Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets

The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based approaches either consider one target at a time or aggregate all targets into a single fitness function (whole-suite approach). Multi and many...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on software engineering Ročník 44; číslo 2; s. 122 - 158
Hlavní autori: Panichella, Annibale, Kifetew, Fitsum Meshesha, Tonella, Paolo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2018
IEEE Computer Society
Predmet:
ISSN:0098-5589, 1939-3520
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based approaches either consider one target at a time or aggregate all targets into a single fitness function (whole-suite approach). Multi and many-objective optimisation algorithms (MOAs) have never been applied to this problem, because existing algorithms do not scale to the number of coverage objectives that are typically found in real-world software. In addition, the final goal for MOAs is to find alternative trade-off solutions in the objective space, while in test generation the interesting solutions are only those test cases covering one or more uncovered targets. In this paper, we present Dynamic Many-Objective Sorting Algorithm (DynaMOSA), a novel many-objective solver specifically designed to address the test case generation problem in the context of coverage testing. DynaMOSA extends our previous many-objective technique Many-Objective Sorting Algorithm (MOSA) with dynamic selection of the coverage targets based on the control dependency hierarchy. Such extension makes the approach more effective and efficient in case of limited search budget. We carried out an empirical study on 346 Java classes using three coverage criteria (i.e., statement, branch, and strong mutation coverage) to assess the performance of DynaMOSA with respect to the whole-suite approach (WS), its archive-based variant (WSA) and MOSA. The results show that DynaMOSA outperforms WSA in 28 percent of the classes for branch coverage (+8 percent more coverage on average) and in 27 percent of the classes for mutation coverage (+11 percent more killed mutants on average). It outperforms WS in 51 percent of the classes for statement coverage, leading to +11 percent more coverage on average. Moreover, DynaMOSA outperforms its predecessor MOSA for all the three coverage criteria in 19 percent of the classes with +8 percent more code coverage on average.
AbstractList The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based approaches either consider one target at a time or aggregate all targets into a single fitness function (whole-suite approach). Multi and many-objective optimisation algorithms (MOAs) have never been applied to this problem, because existing algorithms do not scale to the number of coverage objectives that are typically found in real-world software. In addition, the final goal for MOAs is to find alternative trade-off solutions in the objective space, while in test generation the interesting solutions are only those test cases covering one or more uncovered targets. In this paper, we present Dynamic Many-Objective Sorting Algorithm (DynaMOSA), a novel many-objective solver specifically designed to address the test case generation problem in the context of coverage testing. DynaMOSA extends our previous many-objective technique Many-Objective Sorting Algorithm (MOSA) with dynamic selection of the coverage targets based on the control dependency hierarchy. Such extension makes the approach more effective and efficient in case of limited search budget. We carried out an empirical study on 346 Java classes using three coverage criteria (i.e., statement, branch, and strong mutation coverage) to assess the performance of DynaMOSA with respect to the whole-suite approach (WS), its archive-based variant (WSA) and MOSA. The results show that DynaMOSA outperforms WSA in 28 percent of the classes for branch coverage (+8 percent more coverage on average) and in 27 percent of the classes for mutation coverage (+11 percent more killed mutants on average). It outperforms WS in 51 percent of the classes for statement coverage, leading to +11 percent more coverage on average. Moreover, DynaMOSA outperforms its predecessor MOSA for all the three coverage criteria in 19 percent of the classes with +8 percent more code coverage on average.
Author Kifetew, Fitsum Meshesha
Panichella, Annibale
Tonella, Paolo
Author_xml – sequence: 1
  givenname: Annibale
  orcidid: 0000-0002-7395-3588
  surname: Panichella
  fullname: Panichella, Annibale
  email: annibale.panichella@uni.lu
  organization: SnT, University of Luxembourg, Luxembourg, Esch-sur-Alzette, Luxembourg
– sequence: 2
  givenname: Fitsum Meshesha
  surname: Kifetew
  fullname: Kifetew, Fitsum Meshesha
  email: kifetew@fbk.eu
  organization: Fondazione Bruno Kessler, Trento, Italy
– sequence: 3
  givenname: Paolo
  surname: Tonella
  fullname: Tonella, Paolo
  email: tonella@fbk.eu
  organization: Fondazione Bruno Kessler, Trento, Italy
BookMark eNp9kDFPwzAQRi1UJFpgR2KxxJxytmMnHqtSChKoSJQ5cpwLuGqSYrug_ntSihgYmG649-70fSMyaLsWCblgMGYM9PXyeTbmwLIxV0qkQh6RIdNCJ0JyGJAhgM4TKXN9QkYhrABAZpkckmayjV1jIlZ0iSHSqQlI59iiN9F1LTWBGvpo2l2yKFdoo_tAuthE17hwAJ58V66xoZ8uvtGbXWsaZ-kzrvdsv-5qGt-QLo1_xRjOyHFt1gHPf-YpebmdLad3ycNifj-dPCRWCBGTkuUSpFFGga44VEowqURVZaLMbaaAY1qyusKsxFRbwLxEyznPayVKqG0qTsnV4e7Gd-_bPlex6ra-7V8WnGWphFyA7il1oKzvQvBYF9bF71TRG7cuGBT7aou-2mJfbfFTbS_CH3HjXWP87j_l8qA4RPzFszwF4Fp8Ab4ohoQ
CODEN IESEDJ
CitedBy_id crossref_primary_10_32604_cmc_2022_028386
crossref_primary_10_1145_3415153
crossref_primary_10_1016_j_jss_2018_12_015
crossref_primary_10_1109_TR_2018_2832072
crossref_primary_10_1007_s10515_025_00496_7
crossref_primary_10_1016_j_cola_2025_101348
crossref_primary_10_1109_TEVC_2024_3506731
crossref_primary_10_1109_TSE_2022_3209625
crossref_primary_10_1145_3391533
crossref_primary_10_1145_3736305
crossref_primary_10_1109_TSE_2020_3036108
crossref_primary_10_1016_j_infsof_2025_107797
crossref_primary_10_1007_s11063_020_10288_7
crossref_primary_10_1007_s11042_024_19909_y
crossref_primary_10_1145_3424307
crossref_primary_10_1016_j_infsof_2018_05_003
crossref_primary_10_3390_app10103397
crossref_primary_10_1016_j_jss_2020_110549
crossref_primary_10_1109_TETCI_2019_2914280
crossref_primary_10_1145_3664605
crossref_primary_10_1016_j_infsof_2020_106446
crossref_primary_10_1016_j_jss_2025_112571
crossref_primary_10_1007_s10664_024_10458_4
crossref_primary_10_1007_s10664_024_10451_x
crossref_primary_10_1007_s10515_025_00560_2
crossref_primary_10_1109_ACCESS_2020_3022876
crossref_primary_10_1145_3730435
crossref_primary_10_1007_s10664_024_10515_y
crossref_primary_10_1016_j_jss_2023_111802
crossref_primary_10_1007_s10664_022_10155_0
crossref_primary_10_1002_smr_2411
crossref_primary_10_1145_3464940
crossref_primary_10_1145_3446199
crossref_primary_10_1007_s10664_022_10259_7
crossref_primary_10_1145_3293455
crossref_primary_10_1109_TSE_2023_3334955
crossref_primary_10_1145_3729362
crossref_primary_10_1002_stvr_1906
crossref_primary_10_1007_s10515_025_00539_z
crossref_primary_10_1109_TSE_2023_3272309
crossref_primary_10_1109_TSE_2024_3366613
crossref_primary_10_1142_S0218194025500445
crossref_primary_10_1007_s10664_022_10220_8
crossref_primary_10_1007_s00500_019_04444_y
crossref_primary_10_1007_s10664_022_10248_w
crossref_primary_10_1016_j_ins_2023_119915
crossref_primary_10_1109_TR_2018_2805763
crossref_primary_10_1109_TSE_2025_3562025
crossref_primary_10_1109_TSE_2022_3223875
crossref_primary_10_1145_3609427
crossref_primary_10_1109_TR_2022_3173025
crossref_primary_10_1109_TSE_2024_3382365
crossref_primary_10_1109_TITS_2021_3131808
crossref_primary_10_4018_IJAMC_292503
crossref_primary_10_1016_j_asoc_2020_106411
crossref_primary_10_1002_smr_2719
crossref_primary_10_1145_3655022
crossref_primary_10_1016_j_infsof_2019_06_009
crossref_primary_10_1016_j_infsof_2024_107468
crossref_primary_10_1002_smr_2158
crossref_primary_10_1109_ACCESS_2019_2899471
crossref_primary_10_1145_3423132
crossref_primary_10_1145_3691631
crossref_primary_10_1145_3569935
crossref_primary_10_1109_TSE_2019_2946773
crossref_primary_10_1016_j_eswa_2022_116722
crossref_primary_10_1007_s11219_025_09717_4
crossref_primary_10_1109_TR_2024_3494798
crossref_primary_10_1109_TSE_2020_3019406
crossref_primary_10_1007_s40747_023_01323_w
crossref_primary_10_1016_j_scico_2025_103322
crossref_primary_10_1109_TSE_2022_3228334
crossref_primary_10_1007_s10664_025_10639_9
crossref_primary_10_1145_3643676
crossref_primary_10_1145_3748505
crossref_primary_10_1016_j_scico_2023_103036
crossref_primary_10_1109_TSE_2020_3013716
crossref_primary_10_1109_TSE_2024_3354971
crossref_primary_10_1016_j_jss_2019_07_016
crossref_primary_10_1007_s42979_024_03580_z
crossref_primary_10_1109_TSE_2022_3227418
crossref_primary_10_1002_stvr_1719
crossref_primary_10_1109_TSE_2024_3407840
crossref_primary_10_1002_stvr_1838
crossref_primary_10_1145_3624745
crossref_primary_10_1016_j_asoc_2021_107246
crossref_primary_10_1109_TSE_2018_2868082
crossref_primary_10_1109_ACCESS_2024_3435678
crossref_primary_10_1016_j_scico_2024_103108
crossref_primary_10_1007_s10664_025_10635_z
crossref_primary_10_1109_TSE_2023_3263509
crossref_primary_10_1145_3381032
crossref_primary_10_1155_2022_4418706
crossref_primary_10_1145_3585009
crossref_primary_10_1109_TETC_2021_3070968
crossref_primary_10_1145_3729398
crossref_primary_10_1145_3729399
crossref_primary_10_3390_electronics13245007
crossref_primary_10_1007_s10664_022_10169_8
crossref_primary_10_1007_s40747_024_01706_7
crossref_primary_10_1016_j_cie_2021_107290
crossref_primary_10_1016_j_infsof_2023_107213
crossref_primary_10_1371_journal_pone_0314584
crossref_primary_10_1007_s10836_022_06024_9
crossref_primary_10_1109_TSE_2022_3147008
crossref_primary_10_3390_math9151779
crossref_primary_10_1016_j_infsof_2017_08_007
crossref_primary_10_1007_s10664_022_10207_5
crossref_primary_10_1016_j_procs_2019_12_042
crossref_primary_10_1016_j_jksuci_2019_09_010
crossref_primary_10_1109_ACCESS_2022_3198694
crossref_primary_10_1016_j_scico_2022_102908
crossref_primary_10_1007_s10664_021_10024_2
crossref_primary_10_1016_j_measen_2023_100725
crossref_primary_10_1007_s10664_019_09707_8
crossref_primary_10_1016_j_jss_2022_111442
crossref_primary_10_1109_ACCESS_2019_2926384
crossref_primary_10_1007_s10515_024_00433_0
crossref_primary_10_3390_app11073117
Cites_doi 10.1007/978-3-319-22183-0_7
10.1109/ICST.2013.11
10.1002/stvr.294
10.1145/2483760.2483789
10.1145/1273463.1273475
10.1145/2884781.2884847
10.1145/1013886.1007527
10.1109/TEVC.2013.2281535
10.1145/2739480.2754696
10.1109/ICST.2008.12
10.1109/COMPSAC.2014.26
10.1109/ICSE.2001.919078
10.1007/978-3-319-09940-8_1
10.1145/360248.360252
10.1007/11875567_32
10.1002/spe.602
10.1109/ICST.2015.7102604
10.1145/1389095.1389224
10.1007/978-1-4614-6940-7_15
10.1145/1276958.1277175
10.1145/2897010.2897018
10.1162/106365602760234108
10.1145/2576768.2598342
10.1109/4235.996017
10.1109/TSE.2014.2363479
10.1109/ICSTW.2010.31
10.1002/spe.1135
10.1145/1007512.1007528
10.1109/TSE.2011.93
10.1109/TSE.2009.71
10.1109/ICSTW.2011.100
10.1145/2685612
10.1016/S0950-5849(01)00190-2
10.1109/ICTAI.2010.26
10.1145/1297846.1297902
10.1007/s10664-013-9299-z
10.1145/1755913.1755946
10.1007/978-3-540-87700-4_4
10.1109/TEVC.2006.876362
10.1109/ASE.2015.49
10.1007/s10664-013-9249-9
10.1109/TSE.2012.14
10.1007/3-540-44719-9_19
10.1109/TSE.1976.233837
10.1109/TEVC.2012.2227145
10.1145/2792984
10.1007/978-3-540-31980-1_24
10.1109/TEVC.2007.892759
10.1145/1810295.1810353
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2018
Copyright_xml – notice: Copyright IEEE Computer Society 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2017.2663435
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 158
ExternalDocumentID 10_1109_TSE_2017_2663435
7840029
Genre orig-research
GrantInformation_xml – fundername: Fonds National de la Recherche Luxembourg; National Research Fund
  grantid: FNR/P10/03
  funderid: 10.13039/501100001866
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EDO
EJD
HZ~
I-F
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
Q2X
RIA
RIE
RNS
RXW
S10
TAE
TN5
TWZ
UHB
UPT
WH7
YZZ
AAYXX
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c333t-b18505a6a609d20d631563dd73b8c7602e4b1fde7be49c0e8bec2228f63b0fc43
IEDL.DBID RIE
ISICitedReferencesCount 245
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425065000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-5589
IngestDate Fri Oct 03 03:31:43 EDT 2025
Tue Nov 18 21:05:11 EST 2025
Sat Nov 29 03:10:24 EST 2025
Wed Aug 27 02:27:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-b18505a6a609d20d631563dd73b8c7602e4b1fde7be49c0e8bec2228f63b0fc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7395-3588
OpenAccessLink http://orbilu.uni.lu/handle/10993/30978
PQID 2174508309
PQPubID 21418
PageCount 37
ParticipantIDs crossref_citationtrail_10_1109_TSE_2017_2663435
ieee_primary_7840029
proquest_journals_2174508309
crossref_primary_10_1109_TSE_2017_2663435
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2018
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref57
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
harman (ref22) 2007
ref17
ref16
ref19
ref18
baker (ref4) 1995
ref46
ref45
ref48
ref47
ref42
ref41
ref43
urko (ref49) 2015
zitzler (ref58) 2004
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
cadar (ref7) 2008
zitzler (ref59) 2001
köppen (ref28) 2007
ref24
ref23
ref26
ref25
ref20
ref21
conover (ref8) 1998
ref27
ref29
vargha (ref50) 2000; 25
rojas (ref44) 2016
barán (ref51) 2014; 58
khu (ref13) 2007; 11
References_xml – volume: 58
  start-page: 707
  year: 2014
  ident: ref51
  article-title: A survey on multi-objective evolutionary algorithms for many-objective problems
  publication-title: Comput Optimization Appl
– start-page: 19
  year: 2015
  ident: ref49
  article-title: Unit testing tool competition-round three
  publication-title: Proceedings of IEEE International Workshop on Search Based Software Testing
– ident: ref43
  doi: 10.1007/978-3-319-22183-0_7
– ident: ref1
  doi: 10.1109/ICST.2013.11
– ident: ref34
  doi: 10.1002/stvr.294
– ident: ref25
  doi: 10.1145/2483760.2483789
– start-page: 73
  year: 2007
  ident: ref22
  article-title: A theoretical & empirical analysis of evolutionary testing and hill climbing for structural test data generation
  publication-title: Proc Int'l Symp on Softw Testing and Analysis
  doi: 10.1145/1273463.1273475
– volume: 25
  start-page: 101
  year: 2000
  ident: ref50
  article-title: A critique and improvement of the CL common language effect size statistics of McGraw and Wong
  publication-title: Journal of Educational and Behavioral Statistics
– ident: ref39
  doi: 10.1145/2884781.2884847
– start-page: 1
  year: 2016
  ident: ref44
  article-title: A detailed investigation of the effectiveness of whole test suite generation
  publication-title: Empirical Softw Eng
– start-page: 727
  year: 2007
  ident: ref28
  publication-title: Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems
– ident: ref5
  doi: 10.1145/1013886.1007527
– year: 1995
  ident: ref4
  article-title: Modern permutation test software
  publication-title: Randomization tests
– ident: ref11
  doi: 10.1109/TEVC.2013.2281535
– ident: ref47
  doi: 10.1145/2739480.2754696
– ident: ref41
  doi: 10.1109/ICST.2008.12
– ident: ref14
  doi: 10.1109/COMPSAC.2014.26
– ident: ref42
  doi: 10.1109/ICSE.2001.919078
– ident: ref3
  doi: 10.1007/978-3-319-09940-8_1
– ident: ref26
  doi: 10.1145/360248.360252
– start-page: 832
  year: 2004
  ident: ref58
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc 8th Int Conf Parallel Problem Solving Nature
– ident: ref36
  doi: 10.1007/11875567_32
– ident: ref9
  doi: 10.1002/spe.602
– ident: ref38
  doi: 10.1109/ICST.2015.7102604
– ident: ref24
  doi: 10.1145/1389095.1389224
– ident: ref10
  doi: 10.1007/978-1-4614-6940-7_15
– ident: ref29
  doi: 10.1145/1276958.1277175
– ident: ref45
  doi: 10.1145/2897010.2897018
– ident: ref30
  doi: 10.1162/106365602760234108
– ident: ref55
  doi: 10.1145/2576768.2598342
– ident: ref12
  doi: 10.1109/4235.996017
– start-page: 209
  year: 2008
  ident: ref7
  article-title: KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs
  publication-title: Proc 8th USENIX Conf Operating Syst Des Implementation
– ident: ref46
  doi: 10.1109/TSE.2014.2363479
– ident: ref21
  doi: 10.1109/ICSTW.2010.31
– ident: ref15
  doi: 10.1002/spe.1135
– ident: ref48
  doi: 10.1145/1007512.1007528
– ident: ref19
  doi: 10.1109/TSE.2011.93
– ident: ref23
  doi: 10.1109/TSE.2009.71
– ident: ref35
  doi: 10.1109/ICSTW.2011.100
– year: 2001
  ident: ref59
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref17
  doi: 10.1145/2685612
– ident: ref52
  doi: 10.1016/S0950-5849(01)00190-2
– ident: ref40
  doi: 10.1109/ICTAI.2010.26
– ident: ref37
  doi: 10.1145/1297846.1297902
– ident: ref18
  doi: 10.1007/s10664-013-9299-z
– ident: ref56
  doi: 10.1145/1755913.1755946
– ident: ref20
  doi: 10.1007/978-3-540-87700-4_4
– volume: 11
  start-page: 17
  year: 2007
  ident: ref13
  article-title: An investigation on preference order ranking scheme for multiobjective evolutionary optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2006.876362
– year: 1998
  ident: ref8
  publication-title: Practical Nonparametric Statistics
– ident: ref32
  doi: 10.1109/ASE.2015.49
– ident: ref2
  doi: 10.1007/s10664-013-9249-9
– ident: ref16
  doi: 10.1109/TSE.2012.14
– ident: ref27
  doi: 10.1007/3-540-44719-9_19
– ident: ref33
  doi: 10.1109/TSE.1976.233837
– ident: ref54
  doi: 10.1109/TEVC.2012.2227145
– ident: ref31
  doi: 10.1145/2792984
– ident: ref53
  doi: 10.1007/978-3-540-31980-1_24
– ident: ref57
  doi: 10.1109/TEVC.2007.892759
– ident: ref6
  doi: 10.1145/1810295.1810353
SSID ssj0005775
ssib053395008
Score 2.65484
Snippet The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches). Existing search-based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122
SubjectTerms Algorithm design and analysis
Algorithms
automatic test case generation
Classification
Dependence
Evolutionary testing
Fitness
Genetic algorithms
Heuristic algorithms
many-objective optimisation
Multiple objective analysis
Mutation
Optimization
Software algorithms
Sorting
Sorting algorithms
Testing
Title Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets
URI https://ieeexplore.ieee.org/document/7840029
https://www.proquest.com/docview/2174508309
Volume 44
WOSCitedRecordID wos000425065000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1939-3520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005775
  issn: 0098-5589
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4sGLqGhE0fTgxcRBWbd1PRKEeBFIwITbsv5YohEw_PDv97Xb4KAx8bZk7bb0W9_7Xvv6PoD7MDZBl7LUk1IGXiC18qQfCQ-ZhZ8ZZOhCKSc2wUejeD4Xkwo87s_CGGNc8plp20u3l69XameXyjocoxHqiypUOef5Wa1DOgfnYVkfMwxjUW5JUtGZTQc2h4u30RmxwAm7HVyQ01T5YYiddxnW__ddp3BSsEjSy2E_g4pZnkO9VGggxYRtwKK3266QkxpNZvhW0kefRfJK0xYQkm5ISl7QHnhj-Z6bPjJGI7IoknzIJNebIXa5ljzl6vVk6rRz7O1VRpBAkplLJ99cwOtwMOs_e4XAgqcYY1tPorOmYRqlERXapzpiGM0xrTmTseIR9U0gu5k2XJpAKGpiBNyuGGURkzRTAbuE2nK1NFdA0pCht-Uq6modRKGJfZH50sRIX1TW5WkTOuWYJ6qoPm5FMD4SF4VQkSBKiUUpKVBqwsO-x2deeeOPtg2Lyr5dAUgTWiWsSTE1N4mNwWwNfCquf-91A8f47DhPzW5BbbvemVs4Ul_bt836zv11376O1ag
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC-iLd3Fe8-CLYF3apE3zKOqYqFOwgm-luRQU3cRt_n5P0nZ7UATfCk1I6ZecS_LlfADHcWp5SFkRKKV4wJXRgYoSGWBkEZUWI3SptRebEP1--vwsH1pwOr0LY6315DN75h79Wb4Z6onbKusIzEZoJOdgIeY8CqvbWjNChxBxUyEzjlPZHEpS2ckerxyLS5yhO2LcS7vNnJBXVflhir1_6a7-78vWYKWOI8l5Bfw6tOxgA1YbjQZSL9lNeD-fjIcYlVpDMhyVXKDXIlWtaQcJKUakIHdoEYJ79VoZP3KPZuS9pvmQh0pxhrgNW3JZ6deTR6-e414PS4IhJMk8oXy0BU_dq-yiF9QSC4FmjI0Dhe6axkVSJFSaiJqEYT7HjBFMpVokNLJchaWxQlkuNbUpQu72jMqEKVpqzrZhfjAc2B0gRczQ3wqdhMbwJLZpJMtI2RQDGF2GomhDp_nnua7rjzsZjLfc5yFU5ohS7lDKa5TacDLt8VHV3vij7aZDZdquBqQN-w2seb04R7nLwlwVfCp3f-91BEu97O42v73u3-zBMo6TVkTtfZgff07sASzqr_HL6PPQz8BvAobY7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Test+Case+Generation+as+a+Many-Objective+Optimisation+Problem+with+Dynamic+Selection+of+the+Targets&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Panichella%2C+Annibale&rft.au=Kifetew%2C+Fitsum+Meshesha&rft.au=Tonella%2C+Paolo&rft.date=2018-02-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=44&rft.issue=2&rft.spage=122&rft.epage=158&rft_id=info:doi/10.1109%2FTSE.2017.2663435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2017_2663435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon