninth IEEE International Conference on Electronic Measurement and Instruments, ICEMI, 2009, pp.49–52.
Legat, Biasizzo, Novak (bib36) 2011; 35
Yoo, Kotturi, Pan, Blizzard (bib6) 2005; 29
Gbits/s fully pipelined AES processor on FPGA, in: Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’04), Napa, CA, USA, April 2004, pp. 308–309.
Hoang Trang, Nguyen Van Loi, An efficient FPGA implementation of the advanced encryption standard algorithm, in: Proceedings of the IEEE International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2012, pp. 1–4.
Qitao Zhang, On a hardware implementing method of the optimized AES encryption algorithm, in: Proceedings of the Second IEEE International Conference on MultiMedia and Information Technology, 2010, pp.82–84.
Ali, Aris, Sharif Hossain, Roy (bib13) 2011; 37
Abidine, Ismaili, Moussa (bib50) 2009; 2
)
Artur Gielata, Pawel Russek, Kazimierz Wiatr, AES hardware implementation in FPGA for algorithm acceleration purpose, in: Proceedings of the International Conference on Signals and Electronic Systems(ICSES), 14–17 September 2008, pp. 137–140.
Chih-Pin Su, Huang, Wu (bib26) 2003
C. Leiserson, F. Rose, J. Saxe,Optimizing synchronous circuitry by retiming, in: Proceedings of the Third Caltech Conference on VLSI, March 1993.
Ghada Farouk Naiem et al., An efficient implementation of CBC mode rijndeal AES on an FPGA, in: Proceedings of the 25th National Radio Science Conference (NRSC), Faculty of Engineering, Tanta Univ, Egypt, 2008, pp. 1–8.
Hongge Li, Pan (bib3) 2012; 52
Soliman, Abozaid (bib15) 2011; 71
Chi-Jeng Chang, Chi-Wu Huang, Kuo-Huang Chang, Yi-Cheng Chen, Chung-Cheng Hsieh, High throughput 32-bit AES implementation in FPGA, in: Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, MACAO, December 2008, pp. 1806–1809.
Saleh Abdel-hafeez, Ahmed Sawalmeh, Sameer Bataineh, High performance AES design using pipelining structure over GF((2
Sireesha, MadhavaRao (bib9) 2013; 3
Monica Liberatori, Fernando Otero, J.C. Bonadero, Jorge Castifieira, AES-128 Cipher. High speed, low cost FPGA implementation, in: Proceedings of the IEEE Conference on Programmable Logic, SPL ׳07. 3rd Southern, 2007, pp. 195–198.
Hammad, El-Sankary, El-Masry (bib31) 2010; 2
Leelavathi, Prakasha, Shaila, Venugopal, Patnaik (bib32) 2013; 1
Suresh, Nataraj (bib11) 2012; 2
Rahimunnisa, Karthigai Kumar, Rasheed, Jayakumar (bib41) 2012
Alireza Hodjat, Ingrid Verbauwhede, A 21.54
Kaur, Bhardwaj, Kumar (bib49) 2013; 2
Oscar Perez, Yves Berviller, Camel Tanougast, Serge Weber, Comparison of various strategies of implementation of the algorithm of encryption AES on FPGA, in: Proceedings of the IEEE International Symposium on Industrial Electronics, Montreal, Quebec, Canada, 2006, pp. 3276–3280.
Federal Information Processing Standards Publication (FIPS PUBS) 197, Announcing The Advanced Encryption Standard (AES), 26 November, 2001.
Iyer, Anandmohan, Poornaiah, Kulkarni (bib8) 2011
Rashidi (bib45) 2013; 1
Granado-Criado, Vega-Rodriguez, Sanchez-Perez, Gomez-Pulido (bib4) 2010; 43
Good, Benaissa (bib48) 2005; 3659
Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, Jean-Didier Legat, Efficient implementation of Rijndael encryption in reconfigurable hardware: improvements and design trade offs, CHES 2003, Cologne, Germany, Lect. Notes Comput. Sci., 2779, 2003, 334–350.
Shuuen Shyangwang, Wan-Sheng N.I., An efficient FPGA implementation of advanced encryption standard algorithm, in: Proceedings of the International Symposium on Circuits and Systems ISCAS, vol. 2, 2004, pp. 597–600.
Habibullah Jamal et al. Low power area efficient high data rate 16-bit AES crypto processor, in: Proceedings of the 18th IEEE International Conference on Microelectronics (ICM), 2006, pp. 186–189.
Namin Yu, Howard M. Heys, Investigation of compact hardware implementation of the advanced encryption standard, in: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, CCECE/CCGEI, Saskatoon, May 2005, pp. 1069–1072.
Yulin Zhang, Xinggang Wang, Pipelined implementation of AES encryption based on FPGA, in: Proceedings of the IEEE International Conference on Information Theory and Information Security (ICITIS), 2010, pp. 170–173.
Chi-Wu Huang, Chi-Jeng Chang, Mao-Yuan Lin, Hung-Yun Tai, Compact FPGA implementation of 32-bits AES algorithm using block RAM, in: Proceedings of the IEEE Region 10 ConferenceTENCON, 2007, pp. 1–4.
Samir El Adib, Naoufal Raissouni, AES encryption algorithm hardware implementation architecture: resource and execution time optimization, in: Proceedings of the International Journal of Information and Network Security (IJINS), vol. 1, No. 2, June 2012, pp. 110–118.
in: Proceedings of the IEEE International Conference on Signal Processing and Communications (ICSPC 2007), Dubai, United Arab Emirates, 24–27 November 2007, pp. 716–719.
Gbps AES-128 Encryptor, in: Proceedings of the International Symposium on Field-Programmable Gate Arrays (FPGA 2003), Monterey, CA, USA, February 2003, pp. 207–215.
Nicholas Weaver, Yury Markovskiy, Yatish Patel, John Wawrzynek, Postplacement C-slow retiming for the Xilinx Virtex FPGA, in: Proceedings of the ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays, 2003, pp. 185–194.
Chih-Peng Fan, Hwang (bib10) 2008; 15
Chi-jeng Chang, Chi-Wu Husang, Hung-Yun Tai, Mao-Yuan Lin, Teng-Kuei Hu, 8-bitAES FPGA implementation using Block RAM, in: Proceedings of the the 33 Annual Conference of the IEEE Industrial Electronics Society(IECON), Taipei, Taiwan, 5–8 November, 2007, pp. 2654–2659.
Jing, Chen, Chen, Chen (bib14) 2007; 31
Zhang (10.1016/j.mejo.2014.05.004_bib1) 2004; 12
10.1016/j.mejo.2014.05.004_bib46
Ali (10.1016/j.mejo.2014.05.004_bib13) 2011; 37
Granado-Criado (10.1016/j.mejo.2014.05.004_bib4) 2010; 43
Leelavathi (10.1016/j.mejo.2014.05.004_bib32) 2013; 1
Abidine (10.1016/j.mejo.2014.05.004_bib50) 2009; 2
10.1016/j.mejo.2014.05.004_bib44
10.1016/j.mejo.2014.05.004_bib43
Rahimunnisa (10.1016/j.mejo.2014.05.004_bib41) 2012
Iyer (10.1016/j.mejo.2014.05.004_bib8) 2011
Sireesha (10.1016/j.mejo.2014.05.004_bib9) 2013; 3
10.1016/j.mejo.2014.05.004_bib17
10.1016/j.mejo.2014.05.004_bib16
Suresh (10.1016/j.mejo.2014.05.004_bib11) 2012; 2
10.1016/j.mejo.2014.05.004_bib19
Shenoy (10.1016/j.mejo.2014.05.004_bib47) 1997; 22
10.1016/j.mejo.2014.05.004_bib18
10.1016/j.mejo.2014.05.004_bib12
10.1016/j.mejo.2014.05.004_bib5
10.1016/j.mejo.2014.05.004_bib7
10.1016/j.mejo.2014.05.004_bib52
Good (10.1016/j.mejo.2014.05.004_bib48) 2005; 3659
Good (10.1016/j.mejo.2014.05.004_bib2) 2007; 1
10.1016/j.mejo.2014.05.004_bib28
Rashidi (10.1016/j.mejo.2014.05.004_bib45) 2013; 1
10.1016/j.mejo.2014.05.004_bib27
10.1016/j.mejo.2014.05.004_bib29
10.1016/j.mejo.2014.05.004_bib24
10.1016/j.mejo.2014.05.004_bib23
10.1016/j.mejo.2014.05.004_bib25
10.1016/j.mejo.2014.05.004_bib20
10.1016/j.mejo.2014.05.004_bib22
10.1016/j.mejo.2014.05.004_bib21
Rizk (10.1016/j.mejo.2014.05.004_bib51) 2007
Hongge Li (10.1016/j.mejo.2014.05.004_bib3) 2012; 52
Kaur (10.1016/j.mejo.2014.05.004_bib49) 2013; 2
Jing (10.1016/j.mejo.2014.05.004_bib14) 2007; 31
Soliman (10.1016/j.mejo.2014.05.004_bib15) 2011; 71
Chih-Pin Su (10.1016/j.mejo.2014.05.004_bib26) 2003
Van Dyken (10.1016/j.mejo.2014.05.004_bib42) 2010; 56
10.1016/j.mejo.2014.05.004_bib39
10.1016/j.mejo.2014.05.004_bib38
10.1016/j.mejo.2014.05.004_bib35
Legat (10.1016/j.mejo.2014.05.004_bib36) 2011; 35
10.1016/j.mejo.2014.05.004_bib34
Chih-Peng Fan (10.1016/j.mejo.2014.05.004_bib10) 2008; 15
10.1016/j.mejo.2014.05.004_bib37
10.1016/j.mejo.2014.05.004_bib30
10.1016/j.mejo.2014.05.004_bib33
Yoo (10.1016/j.mejo.2014.05.004_bib6) 2005; 29
10.1016/j.mejo.2014.05.004_bib40
Hammad (10.1016/j.mejo.2014.05.004_bib31) 2010; 2
References_xml – volume: 12
  start-page: 957
  year: 2004
  end-page: 967
  ident: bib1
  article-title: High-speed VLSI architectures for the AES algorithm
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
– start-page: 249
  year: 2011
  end-page: 257
  ident: bib8
  publication-title: Efficient Hardware Architectures for AES on FPGA
– reference: Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, Jean-Didier Legat, Efficient implementation of Rijndael encryption in reconfigurable hardware: improvements and design trade offs, CHES 2003, Cologne, Germany, Lect. Notes Comput. Sci., 2779, 2003, 334–350.
– reference: Dazhong Wang, Xiaoni Li, Improved Method to Increase AES system Speed, in: Proceedings of the the Ninth IEEE International Conference on Electronic Measurement and Instruments, ICEMI, 2009, pp.49–52.
– reference: Qitao Zhang, On a hardware implementing method of the optimized AES encryption algorithm, in: Proceedings of the Second IEEE International Conference on MultiMedia and Information Technology, 2010, pp.82–84.
– volume: 15
  start-page: 447
  year: 2008
  end-page: 455
  ident: bib10
  article-title: FPGA implementations of high throughput sequentialand fully pipelined AES algorithm
  publication-title: Int. J. Electr. Eng.
– reference: Kimmo U. Jarvinen, Matti T. Tommiska, Jorma O. Skytta, A Fully Pipelined Memoryless 17.8
– volume: 37
  start-page: 1160
  year: 2011
  end-page: 1170
  ident: bib13
  article-title: Design of an ultra-high speed AES processor for next generation IT security
  publication-title: Comput. Electr. Eng.
– reference: Chi-Jeng Chang, Chi-Wu Huang, Kuo-Huang Chang, Yi-Cheng Chen, Chung-Cheng Hsieh, High throughput 32-bit AES implementation in FPGA, in: Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, MACAO, December 2008, pp. 1806–1809.
– reference: Yulin Zhang, Xinggang Wang, Pipelined implementation of AES encryption based on FPGA, in: Proceedings of the IEEE International Conference on Information Theory and Information Security (ICITIS), 2010, pp. 170–173.
– reference: Chi-jeng Chang, Chi-Wu Husang, Hung-Yun Tai, Mao-Yuan Lin, Teng-Kuei Hu, 8-bitAES FPGA implementation using Block RAM, in: Proceedings of the the 33 Annual Conference of the IEEE Industrial Electronics Society(IECON), Taipei, Taiwan, 5–8 November, 2007, pp. 2654–2659.
– volume: 52
  start-page: 2829
  year: 2012
  end-page: 2836
  ident: bib3
  article-title: Cell array reconfigurable architecture for high-efficiency AES system
  publication-title: Microelectron. Reliab.
– reference: Samir El Adib, Naoufal Raissouni, AES encryption algorithm hardware implementation architecture: resource and execution time optimization, in: Proceedings of the International Journal of Information and Network Security (IJINS), vol. 1, No. 2, June 2012, pp. 110–118.
– reference: Yi-Cheng Chen, Chung-Cheng Hsieh, Chi-Wu Huang and Chi-Jeng Chang, Kuo-Huang Chang, Embedded a low area 32-bit AES for image encryption/decryption application, in: Proceedings of the IEEE International Symposium on Circuits and Systems ISCAS, 2009, pp. 1922–1925.
– volume: 2
  start-page: 186
  year: 2013
  end-page: 189
  ident: bib49
  article-title: FPGA implementation of efficient hardware for the advanced encryption standard
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– reference: Abdel Alim Kamal, Amr M. Youssef, An area optimized implementation of the advanced encryption standard, in: Proceedings of the IEEE International Conference on Microelectronics, 2008, pp. 159–162.
– reference: C. Leiserson, F. Rose, J. Saxe,Optimizing synchronous circuitry by retiming, in: Proceedings of the Third Caltech Conference on VLSI, March 1993.
– volume: 3659
  start-page: 427
  year: 2005
  end-page: 440
  ident: bib48
  article-title: AES on FPGA from the Fastest to the Smallest
  publication-title: Lect. Notes Comput. Sci.
– year: 2012
  ident: bib41
  article-title: FPGA implementation of AES algorithm for high throughput using folded parallel architecture. Secur. Commun.
– reference: Monica Liberatori, Fernando Otero, J.C. Bonadero, Jorge Castifieira, AES-128 Cipher. High speed, low cost FPGA implementation, in: Proceedings of the IEEE Conference on Programmable Logic, SPL ׳07. 3rd Southern, 2007, pp. 195–198.
– volume: 35
  start-page: 405
  year: 2011
  end-page: 416
  ident: bib36
  article-title: A compact AES core with on-line error-detection for FPGA applications with modest hardware resources
  publication-title: Microprocess. Microsyst.
– reference: Chi-Wu Huang, Chi-Jeng Chang, Mao-Yuan Lin, Hung-Yun Tai, Compact FPGA implementation of 32-bits AES algorithm using block RAM, in: Proceedings of the IEEE Region 10 ConferenceTENCON, 2007, pp. 1–4.
– start-page: 207
  year: 2007
  end-page: 217
  ident: bib51
  article-title: Optimized area and optimized speed hardware implementations of AES on FPGA
  publication-title: IEEE
– reference: Nicholas Weaver, Yury Markovskiy, Yatish Patel, John Wawrzynek, Postplacement C-slow retiming for the Xilinx Virtex FPGA, in: Proceedings of the ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays, 2003, pp. 185–194.
– reference: Shuuen Shyangwang, Wan-Sheng N.I., An efficient FPGA implementation of advanced encryption standard algorithm, in: Proceedings of the International Symposium on Circuits and Systems ISCAS, vol. 2, 2004, pp. 597–600.
– volume: 56
  start-page: 116
  year: 2010
  end-page: 123
  ident: bib42
  article-title: FPGA schemes for minimizing the power-throughput trade-off in executing the advanced encryption standard algorithm
  publication-title: J. Syst. Archit.
– reference: Gbits/s fully pipelined AES processor on FPGA, in: Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’04), Napa, CA, USA, April 2004, pp. 308–309.
– reference: Ghada Farouk Naiem et al., An efficient implementation of CBC mode rijndeal AES on an FPGA, in: Proceedings of the 25th National Radio Science Conference (NRSC), Faculty of Engineering, Tanta Univ, Egypt, 2008, pp. 1–8.
– volume: 2
  start-page: 133
  year: 2012
  end-page: 139
  ident: bib11
  article-title: Area optimized and pipelined fpga implementation of aes encryption and decryption
  publication-title: Int. J. Comput. Eng. Res.
– reference: Shanxin Qu, Guochu Shou,Yihong Hu,Zhigang Guo, Zongjue Qian, High ThroughputPipelined Implementation of AES on FPGA, in: Proceedings of the IEEE International Symposium on Information Engineering and Electronic Commerce, 2009, pp. 542–545.
– reference: ), in: Proceedings of the IEEE International Conference on Signal Processing and Communications (ICSPC 2007), Dubai, United Arab Emirates, 24–27 November 2007, pp. 716–719.
– volume: 31
  start-page: 94
  year: 2007
  end-page: 102
  ident: bib14
  article-title: Reconfigurable system for high-speed and diversified AES using FPGA
  publication-title: Microprocess. Microsyst.
– reference: Swinder Kaur, Renu Vig, Efficient Implementation of AES Algorithm in FPGA Device, in: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, 2007, pp. 179–187.
– reference: Federal Information Processing Standards Publication (FIPS PUBS) 197, Announcing The Advanced Encryption Standard (AES), 26 November, 2001.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib32
  article-title: Design and implementation of advanced encryption algorithm with FPGA and ASIC
  publication-title: Int. J. Res. Eng. Adv. Technol.
– volume: 43
  start-page: 72
  year: 2010
  end-page: 80
  ident: bib4
  article-title: A new methodology to implement the AES algorithm using partial and dynamic reconfiguration
  publication-title: Integr., VLSI J.
– start-page: 86
  year: 2003
  end-page: 91
  ident: bib26
  article-title: A high-throughput low-cost AES processor
  publication-title: IEEE Commun. Mag.
– volume: 1
  start-page: 1
  year: 2007
  end-page: 10
  ident: bib2
  article-title: Pipelined AES on FPGA with support for feedback modes (in a multi-channel environment)
  publication-title: IET Inf. Secur.
– reference: Hoang Trang, Nguyen Van Loi, An efficient FPGA implementation of the advanced encryption standard algorithm, in: Proceedings of the IEEE International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), 2012, pp. 1–4.
– reference: Artur Gielata, Pawel Russek, Kazimierz Wiatr, AES hardware implementation in FPGA for algorithm acceleration purpose, in: Proceedings of the International Conference on Signals and Electronic Systems(ICSES), 14–17 September 2008, pp. 137–140.
– reference: Chi-Jeng Chang, Chi-Wu Huang, Hung-Yun Tai, Mao-Yuan Lin, 8-bit AES implementation in FPGA by multiplexing 32-bit AES operation, in: Proceedings of the First IEEE International Symposium on Data, Privacy and E-Commerce, 2007, pp. 505–507.
– reference: )
– reference: Habibullah Jamal et al. Low power area efficient high data rate 16-bit AES crypto processor, in: Proceedings of the 18th IEEE International Conference on Microelectronics (ICM), 2006, pp. 186–189.
– volume: 2
  start-page: 67
  year: 2010
  end-page: 71
  ident: bib31
  article-title: High-speed AES encryptor with Efficient merging techniques
  publication-title: IEEE Embed. Syst. Lett.
– volume: 71
  start-page: 1075
  year: 2011
  end-page: 1084
  ident: bib15
  article-title: FPGA implementation and performance evaluation of a high throughput crypto coprocessor
  publication-title: J. Parallel Distrib. Comput.
– volume: 3
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib9
  article-title: A novel approach of area optimized and pipelined FPGA implementation of AES encryption and decryption
  publication-title: Int. J. Sci. Res. Publ.
– volume: 1
  start-page: 41
  year: 2013
  end-page: 48
  ident: bib45
  article-title: Implementation of an optimized and pipelined combinational logic rijndael S-Box on FPGA
  publication-title: Int. J. Comput. Netw. Inf. Secur.
– volume: 2
  start-page: 33
  year: 2009
  end-page: 40
  ident: bib50
  article-title: Self-Partial and dynamic reconfiguration implementation for AES using FPGA
  publication-title: Int. J. Comput. Sci.
– reference: Oscar Perez, Yves Berviller, Camel Tanougast, Serge Weber, Comparison of various strategies of implementation of the algorithm of encryption AES on FPGA, in: Proceedings of the IEEE International Symposium on Industrial Electronics, Montreal, Quebec, Canada, 2006, pp. 3276–3280.
– reference: Banraplang Jyrwa, R.o.y. Paily, An Area-Throughput Efficient FPGA implementation of Block Cipher AES algorithm, in: Proceedings of the International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2009, pp. 328–332.
– reference: Gbps AES-128 Encryptor, in: Proceedings of the International Symposium on Field-Programmable Gate Arrays (FPGA 2003), Monterey, CA, USA, February 2003, pp. 207–215.
– reference: Namin Yu, Howard M. Heys, Investigation of compact hardware implementation of the advanced encryption standard, in: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, CCECE/CCGEI, Saskatoon, May 2005, pp. 1069–1072.
– reference: Saleh Abdel-hafeez, Ahmed Sawalmeh, Sameer Bataineh, High performance AES design using pipelining structure over GF((2
– volume: 29
  start-page: 317
  year: 2005
  end-page: 326
  ident: bib6
  article-title: An AES crypto chip using a high-speed parallel pipelined architecture
  publication-title: Microprocess. Microsyst.
– volume: 22
  start-page: 1
  year: 1997
  end-page: 21
  ident: bib47
  article-title: Retiming: theory and practice
  publication-title: Integr. VLSI J.
– reference: Alireza Hodjat, Ingrid Verbauwhede, A 21.54
– ident: 10.1016/j.mejo.2014.05.004_bib25
  doi: 10.1109/ISCAS.2004.1329342
– ident: 10.1016/j.mejo.2014.05.004_bib28
  doi: 10.11591/ijins.v1i2.530
– ident: 10.1016/j.mejo.2014.05.004_bib44
– ident: 10.1016/j.mejo.2014.05.004_bib12
  doi: 10.1007/978-3-540-45238-6_27
– volume: 52
  start-page: 2829
  year: 2012
  ident: 10.1016/j.mejo.2014.05.004_bib3
  article-title: Cell array reconfigurable architecture for high-efficiency AES system
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.04.020
– volume: 3659
  start-page: 427
  year: 2005
  ident: 10.1016/j.mejo.2014.05.004_bib48
  article-title: AES on FPGA from the Fastest to the Smallest
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11545262_31
– volume: 15
  start-page: 447
  issue: 6
  year: 2008
  ident: 10.1016/j.mejo.2014.05.004_bib10
  article-title: FPGA implementations of high throughput sequentialand fully pipelined AES algorithm
  publication-title: Int. J. Electr. Eng.
– ident: 10.1016/j.mejo.2014.05.004_bib34
  doi: 10.1109/ISCAS.2009.5118159
– volume: 35
  start-page: 405
  year: 2011
  ident: 10.1016/j.mejo.2014.05.004_bib36
  article-title: A compact AES core with on-line error-detection for FPGA applications with modest hardware resources
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2011.03.001
– volume: 2
  start-page: 67
  issue: 3
  year: 2010
  ident: 10.1016/j.mejo.2014.05.004_bib31
  article-title: High-speed AES encryptor with Efficient merging techniques
  publication-title: IEEE Embed. Syst. Lett.
  doi: 10.1109/LES.2010.2052401
– volume: 31
  start-page: 94
  year: 2007
  ident: 10.1016/j.mejo.2014.05.004_bib14
  article-title: Reconfigurable system for high-speed and diversified AES using FPGA
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2006.02.018
– ident: 10.1016/j.mejo.2014.05.004_bib23
  doi: 10.1109/ICEMI.2009.5274272
– volume: 1
  start-page: 41
  year: 2013
  ident: 10.1016/j.mejo.2014.05.004_bib45
  article-title: Implementation of an optimized and pipelined combinational logic rijndael S-Box on FPGA
  publication-title: Int. J. Comput. Netw. Inf. Secur.
– volume: 37
  start-page: 1160
  year: 2011
  ident: 10.1016/j.mejo.2014.05.004_bib13
  article-title: Design of an ultra-high speed AES processor for next generation IT security
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2011.06.003
– start-page: 207
  year: 2007
  ident: 10.1016/j.mejo.2014.05.004_bib51
  article-title: Optimized area and optimized speed hardware implementations of AES on FPGA
  publication-title: IEEE
– ident: 10.1016/j.mejo.2014.05.004_bib33
  doi: 10.1109/ICM.2006.373298
– ident: 10.1016/j.mejo.2014.05.004_bib39
  doi: 10.1109/IECON.2007.4460363
– ident: 10.1016/j.mejo.2014.05.004_bib20
  doi: 10.1109/SPL.2007.371748
– ident: 10.1016/j.mejo.2014.05.004_bib52
  doi: 10.1109/ISIE.2006.296142
– ident: 10.1016/j.mejo.2014.05.004_bib27
  doi: 10.1109/rivf.2012.6169845
– volume: 2
  start-page: 133
  issue: 7
  year: 2012
  ident: 10.1016/j.mejo.2014.05.004_bib11
  article-title: Area optimized and pipelined fpga implementation of aes encryption and decryption
  publication-title: Int. J. Comput. Eng. Res.
– volume: 3
  start-page: 1
  issue: 9
  year: 2013
  ident: 10.1016/j.mejo.2014.05.004_bib9
  article-title: A novel approach of area optimized and pipelined FPGA implementation of AES encryption and decryption
  publication-title: Int. J. Sci. Res. Publ.
– start-page: 86
  year: 2003
  ident: 10.1016/j.mejo.2014.05.004_bib26
  article-title: A high-throughput low-cost AES processor
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2003.1252803
– start-page: 249
  year: 2011
  ident: 10.1016/j.mejo.2014.05.004_bib8
– volume: 12
  start-page: 957
  issue: 9
  year: 2004
  ident: 10.1016/j.mejo.2014.05.004_bib1
  article-title: High-speed VLSI architectures for the AES algorithm
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2004.832943
– ident: 10.1016/j.mejo.2014.05.004_bib37
  doi: 10.1109/ISDPE.2007.131
– ident: 10.1016/j.mejo.2014.05.004_bib18
  doi: 10.1109/ACT.2009.88
– ident: 10.1016/j.mejo.2014.05.004_bib46
– ident: 10.1016/j.mejo.2014.05.004_bib5
  doi: 10.1145/611817.611848
– ident: 10.1016/j.mejo.2014.05.004_bib40
  doi: 10.1109/CCECE.2005.1557161
– ident: 10.1016/j.mejo.2014.05.004_bib16
  doi: 10.1109/ICITIS.2010.5688757
– ident: 10.1016/j.mejo.2014.05.004_bib7
– ident: 10.1016/j.mejo.2014.05.004_bib24
  doi: 10.1109/IEEC.2009.120
– ident: 10.1016/j.mejo.2014.05.004_bib19
  doi: 10.1109/ICSPC.2007.4728419
– ident: 10.1016/j.mejo.2014.05.004_bib35
  doi: 10.1109/TENCON.2007.4429126
– ident: 10.1016/j.mejo.2014.05.004_bib43
  doi: 10.1145/611817.611845
– volume: 71
  start-page: 1075
  year: 2011
  ident: 10.1016/j.mejo.2014.05.004_bib15
  article-title: FPGA implementation and performance evaluation of a high throughput crypto coprocessor
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2011.04.006
– ident: 10.1016/j.mejo.2014.05.004_bib22
  doi: 10.1109/ICSES.2008.4673377
– volume: 2
  start-page: 33
  year: 2009
  ident: 10.1016/j.mejo.2014.05.004_bib50
  article-title: Self-Partial and dynamic reconfiguration implementation for AES using FPGA
  publication-title: Int. J. Comput. Sci.
– volume: 56
  start-page: 116
  year: 2010
  ident: 10.1016/j.mejo.2014.05.004_bib42
  article-title: FPGA schemes for minimizing the power-throughput trade-off in executing the advanced encryption standard algorithm
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2009.12.001
– ident: 10.1016/j.mejo.2014.05.004_bib17
  doi: 10.1109/ICCIMA.2007.250
– volume: 29
  start-page: 317
  year: 2005
  ident: 10.1016/j.mejo.2014.05.004_bib6
  article-title: An AES crypto chip using a high-speed parallel pipelined architecture
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2004.12.001
– ident: 10.1016/j.mejo.2014.05.004_bib21
  doi: 10.1109/MMIT.2010.105
– volume: 43
  start-page: 72
  year: 2010
  ident: 10.1016/j.mejo.2014.05.004_bib4
  article-title: A new methodology to implement the AES algorithm using partial and dynamic reconfiguration
  publication-title: Integr., VLSI J.
  doi: 10.1016/j.vlsi.2009.05.003
– volume: 1
  start-page: 1
  issue: 3
  year: 2013
  ident: 10.1016/j.mejo.2014.05.004_bib32
  article-title: Design and implementation of advanced encryption algorithm with FPGA and ASIC
  publication-title: Int. J. Res. Eng. Adv. Technol.
– ident: 10.1016/j.mejo.2014.05.004_bib29
  doi: 10.1109/NRSC.2008.4542373
– ident: 10.1016/j.mejo.2014.05.004_bib38
  doi: 10.1109/APCCAS.2008.4746393
– year: 2012
  ident: 10.1016/j.mejo.2014.05.004_bib41
– volume: 2
  start-page: 186
  issue: 3
  year: 2013
  ident: 10.1016/j.mejo.2014.05.004_bib49
  article-title: FPGA implementation of efficient hardware for the advanced encryption standard
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– volume: 1
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.mejo.2014.05.004_bib2
  article-title: Pipelined AES on FPGA with support for feedback modes (in a multi-channel environment)
  publication-title: IET Inf. Secur.
  doi: 10.1049/iet-ifs:20060059
– volume: 22
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.mejo.2014.05.004_bib47
  article-title: Retiming: theory and practice
  publication-title: Integr. VLSI J.
  doi: 10.1016/S0167-9260(97)00002-3
– ident: 10.1016/j.mejo.2014.05.004_bib30
  doi: 10.1109/ICM.2008.5393805
SSID ssj0005724
Score 1.8774327
Snippet This paper presents a high throughput digital design of the 128-bit Advanced Encryption Standard (AES) algorithm based on the 2-slow retiming technique on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1014
SubjectTerms AES
Algorithms
Architecture
C-Slow retiming
Combinational logic circuits
Constants
Encryption
Field programmable gate arrays
High-throughput
Optimization
Pipelining
Registers
Transformations
Title FPGA based fast and high-throughput 2-slow retiming 128-bit AES encryption algorithm
URI https://dx.doi.org/10.1016/j.mejo.2014.05.004
https://www.proquest.com/docview/1567070178
Volume 45
WOSCitedRecordID wos000340219700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1879-2391
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005724
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELZglwd4QJza5ZKReIuC6sRukscKdTnErlZQpL5ZTpzQVm1SJeke_HpmYudQBStA4sVKrThJPZ9nxuM5CHmT6bEWCta3Bjy4XI9jN4xU7LIs8bEGHCySJmX-5-DsLJzPo3N7XFA15QSCPA-vrqLtfyU19AGxMXT2L8jdPRQ64BqIDi2QHdo_IvzJ-fuJg8JJO5mqjAM5JiV2bUme7a52PLdaF5cORjBu0FYA4gO2yLUzmX514L-U14aRqPX3olzWi81QhT1FF76-ek4fP6JKVS1UUyQYqPZDNU06gN8XLNykl-aYY1GqTWfeUdep6W-unFNVFTs9NEgw3rnDWStZGynTuyUhYw2DyPV8U5mr5bwmkaRFWDhgo1hAeCCSQQkSv2T3xvKwertJVxjIyXiThXXEe-HWuRziqTRs3iIPdpRo5RG3yaEXiAiY-eHk43T-qXcMCkwp5PaLbaiV8Qrcf9Pv1Jk9wd5oK7MH5L7dZtCJgcdDcivNH5F7g-STj8kMgUIboFAECgWg0D2gUAMU2gKFWqBQAArtgUI7oDwh306ms3cfXFtjw01836_dGK0jyMkTlsC69dhY8zTwuZfFPhcxD1PFlPYzruGXiGE3EPNA8YwJNfI9FftPyUFe5OkRoamIswjmN1I8xHEKo651ksBdTMfaOyasnSqZ2AT0WAdlLVtPw5XE6ZU4vXIkJHzWMXG6MVuTfuXGu0VLAWkVSKMYSgDMjeNet-SSwF3xyEzlabGrJBPjAOaHBeGzf3z2c3K3XyQvyEFd7tKX5E5yUS-r8pXF3k88NqAx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FPGA+based+fast+and+high-throughput+2-slow+retiming+128-bit+AES+encryption+algorithm&rft.jtitle=Microelectronics&rft.au=Farashahi%2C+Reza+Rezaeian&rft.au=Rashidi%2C+Bahram&rft.au=Sayedi%2C+Sayed+Masoud&rft.date=2014-08-01&rft.pub=Elsevier+Ltd&rft.issn=1879-2391&rft.volume=45&rft.issue=8&rft.spage=1014&rft.epage=1025&rft_id=info:doi/10.1016%2Fj.mejo.2014.05.004&rft.externalDocID=S0026269214001505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1879-2391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1879-2391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1879-2391&client=summon