RPEE-Heads Benchmark: A Dataset and Empirical Comparison of Deep Learning Algorithms for Pedestrian Head Detection in Crowds

The automatic detection of pedestrian heads in crowded environments is essential for crowd analysis and management tasks, particularly in high-risk settings such as high dense railway platforms and event entrances. These environments, characterized by dense crowds and dynamic movements, are underrep...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 13; pp. 73451 - 73467
Main Authors: Abubaker, Mohamad, Alsadder, Zubayda, Abdelhaq, Hamed, Boltes, Maik, Alia, Ahmed
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The automatic detection of pedestrian heads in crowded environments is essential for crowd analysis and management tasks, particularly in high-risk settings such as high dense railway platforms and event entrances. These environments, characterized by dense crowds and dynamic movements, are underrepresented in public datasets, posing challenges for existing deep learning models. To address this gap, we introduce the Railway Platforms and Event Entrances-Heads (RPEE-Heads) dataset, a novel, diverse, high-resolution, and accurately annotated resource. It includes 109,913 annotated pedestrian heads across 1,886 images from 66 video recordings, with an average of 56.2 heads per image. Annotations include bounding boxes for visible head regions. In addition to introducing the RPEE-Heads dataset, this paper evaluates eight state-of-the-art object detection algorithms using the dataset and analyzes the impact of head size on detection accuracy. The experimental results show that You Only Look Once v9 and Real-Time Detection Transformer outperform the other algorithms, achieving mean average precisions of 90.7% and 90.8%, with inference times of 11 and 14 milliseconds, respectively. Moreover, the findings underscore the need for specialized datasets like RPEE-Heads for training and evaluating accurate models for head detection in railway platforms and event entrances. The dataset and pretrained models are available at https://doi.org/10.34735/ped.2024.2 .
AbstractList The automatic detection of pedestrian heads in crowded environments is essential for crowd analysis and management tasks, particularly in high-risk settings such as high dense railway platforms and event entrances. These environments, characterized by dense crowds and dynamic movements, are underrepresented in public datasets, posing challenges for existing deep learning models. To address this gap, we introduce the Railway Platforms and Event Entrances-Heads (RPEE-Heads) dataset, a novel, diverse, high-resolution, and accurately annotated resource. It includes 109,913 annotated pedestrian heads across 1,886 images from 66 video recordings, with an average of 56.2 heads per image. Annotations include bounding boxes for visible head regions. In addition to introducing the RPEE-Heads dataset, this paper evaluates eight state-of-the-art object detection algorithms using the dataset and analyzes the impact of head size on detection accuracy. The experimental results show that You Only Look Once v9 and Real-Time Detection Transformer outperform the other algorithms, achieving mean average precisions of 90.7% and 90.8%, with inference times of 11 and 14 milliseconds, respectively. Moreover, the findings underscore the need for specialized datasets like RPEE-Heads for training and evaluating accurate models for head detection in railway platforms and event entrances. The dataset and pretrained models are available at https://doi.org/10.34735/ped.2024.2.
Author Alsadder, Zubayda
Abubaker, Mohamad
Boltes, Maik
Alia, Ahmed
Abdelhaq, Hamed
Author_xml – sequence: 1
  givenname: Mohamad
  orcidid: 0009-0006-9119-4139
  surname: Abubaker
  fullname: Abubaker, Mohamad
  organization: Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
– sequence: 2
  givenname: Zubayda
  orcidid: 0009-0008-2715-3345
  surname: Alsadder
  fullname: Alsadder, Zubayda
  organization: Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
– sequence: 3
  givenname: Hamed
  orcidid: 0000-0003-4803-6689
  surname: Abdelhaq
  fullname: Abdelhaq, Hamed
  email: hamed@najah.edu
  organization: Faculty of Information Technology and Artificial Intelligence, An-Najah National University, Nablus, Palestine
– sequence: 4
  givenname: Maik
  orcidid: 0000-0001-7240-896X
  surname: Boltes
  fullname: Boltes, Maik
  organization: Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
– sequence: 5
  givenname: Ahmed
  orcidid: 0000-0002-3049-4924
  surname: Alia
  fullname: Alia, Ahmed
  email: a.alia@fz-juelich.de
  organization: Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
BookMark eNpNkcFq3DAQhkVJoGmaJ2gPegFvJI8lr3vbOm4SWGhI2rMYSeON0l1pkQwhkIevtxtK5jLDMN8Hw_-JncQUibEvUiykFN3lqu-Hh4dFLWq1AKUBpPzAzmqpuwoU6JN380d2UcqTmGs5r1R7xl7v74ahuiH0hX-n6B53mP984yt-hRMWmjhGz4fdPuTgcMv7tNtjDiVFnkZ-RbTna8IcQ9zw1XaTcpged4WPKfM78lSmHDDyg34-nshNYSZD5H1Oz758ZqcjbgtdvPVz9vvH8Ku_qdY_r2_71bpyADBVaFGMVitZAypooCPbim7Z6CVqJXwjbOcJBNV14xSRqKVva-cBrbbeKgvn7Pbo9QmfzD6H-ckXkzCYf4uUNwbzFNyWjMauJYda6NE1ViEStEJ6ULJVrlFydsHR5XIqJdP43yeFOeRhjnmYQx7mLY-Z-nqkAhG9I7oWhBLwF3BWiL8
CODEN IAECCG
Cites_doi 10.1016/j.patcog.2024.110896
10.1098/rsif.2019.0871
10.1109/ICCV.2017.324
10.1371/journal.pone.0177328
10.1016/j.neucom.2012.01.036
10.1038/s41598-023-38633-5
10.1007/s11263-009-0275-4
10.1109/ICIP.2019.8803409
10.1007/s40747-024-01422-2
10.1016/j.neucom.2018.01.092
10.1016/j.neucom.2020.03.037
10.1109/ACCESS.2023.3273770
10.3906/elk-1807-212
10.1109/FG.2018.00089
10.1109/TPAMI.2020.3035969
10.1109/IV55152.2023.10186674
10.1007/978-3-030-55973-1_1
10.1109/tnnls.2024.3412947
10.1109/CVPR.2016.141
10.1007/978-3-031-72751-1_1
10.1007/s11831-021-09551-4
10.1109/TMM.2020.3020691
10.1109/DICTA.2017.8227421
10.1007/978-3-031-06381-7_11
10.1109/CVPR.2019.00192
10.1109/ACCESS.2024.3490610
10.1109/ICCV.2015.331
10.1109/CVPR46437.2021.00386
10.1109/ICIP.2016.7532426
10.1109/TCYB.2020.3034316
10.1007/s00371-020-01974-7
10.5244/C.26.21
10.1109/WACV.2018.00127
10.1109/CVPR.2014.81
10.1007/s11042-022-13644-y
10.1109/TPAMI.2021.3124956
10.1109/ROBIO.2017.8324433
10.1109/AICCSA56895.2022.10017883
10.1016/j.ssci.2020.104743
10.1109/CVPR52729.2023.00721
10.1109/TPAMI.2020.3013269
10.5555/1953048.2078195
10.1016/j.neucom.2017.03.074
10.1016/j.aap.2025.107986
10.1109/ICPR.2018.8545068
10.1109/CVPR.2018.00644
10.3390/s22114040
10.1177/1466138113491171
10.1109/ACCESS.2021.3107901
10.5555/3454287.3455008
10.1088/1367-2630/aaf4ca
10.1080/0144929X.2021.1896781
10.1109/ACCESS.2024.3496823
10.1109/ICME.2019.00145
10.1109/ICCV.2015.169
10.2352/EI.2023.35.9.IPAS-293
10.1007/s13748-019-00203-0
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2025.3563311
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 73467
ExternalDocumentID oai_doaj_org_article_6a97eca606fc4b5aae3701d35175c451
10_1109_ACCESS_2025_3563311
10973050
Genre orig-research
GrantInformation_xml – fundername: German Federal Ministry of Education and Research (BMBF) within Palestinian–German Science Bridge Project Framework
  grantid: 01DH16027
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  grantid: 491111487
  funderid: 10.13039/501100001659
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c333t-aba0fb65123a53439eb7098468a650d40b9de30e224c5ee021d72cd3ab6bdb5b3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480472500048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:23:19 EDT 2025
Sat Nov 29 07:57:29 EST 2025
Wed Aug 27 01:53:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-aba0fb65123a53439eb7098468a650d40b9de30e224c5ee021d72cd3ab6bdb5b3
ORCID 0000-0001-7240-896X
0000-0003-4803-6689
0009-0008-2715-3345
0000-0002-3049-4924
0009-0006-9119-4139
OpenAccessLink https://doaj.org/article/6a97eca606fc4b5aae3701d35175c451
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_6a97eca606fc4b5aae3701d35175c451
crossref_primary_10_1109_ACCESS_2025_3563311
ieee_primary_10973050
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref14
(ref49) 2018
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ren (ref25); 28
Jocher (ref21) 2023
ref50
ref46
Shao (ref39) 2018
ref45
ref48
ref47
ref42
ref44
ref43
Boltes (ref68) 2025
ref8
ref7
ref9
ref4
ref3
ref6
Wu (ref59) 2019
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Bradski (ref62) 2000; 25
(ref51) 2018
ref24
Jocher (ref58) 2023
ref23
ref67
ref26
ref20
ref64
ref63
ref22
ref66
ref65
ref28
ref27
ref29
ref60
ref61
Zhao (ref41) 2023
References_xml – volume: 25
  start-page: 120
  year: 2000
  ident: ref62
  article-title: The OpenCV library
  publication-title: Dr. Dobb’s J. Softw. Tools
– ident: ref5
  doi: 10.1016/j.patcog.2024.110896
– ident: ref53
  doi: 10.1098/rsif.2019.0871
– ident: ref37
  doi: 10.1109/ICCV.2017.324
– ident: ref52
  doi: 10.1371/journal.pone.0177328
– year: 2023
  ident: ref58
  article-title: Ultralytics YOLO
– ident: ref67
  doi: 10.1016/j.neucom.2012.01.036
– ident: ref63
  doi: 10.1038/s41598-023-38633-5
– ident: ref64
  doi: 10.1007/s11263-009-0275-4
– ident: ref45
  doi: 10.1109/ICIP.2019.8803409
– ident: ref9
  doi: 10.1007/s40747-024-01422-2
– ident: ref7
  doi: 10.1016/j.neucom.2018.01.092
– ident: ref15
  doi: 10.1016/j.neucom.2020.03.037
– ident: ref11
  doi: 10.1109/ACCESS.2023.3273770
– ident: ref57
  doi: 10.3906/elk-1807-212
– ident: ref43
  doi: 10.1109/FG.2018.00089
– volume-title: YOLOv8
  year: 2023
  ident: ref21
– ident: ref30
  doi: 10.1109/TPAMI.2020.3035969
– ident: ref65
  doi: 10.1109/IV55152.2023.10186674
– ident: ref54
  doi: 10.1007/978-3-030-55973-1_1
– ident: ref14
  doi: 10.1109/tnnls.2024.3412947
– ident: ref48
  doi: 10.1109/CVPR.2016.141
– ident: ref22
  doi: 10.1007/978-3-031-72751-1_1
– ident: ref19
  doi: 10.1007/s11831-021-09551-4
– ident: ref13
  doi: 10.1109/TMM.2020.3020691
– ident: ref34
  doi: 10.1109/DICTA.2017.8227421
– ident: ref47
  doi: 10.1007/978-3-031-06381-7_11
– ident: ref35
  doi: 10.1109/CVPR.2019.00192
– ident: ref31
  doi: 10.1109/ACCESS.2024.3490610
– volume: 28
  start-page: 91
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref28
  doi: 10.1109/ICCV.2015.331
– ident: ref40
  doi: 10.1109/CVPR46437.2021.00386
– ident: ref42
  doi: 10.1109/ICIP.2016.7532426
– volume-title: LabelImg
  ident: ref56
– ident: ref6
  doi: 10.1109/TCYB.2020.3034316
– ident: ref16
  doi: 10.1007/s00371-020-01974-7
– ident: ref32
  doi: 10.5244/C.26.21
– ident: ref33
  doi: 10.1109/WACV.2018.00127
– ident: ref23
  doi: 10.1109/CVPR.2014.81
– ident: ref66
  doi: 10.1007/s11042-022-13644-y
– ident: ref36
  doi: 10.1109/TPAMI.2021.3124956
– volume-title: Data Archive of Experimental Data from Studies About Pedestrian Dynamics
  year: 2018
  ident: ref51
– ident: ref44
  doi: 10.1109/ROBIO.2017.8324433
– ident: ref4
  doi: 10.1109/AICCSA56895.2022.10017883
– ident: ref50
  doi: 10.1016/j.ssci.2020.104743
– ident: ref20
  doi: 10.1109/CVPR52729.2023.00721
– volume-title: Crowd Management in Transport Infrastructures (Project Number 13n14530 to 13n14533)
  year: 2018
  ident: ref49
– ident: ref29
  doi: 10.1109/TPAMI.2020.3013269
– ident: ref60
  doi: 10.5555/1953048.2078195
– ident: ref8
  doi: 10.1016/j.neucom.2017.03.074
– ident: ref1
  doi: 10.1016/j.aap.2025.107986
– ident: ref27
  doi: 10.1109/ICPR.2018.8545068
– ident: ref26
  doi: 10.1109/CVPR.2018.00644
– volume-title: Detectron2
  year: 2019
  ident: ref59
– ident: ref12
  doi: 10.3390/s22114040
– ident: ref3
  doi: 10.1177/1466138113491171
– year: 2023
  ident: ref41
  article-title: DETRs beat YOLOs on real-time object detection
  publication-title: arXiv:2304.08069
– ident: ref18
  doi: 10.1109/ACCESS.2021.3107901
– ident: ref61
  doi: 10.5555/3454287.3455008
– year: 2018
  ident: ref39
  article-title: CrowdHuman: A benchmark for detecting human in a crowd
  publication-title: arXiv:1805.00123
– ident: ref55
  doi: 10.1088/1367-2630/aaf4ca
– ident: ref2
  doi: 10.1080/0144929X.2021.1896781
– ident: ref10
  doi: 10.1109/ACCESS.2024.3496823
– year: 2025
  ident: ref68
  article-title: Petrack
– ident: ref38
  doi: 10.1109/ICME.2019.00145
– ident: ref24
  doi: 10.1109/ICCV.2015.169
– ident: ref46
  doi: 10.2352/EI.2023.35.9.IPAS-293
– ident: ref17
  doi: 10.1007/s13748-019-00203-0
SSID ssj0000816957
Score 2.3409455
Snippet The automatic detection of pedestrian heads in crowded environments is essential for crowd analysis and management tasks, particularly in high-risk settings...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 73451
SubjectTerms Accuracy
Annotations
Computer vision
Deep learning
Head
machine learning
Magnetic heads
object detection algorithms
pedestrian head detection
Pedestrians
public dataset
Rail transportation
railway platforms and event entrances
real-time detection transformer
Training
Transformers
YOLO
you only look once
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVa1AM99AOoCi3VHDg2kF3H9rq3JSziUKEVKhK3aGxPYEU3u9oNPfHjO3bSFRx64BZZluP4TTRvbM8bIY7I1GTRywxxqLMi1CqzpHUWYp5kVKKsfUoU_mkuL0c3N3baJ6unXBgiSpfP6Dg-prP8sPAPcavsJJ6Wsn1yhP7aGN0la202VGIFCatMryzEXU_GZckfwTHgUB1LpaUcDJ55nyTS_6yqSnIq5-9fOJ0P4l3PHmHcwf1RvKJmR7x9oim4Kx6vppNJdsHQreGUTfBujqv7HzCGM2zZY7WATYDJfDlL2iBQbuoQwqKGM6Il9JKrtzD-fbtYzdq7-RqY2sKUAqUqHw3E4blzm-5xNTBroORwPqz3xPX55Fd5kfUlFjIvpWwzdJjXTrPXl6gkkxNyJrfMSUbI1C0UubOBZE7s6L0iYkIQzNAHiU674JSTn8RWs2joswDnjKYwUkzpQmFHQ8ueLxSITDhVII374vu_pa-WnZJGlSKQ3FYdUlVEquqR2henEZ5N1yiDnRoYgqr_qyqN1pBHDsJqXziFSNLkgyAVkyJfKB5kL8L25H0dYgf_af8ituMcui2Wr2KrXT3QoXjj_7Sz9epbsre_Q1LUUQ
  priority: 102
  providerName: IEEE
Title RPEE-Heads Benchmark: A Dataset and Empirical Comparison of Deep Learning Algorithms for Pedestrian Head Detection in Crowds
URI https://ieeexplore.ieee.org/document/10973050
https://doaj.org/article/6a97eca606fc4b5aae3701d35175c451
Volume 13
WOSCitedRecordID wos001480472500048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUq1EM5VJRSsaUgH3psSjaO7bi3JQRxaNGqaiVu0diewKrd7Go3cEJ8O2MnoOXEhUsOlmU7M5bfG8vzhrGvqBs04EQCkKkk941MDCqV-JAnGZQoGxcThX_qi4vi8tJMN0p9hTdhvTxwb7hjBUajA-LZjcutBECh07EXknDP5TF5Oku12Qim4hlcjJWRepAZoimPJ2VJf0QBYSa_C6mEGI-fQVFU7H9WYiUizNkOez9QQz7pl_SBvcF2l21vCAZ-ZHe_p1WVnJNf1vyE9tf1HFb_fvAJP4WO4Kjj0HpezZezKPzBy6cig3zR8FPEJR_0VK_45P_VYjXrrudrTryVT9FjLOHR8jA8de7iI62Wz1peUqzu13vs71n1pzxPhvoJiRNCdAlYSBurCNIFSEHMA61ODRGOAoiX-Ty1xqNIkVDcSURCe68z5wVYZb2VVnxiW-2ixX3GrdUKfSGJr_ncFJkhWPM5ALFJ6VHBiH17NGW97GUy6hhepKbuLV8Hy9eD5UfsJJj7qWvQuI4N5Pl68Hz9kudHbC84a2M-Q8eVTD-_xuAH7F1YcH_Z8oVtdasbPGRv3W03W6-O4maj76_76iimDD4APiXY9Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b9swECWKtECbIf1KkaRfN3SsEtkUKbObozhwUdcwihTIJhzJU2I0lg1bydQf3yOlGsnQoZtAEBTFd8K9I3nvhPhEeUUGnUwQ-zrJfKUSQ1onPuRJBiXKysVE4Uk-nQ4uL82sS1aPuTBEFC-f0XF4jGf5fuluw1bZSTgtZfvkCP1xKJ3VpWttt1RCDQmj8k5biDufDIuCP4OjwL46lkpL2es98D9Rpv9BXZXoVs6f_-eEXoi9jj_CsAX8pXhE9Suxe09V8LX4_WM2GiVjBm8Dp2yE1wtc__oCQzjDhn1WA1h7GC1W86gOAsW2EiEsKzgjWkEnunoFw5ur5XreXC82wOQWZuQp1vmoIQzPnZt4k6uGeQ0FB_R-sy9-no8uinHSFVlInJSySdBiWlnNfl-ikkxPyOapYVYyQCZvPkut8SRTYlfvFBFTAp_3nZdotfVWWflG7NTLmg4EWJtr8gPFpM5nZtA37Pt8hsiUU3nSeCg-_136ctVqaZQxBklN2SJVBqTKDqlDcRrg2XYNQtixgSEou_-q1GhycshhWOUyqxBJ5mnPS8W0yGWKB9kPsN17X4vY0T_aP4qn44vvk3LydfrtrXgW5tNuuLwTO836lt6LJ-6umW_WH6Lt_QF6_tea
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RPEE-Heads+Benchmark%3A+A+Dataset+and+Empirical+Comparison+of+Deep+Learning+Algorithms+for+Pedestrian+Head+Detection+in+Crowds&rft.jtitle=IEEE+access&rft.au=Abubaker%2C+Mohamad&rft.au=Alsadder%2C+Zubayda&rft.au=Abdelhaq%2C+Hamed&rft.au=Boltes%2C+Maik&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=73451&rft.epage=73467&rft_id=info:doi/10.1109%2FACCESS.2025.3563311&rft.externalDocID=10973050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon