Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets
The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based approaches either consider one target at a time or aggregate all targets into a single fitness function (whole-suite approach). Multi and many...
Uložené v:
| Vydané v: | IEEE transactions on software engineering Ročník 44; číslo 2; s. 122 - 158 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.02.2018
IEEE Computer Society |
| Predmet: | |
| ISSN: | 0098-5589, 1939-3520 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based approaches either consider one target at a time or aggregate all targets into a single fitness function (whole-suite approach). Multi and many-objective optimisation algorithms (MOAs) have never been applied to this problem, because existing algorithms do not scale to the number of coverage objectives that are typically found in real-world software. In addition, the final goal for MOAs is to find alternative trade-off solutions in the objective space, while in test generation the interesting solutions are only those test cases covering one or more uncovered targets. In this paper, we present Dynamic Many-Objective Sorting Algorithm (DynaMOSA), a novel many-objective solver specifically designed to address the test case generation problem in the context of coverage testing. DynaMOSA extends our previous many-objective technique Many-Objective Sorting Algorithm (MOSA) with dynamic selection of the coverage targets based on the control dependency hierarchy. Such extension makes the approach more effective and efficient in case of limited search budget. We carried out an empirical study on 346 Java classes using three coverage criteria (i.e., statement, branch, and strong mutation coverage) to assess the performance of DynaMOSA with respect to the whole-suite approach (WS), its archive-based variant (WSA) and MOSA. The results show that DynaMOSA outperforms WSA in 28 percent of the classes for branch coverage (+8 percent more coverage on average) and in 27 percent of the classes for mutation coverage (+11 percent more killed mutants on average). It outperforms WS in 51 percent of the classes for statement coverage, leading to +11 percent more coverage on average. Moreover, DynaMOSA outperforms its predecessor MOSA for all the three coverage criteria in 19 percent of the classes with +8 percent more code coverage on average. |
|---|---|
| AbstractList | The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based approaches either consider one target at a time or aggregate all targets into a single fitness function (whole-suite approach). Multi and many-objective optimisation algorithms (MOAs) have never been applied to this problem, because existing algorithms do not scale to the number of coverage objectives that are typically found in real-world software. In addition, the final goal for MOAs is to find alternative trade-off solutions in the objective space, while in test generation the interesting solutions are only those test cases covering one or more uncovered targets. In this paper, we present Dynamic Many-Objective Sorting Algorithm (DynaMOSA), a novel many-objective solver specifically designed to address the test case generation problem in the context of coverage testing. DynaMOSA extends our previous many-objective technique Many-Objective Sorting Algorithm (MOSA) with dynamic selection of the coverage targets based on the control dependency hierarchy. Such extension makes the approach more effective and efficient in case of limited search budget. We carried out an empirical study on 346 Java classes using three coverage criteria (i.e., statement, branch, and strong mutation coverage) to assess the performance of DynaMOSA with respect to the whole-suite approach (WS), its archive-based variant (WSA) and MOSA. The results show that DynaMOSA outperforms WSA in 28 percent of the classes for branch coverage (+8 percent more coverage on average) and in 27 percent of the classes for mutation coverage (+11 percent more killed mutants on average). It outperforms WS in 51 percent of the classes for statement coverage, leading to +11 percent more coverage on average. Moreover, DynaMOSA outperforms its predecessor MOSA for all the three coverage criteria in 19 percent of the classes with +8 percent more code coverage on average. |
| Author | Kifetew, Fitsum Meshesha Panichella, Annibale Tonella, Paolo |
| Author_xml | – sequence: 1 givenname: Annibale orcidid: 0000-0002-7395-3588 surname: Panichella fullname: Panichella, Annibale email: annibale.panichella@uni.lu organization: SnT, University of Luxembourg, Luxembourg, Esch-sur-Alzette, Luxembourg – sequence: 2 givenname: Fitsum Meshesha surname: Kifetew fullname: Kifetew, Fitsum Meshesha email: kifetew@fbk.eu organization: Fondazione Bruno Kessler, Trento, Italy – sequence: 3 givenname: Paolo surname: Tonella fullname: Tonella, Paolo email: tonella@fbk.eu organization: Fondazione Bruno Kessler, Trento, Italy |
| BookMark | eNp9kDFPwzAQRi1UJFpgR2KxxJxytmMnHqtSChKoSJQ5cpwLuGqSYrug_ntSihgYmG649-70fSMyaLsWCblgMGYM9PXyeTbmwLIxV0qkQh6RIdNCJ0JyGJAhgM4TKXN9QkYhrABAZpkckmayjV1jIlZ0iSHSqQlI59iiN9F1LTWBGvpo2l2yKFdoo_tAuthE17hwAJ58V66xoZ8uvtGbXWsaZ-kzrvdsv-5qGt-QLo1_xRjOyHFt1gHPf-YpebmdLad3ycNifj-dPCRWCBGTkuUSpFFGga44VEowqURVZaLMbaaAY1qyusKsxFRbwLxEyznPayVKqG0qTsnV4e7Gd-_bPlex6ra-7V8WnGWphFyA7il1oKzvQvBYF9bF71TRG7cuGBT7aou-2mJfbfFTbS_CH3HjXWP87j_l8qA4RPzFszwF4Fp8Ab4ohoQ |
| CODEN | IESEDJ |
| CitedBy_id | crossref_primary_10_32604_cmc_2022_028386 crossref_primary_10_1145_3415153 crossref_primary_10_1016_j_jss_2018_12_015 crossref_primary_10_1109_TR_2018_2832072 crossref_primary_10_1007_s10515_025_00496_7 crossref_primary_10_1016_j_cola_2025_101348 crossref_primary_10_1109_TEVC_2024_3506731 crossref_primary_10_1109_TSE_2022_3209625 crossref_primary_10_1145_3391533 crossref_primary_10_1145_3736305 crossref_primary_10_1109_TSE_2020_3036108 crossref_primary_10_1016_j_infsof_2025_107797 crossref_primary_10_1007_s11063_020_10288_7 crossref_primary_10_1007_s11042_024_19909_y crossref_primary_10_1145_3424307 crossref_primary_10_1016_j_infsof_2018_05_003 crossref_primary_10_3390_app10103397 crossref_primary_10_1016_j_jss_2020_110549 crossref_primary_10_1109_TETCI_2019_2914280 crossref_primary_10_1145_3664605 crossref_primary_10_1016_j_infsof_2020_106446 crossref_primary_10_1016_j_jss_2025_112571 crossref_primary_10_1007_s10664_024_10458_4 crossref_primary_10_1007_s10664_024_10451_x crossref_primary_10_1007_s10515_025_00560_2 crossref_primary_10_1109_ACCESS_2020_3022876 crossref_primary_10_1145_3730435 crossref_primary_10_1007_s10664_024_10515_y crossref_primary_10_1016_j_jss_2023_111802 crossref_primary_10_1007_s10664_022_10155_0 crossref_primary_10_1002_smr_2411 crossref_primary_10_1145_3464940 crossref_primary_10_1145_3446199 crossref_primary_10_1007_s10664_022_10259_7 crossref_primary_10_1145_3293455 crossref_primary_10_1109_TSE_2023_3334955 crossref_primary_10_1145_3729362 crossref_primary_10_1002_stvr_1906 crossref_primary_10_1007_s10515_025_00539_z crossref_primary_10_1109_TSE_2023_3272309 crossref_primary_10_1109_TSE_2024_3366613 crossref_primary_10_1142_S0218194025500445 crossref_primary_10_1007_s10664_022_10220_8 crossref_primary_10_1007_s00500_019_04444_y crossref_primary_10_1007_s10664_022_10248_w crossref_primary_10_1016_j_ins_2023_119915 crossref_primary_10_1109_TR_2018_2805763 crossref_primary_10_1109_TSE_2025_3562025 crossref_primary_10_1109_TSE_2022_3223875 crossref_primary_10_1145_3609427 crossref_primary_10_1109_TR_2022_3173025 crossref_primary_10_1109_TSE_2024_3382365 crossref_primary_10_1109_TITS_2021_3131808 crossref_primary_10_4018_IJAMC_292503 crossref_primary_10_1016_j_asoc_2020_106411 crossref_primary_10_1002_smr_2719 crossref_primary_10_1145_3655022 crossref_primary_10_1016_j_infsof_2019_06_009 crossref_primary_10_1016_j_infsof_2024_107468 crossref_primary_10_1002_smr_2158 crossref_primary_10_1109_ACCESS_2019_2899471 crossref_primary_10_1145_3423132 crossref_primary_10_1145_3691631 crossref_primary_10_1145_3569935 crossref_primary_10_1109_TSE_2019_2946773 crossref_primary_10_1016_j_eswa_2022_116722 crossref_primary_10_1007_s11219_025_09717_4 crossref_primary_10_1109_TR_2024_3494798 crossref_primary_10_1109_TSE_2020_3019406 crossref_primary_10_1007_s40747_023_01323_w crossref_primary_10_1016_j_scico_2025_103322 crossref_primary_10_1109_TSE_2022_3228334 crossref_primary_10_1007_s10664_025_10639_9 crossref_primary_10_1145_3643676 crossref_primary_10_1145_3748505 crossref_primary_10_1016_j_scico_2023_103036 crossref_primary_10_1109_TSE_2020_3013716 crossref_primary_10_1109_TSE_2024_3354971 crossref_primary_10_1016_j_jss_2019_07_016 crossref_primary_10_1007_s42979_024_03580_z crossref_primary_10_1109_TSE_2022_3227418 crossref_primary_10_1002_stvr_1719 crossref_primary_10_1109_TSE_2024_3407840 crossref_primary_10_1002_stvr_1838 crossref_primary_10_1145_3624745 crossref_primary_10_1016_j_asoc_2021_107246 crossref_primary_10_1109_TSE_2018_2868082 crossref_primary_10_1109_ACCESS_2024_3435678 crossref_primary_10_1016_j_scico_2024_103108 crossref_primary_10_1007_s10664_025_10635_z crossref_primary_10_1109_TSE_2023_3263509 crossref_primary_10_1145_3381032 crossref_primary_10_1155_2022_4418706 crossref_primary_10_1145_3585009 crossref_primary_10_1109_TETC_2021_3070968 crossref_primary_10_1145_3729398 crossref_primary_10_1145_3729399 crossref_primary_10_3390_electronics13245007 crossref_primary_10_1007_s10664_022_10169_8 crossref_primary_10_1007_s40747_024_01706_7 crossref_primary_10_1016_j_cie_2021_107290 crossref_primary_10_1016_j_infsof_2023_107213 crossref_primary_10_1371_journal_pone_0314584 crossref_primary_10_1007_s10836_022_06024_9 crossref_primary_10_1109_TSE_2022_3147008 crossref_primary_10_3390_math9151779 crossref_primary_10_1016_j_infsof_2017_08_007 crossref_primary_10_1007_s10664_022_10207_5 crossref_primary_10_1016_j_procs_2019_12_042 crossref_primary_10_1016_j_jksuci_2019_09_010 crossref_primary_10_1109_ACCESS_2022_3198694 crossref_primary_10_1016_j_scico_2022_102908 crossref_primary_10_1007_s10664_021_10024_2 crossref_primary_10_1016_j_measen_2023_100725 crossref_primary_10_1007_s10664_019_09707_8 crossref_primary_10_1016_j_jss_2022_111442 crossref_primary_10_1109_ACCESS_2019_2926384 crossref_primary_10_1007_s10515_024_00433_0 crossref_primary_10_3390_app11073117 |
| Cites_doi | 10.1007/978-3-319-22183-0_7 10.1109/ICST.2013.11 10.1002/stvr.294 10.1145/2483760.2483789 10.1145/1273463.1273475 10.1145/2884781.2884847 10.1145/1013886.1007527 10.1109/TEVC.2013.2281535 10.1145/2739480.2754696 10.1109/ICST.2008.12 10.1109/COMPSAC.2014.26 10.1109/ICSE.2001.919078 10.1007/978-3-319-09940-8_1 10.1145/360248.360252 10.1007/11875567_32 10.1002/spe.602 10.1109/ICST.2015.7102604 10.1145/1389095.1389224 10.1007/978-1-4614-6940-7_15 10.1145/1276958.1277175 10.1145/2897010.2897018 10.1162/106365602760234108 10.1145/2576768.2598342 10.1109/4235.996017 10.1109/TSE.2014.2363479 10.1109/ICSTW.2010.31 10.1002/spe.1135 10.1145/1007512.1007528 10.1109/TSE.2011.93 10.1109/TSE.2009.71 10.1109/ICSTW.2011.100 10.1145/2685612 10.1016/S0950-5849(01)00190-2 10.1109/ICTAI.2010.26 10.1145/1297846.1297902 10.1007/s10664-013-9299-z 10.1145/1755913.1755946 10.1007/978-3-540-87700-4_4 10.1109/TEVC.2006.876362 10.1109/ASE.2015.49 10.1007/s10664-013-9249-9 10.1109/TSE.2012.14 10.1007/3-540-44719-9_19 10.1109/TSE.1976.233837 10.1109/TEVC.2012.2227145 10.1145/2792984 10.1007/978-3-540-31980-1_24 10.1109/TEVC.2007.892759 10.1145/1810295.1810353 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2018 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2018 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2017.2663435 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 158 |
| ExternalDocumentID | 10_1109_TSE_2017_2663435 7840029 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fonds National de la Recherche Luxembourg; National Research Fund grantid: FNR/P10/03 funderid: 10.13039/501100001866 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABPPZ ABQJQ ABVLG ACGFO ACGOD ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EDO EJD HZ~ I-F IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P Q2X RIA RIE RNS RXW S10 TAE TN5 TWZ UHB UPT WH7 YZZ AAYXX CITATION JQ2 K9. |
| ID | FETCH-LOGICAL-c333t-b18505a6a609d20d631563dd73b8c7602e4b1fde7be49c0e8bec2228f63b0fc43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 245 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425065000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Fri Oct 03 03:31:43 EDT 2025 Tue Nov 18 21:05:11 EST 2025 Sat Nov 29 03:10:24 EST 2025 Wed Aug 27 02:27:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-b18505a6a609d20d631563dd73b8c7602e4b1fde7be49c0e8bec2228f63b0fc43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7395-3588 |
| OpenAccessLink | http://orbilu.uni.lu/handle/10993/30978 |
| PQID | 2174508309 |
| PQPubID | 21418 |
| PageCount | 37 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSE_2017_2663435 ieee_primary_7840029 proquest_journals_2174508309 crossref_primary_10_1109_TSE_2017_2663435 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2018 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref57 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 harman (ref22) 2007 ref17 ref16 ref19 ref18 baker (ref4) 1995 ref46 ref45 ref48 ref47 ref42 ref41 ref43 urko (ref49) 2015 zitzler (ref58) 2004 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 cadar (ref7) 2008 zitzler (ref59) 2001 köppen (ref28) 2007 ref24 ref23 ref26 ref25 ref20 ref21 conover (ref8) 1998 ref27 ref29 vargha (ref50) 2000; 25 rojas (ref44) 2016 barán (ref51) 2014; 58 khu (ref13) 2007; 11 |
| References_xml | – volume: 58 start-page: 707 year: 2014 ident: ref51 article-title: A survey on multi-objective evolutionary algorithms for many-objective problems publication-title: Comput Optimization Appl – start-page: 19 year: 2015 ident: ref49 article-title: Unit testing tool competition-round three publication-title: Proceedings of IEEE International Workshop on Search Based Software Testing – ident: ref43 doi: 10.1007/978-3-319-22183-0_7 – ident: ref1 doi: 10.1109/ICST.2013.11 – ident: ref34 doi: 10.1002/stvr.294 – ident: ref25 doi: 10.1145/2483760.2483789 – start-page: 73 year: 2007 ident: ref22 article-title: A theoretical & empirical analysis of evolutionary testing and hill climbing for structural test data generation publication-title: Proc Int'l Symp on Softw Testing and Analysis doi: 10.1145/1273463.1273475 – volume: 25 start-page: 101 year: 2000 ident: ref50 article-title: A critique and improvement of the CL common language effect size statistics of McGraw and Wong publication-title: Journal of Educational and Behavioral Statistics – ident: ref39 doi: 10.1145/2884781.2884847 – start-page: 1 year: 2016 ident: ref44 article-title: A detailed investigation of the effectiveness of whole test suite generation publication-title: Empirical Softw Eng – start-page: 727 year: 2007 ident: ref28 publication-title: Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems – ident: ref5 doi: 10.1145/1013886.1007527 – year: 1995 ident: ref4 article-title: Modern permutation test software publication-title: Randomization tests – ident: ref11 doi: 10.1109/TEVC.2013.2281535 – ident: ref47 doi: 10.1145/2739480.2754696 – ident: ref41 doi: 10.1109/ICST.2008.12 – ident: ref14 doi: 10.1109/COMPSAC.2014.26 – ident: ref42 doi: 10.1109/ICSE.2001.919078 – ident: ref3 doi: 10.1007/978-3-319-09940-8_1 – ident: ref26 doi: 10.1145/360248.360252 – start-page: 832 year: 2004 ident: ref58 article-title: Indicator-based selection in multiobjective search publication-title: Proc 8th Int Conf Parallel Problem Solving Nature – ident: ref36 doi: 10.1007/11875567_32 – ident: ref9 doi: 10.1002/spe.602 – ident: ref38 doi: 10.1109/ICST.2015.7102604 – ident: ref24 doi: 10.1145/1389095.1389224 – ident: ref10 doi: 10.1007/978-1-4614-6940-7_15 – ident: ref29 doi: 10.1145/1276958.1277175 – ident: ref45 doi: 10.1145/2897010.2897018 – ident: ref30 doi: 10.1162/106365602760234108 – ident: ref55 doi: 10.1145/2576768.2598342 – ident: ref12 doi: 10.1109/4235.996017 – start-page: 209 year: 2008 ident: ref7 article-title: KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs publication-title: Proc 8th USENIX Conf Operating Syst Des Implementation – ident: ref46 doi: 10.1109/TSE.2014.2363479 – ident: ref21 doi: 10.1109/ICSTW.2010.31 – ident: ref15 doi: 10.1002/spe.1135 – ident: ref48 doi: 10.1145/1007512.1007528 – ident: ref19 doi: 10.1109/TSE.2011.93 – ident: ref23 doi: 10.1109/TSE.2009.71 – ident: ref35 doi: 10.1109/ICSTW.2011.100 – year: 2001 ident: ref59 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref17 doi: 10.1145/2685612 – ident: ref52 doi: 10.1016/S0950-5849(01)00190-2 – ident: ref40 doi: 10.1109/ICTAI.2010.26 – ident: ref37 doi: 10.1145/1297846.1297902 – ident: ref18 doi: 10.1007/s10664-013-9299-z – ident: ref56 doi: 10.1145/1755913.1755946 – ident: ref20 doi: 10.1007/978-3-540-87700-4_4 – volume: 11 start-page: 17 year: 2007 ident: ref13 article-title: An investigation on preference order ranking scheme for multiobjective evolutionary optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2006.876362 – year: 1998 ident: ref8 publication-title: Practical Nonparametric Statistics – ident: ref32 doi: 10.1109/ASE.2015.49 – ident: ref2 doi: 10.1007/s10664-013-9249-9 – ident: ref16 doi: 10.1109/TSE.2012.14 – ident: ref27 doi: 10.1007/3-540-44719-9_19 – ident: ref33 doi: 10.1109/TSE.1976.233837 – ident: ref54 doi: 10.1109/TEVC.2012.2227145 – ident: ref31 doi: 10.1145/2792984 – ident: ref53 doi: 10.1007/978-3-540-31980-1_24 – ident: ref57 doi: 10.1109/TEVC.2007.892759 – ident: ref6 doi: 10.1145/1810295.1810353 |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.65484 |
| Snippet | The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122 |
| SubjectTerms | Algorithm design and analysis Algorithms automatic test case generation Classification Dependence Evolutionary testing Fitness Genetic algorithms Heuristic algorithms many-objective optimisation Multiple objective analysis Mutation Optimization Software algorithms Sorting Sorting algorithms Testing |
| Title | Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets |
| URI | https://ieeexplore.ieee.org/document/7840029 https://www.proquest.com/docview/2174508309 |
| Volume | 44 |
| WOSCitedRecordID | wos000425065000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4sGLqGhE0fTgxcRBWbd1PRKEeBFIwITbsv5YohEw_PDv97Xb4KAx8bZk7bb0W9_7Xvv6PoD7MDZBl7LUk1IGXiC18qQfCQ-ZhZ8ZZOhCKSc2wUejeD4Xkwo87s_CGGNc8plp20u3l69XameXyjocoxHqiypUOef5Wa1DOgfnYVkfMwxjUW5JUtGZTQc2h4u30RmxwAm7HVyQ01T5YYiddxnW__ddp3BSsEjSy2E_g4pZnkO9VGggxYRtwKK3266QkxpNZvhW0kefRfJK0xYQkm5ISl7QHnhj-Z6bPjJGI7IoknzIJNebIXa5ljzl6vVk6rRz7O1VRpBAkplLJ99cwOtwMOs_e4XAgqcYY1tPorOmYRqlERXapzpiGM0xrTmTseIR9U0gu5k2XJpAKGpiBNyuGGURkzRTAbuE2nK1NFdA0pCht-Uq6modRKGJfZH50sRIX1TW5WkTOuWYJ6qoPm5FMD4SF4VQkSBKiUUpKVBqwsO-x2deeeOPtg2Lyr5dAUgTWiWsSTE1N4mNwWwNfCquf-91A8f47DhPzW5BbbvemVs4Ul_bt836zv11376O1ag |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC-iLd3Fe8-CLYF3apE3zKOqYqFOwgm-luRQU3cRt_n5P0nZ7UATfCk1I6ZecS_LlfADHcWp5SFkRKKV4wJXRgYoSGWBkEZUWI3SptRebEP1--vwsH1pwOr0LY6315DN75h79Wb4Z6onbKusIzEZoJOdgIeY8CqvbWjNChxBxUyEzjlPZHEpS2ckerxyLS5yhO2LcS7vNnJBXVflhir1_6a7-78vWYKWOI8l5Bfw6tOxgA1YbjQZSL9lNeD-fjIcYlVpDMhyVXKDXIlWtaQcJKUakIHdoEYJ79VoZP3KPZuS9pvmQh0pxhrgNW3JZ6deTR6-e414PS4IhJMk8oXy0BU_dq-yiF9QSC4FmjI0Dhe6axkVSJFSaiJqEYT7HjBFMpVokNLJchaWxQlkuNbUpQu72jMqEKVpqzrZhfjAc2B0gRczQ3wqdhMbwJLZpJMtI2RQDGF2GomhDp_nnua7rjzsZjLfc5yFU5ohS7lDKa5TacDLt8VHV3vij7aZDZdquBqQN-w2seb04R7nLwlwVfCp3f-91BEu97O42v73u3-zBMo6TVkTtfZgff07sASzqr_HL6PPQz8BvAobY7w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Test+Case+Generation+as+a+Many-Objective+Optimisation+Problem+with+Dynamic+Selection+of+the+Targets&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Panichella%2C+Annibale&rft.au=Kifetew%2C+Fitsum+Meshesha&rft.au=Tonella%2C+Paolo&rft.date=2018-02-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=44&rft.issue=2&rft.spage=122&rft.epage=158&rft_id=info:doi/10.1109%2FTSE.2017.2663435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2017_2663435 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |