Multi-objective optimization of injection molding process using interpretable extreme gradient boosting model based on improved north eagle optimization algorithm

During the injection molding of sensor housings, plastic parts often suffer from warpage deformation and volumetric shrinkage. To address this, Moldflow simulation and central composite face (CCF) design were used to generate a dataset. An improved northern goshawk optimization (INGO)-XGBoost model,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology Vol. 39; no. 10; pp. 6171 - 6180
Main Authors: Zhu, Liuyu, Fan, Xiying, Guo, Yonghuan, Wang, Zhijiang, Hua, Junyi, Li, Lie
Format: Journal Article
Language:English
Published: Seoul Korean Society of Mechanical Engineers 01.10.2025
Springer Nature B.V
대한기계학회
Subjects:
ISSN:1738-494X, 1976-3824
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract During the injection molding of sensor housings, plastic parts often suffer from warpage deformation and volumetric shrinkage. To address this, Moldflow simulation and central composite face (CCF) design were used to generate a dataset. An improved northern goshawk optimization (INGO)-XGBoost model, enhanced by three strategies, was compared against NGO-XGBoost, AdaBoost-SVM, and AdaBoost-ELM models, demonstrating superior performance. SHAP analysis was applied to interpret the INGO-XGBoost model, and multi-objective multiverse optimization (MOMVO) was used to generate the Pareto front. The CRITIC-TOPSIS method was then employed to select the optimal process parameters. Results show that warpage deformation and volumetric shrinkage were reduced by 30.9 % and 8.7 %, respectively, compared to the initial settings. The proposed integrated prediction–optimization framework significantly improves the molding quality and dimensional stability of plastic parts, providing both theoretical support and a practical pathway for intelligent injection molding.
AbstractList During the injection molding of sensor housings, plastic parts often suffer from warpage deformation and volumetric shrinkage. To address this, Moldflow simulation and central composite face (CCF) design were used to generate a dataset. An improved northern goshawk optimization (INGO)-XGBoost model, enhanced by three strategies, was compared against NGO-XGBoost, AdaBoost-SVM, and AdaBoost-ELM models, demonstrating superior performance. SHAP analysis was applied to interpret the INGO-XGBoost model, and multi-objective multiverse optimization (MOMVO) was used to generate the Pareto front. The CRITIC-TOPSIS method was then employed to select the optimal process parameters. Results show that warpage deformation and volumetric shrinkage were reduced by 30.9 % and 8.7 %, respectively, compared to the initial settings. The proposed integrated prediction–optimization framework significantly improves the molding quality and dimensional stability of plastic parts, providing both theoretical support and a practical pathway for intelligent injection molding.
During the injection molding of sensor housings, plastic parts often suffer from warpage deformation and volumetric shrinkage. To address this, Moldflow simulation and central composite face (CCF) design were used to generate a dataset. An improved northern goshawk optimization (INGO)-XGBoost model, enhanced by three strategies, was compared against NGO-XGBoost, AdaBoost-SVM, and AdaBoost-ELM models, demonstrating superior performance. SHAP analysis was applied to interpret the INGO-XGBoost model, and multiobjective multiverse optimization (MOMVO) was used to generate the Pareto front. The CRITIC-TOPSIS method was then employed to select the optimal process parameters. Results show that warpage deformation and volumetric shrinkage were reduced by 30.9 % and 8.7 %, respectively, compared to the initial settings. The proposed integrated prediction–optimization framework significantly improves the molding quality and dimensional stability of plastic parts, providing both theoretical support and a practical pathway for intelligent injection molding. KCI Citation Count: 0
Author Guo, Yonghuan
Fan, Xiying
Hua, Junyi
Li, Lie
Wang, Zhijiang
Zhu, Liuyu
Author_xml – sequence: 1
  givenname: Liuyu
  surname: Zhu
  fullname: Zhu, Liuyu
  organization: School of Mechanical Engineering, Jiangsu Normal University
– sequence: 2
  givenname: Xiying
  surname: Fan
  fullname: Fan, Xiying
  email: fxy8441@163.com
  organization: School of Mechanical Engineering, Jiangsu Normal University
– sequence: 3
  givenname: Yonghuan
  surname: Guo
  fullname: Guo, Yonghuan
  organization: School of Mechanical Engineering, Jiangsu Normal University
– sequence: 4
  givenname: Zhijiang
  surname: Wang
  fullname: Wang, Zhijiang
  organization: School of Mechanical Engineering, Jiangsu Normal University
– sequence: 5
  givenname: Junyi
  surname: Hua
  fullname: Hua, Junyi
  organization: School of Mechanical Engineering, Jiangsu Normal University
– sequence: 6
  givenname: Lie
  surname: Li
  fullname: Li, Lie
  organization: School of Mechanical Engineering, Jiangsu Normal University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003253963$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kd9qFTEQxoNUsD36AN4FvBO25t9mN5elqC1UBKngXUiys9uc7ibHJKeoj-OTmu0KgqBXM8P85ptJvjN0EmIAhF5Sck4J6d5kyhiRDWFtQ5SQDXuCTqnqZMN7Jk5q3vG-EUp8eYbOct4TIpmg9BT9_HCci2-i3YMr_gFwPBS_-B-m-BhwHLEPj51aLHEefJjwIUUHOeNjXisfCqRDgmLsDBi-lQQL4CmZwUMo2MaYy8otcYAZW5NhwFXML1XmoeYhpnKHwUzzX7vNPMXky93yHD0dzZzhxe-4Q5_fvb29vGpuPr6_vry4aRznvDTKSWGtEACuFYO1qpWqc9J2dqCqtb0Y2paPnSMdgGVyFHYwIET9pH6QijC-Q6833ZBGfe-8jsY_xinq-6QvPt1ea0o6KZkiFX61wfUZX4-Qi97HYwr1Ps1Z1_JeScn_T0lKGSUV2yG6US7FnBOM-pD8YtL3uk6v7urNXV3d1au7ej2WbTO5smGC9Ef530O_AG6VrT8
Cites_doi 10.1515/polyeng-2021-0242
10.1016/j.engappai.2022.105151
10.1016/j.knosys.2017.07.018
10.1016/j.asoc.2023.110650
10.1016/j.apenergy.2024.122767
10.1016/j.jksuci.2021.11.001
10.1016/j.conbuildmat.2024.136182
10.1016/j.compositesb.2023.110868
10.1016/j.buildenv.2024.111386
10.1016/j.ijhydene.2023.10.174
10.1109/ACCESS.2022.3207287
10.1016/j.rcradv.2023.200176
10.1016/j.trgeo.2024.101216
10.1007/s00170-023-12879-9
10.1002/pen.26119
10.1016/j.conbuildmat.2021.123314
10.1002/pen.26536
10.1007/s00170-022-08859-0
10.3139/217.0039
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025
The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025
– notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
7TB
8FD
FR3
ACYCR
DOI 10.1007/s12206-025-0946-2
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 6180
ExternalDocumentID oai_kci_go_kr_ARTI_10766290
10_1007_s12206_025_0946_2
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZZE
~A9
AAYXX
AFFHD
ARAPS
CITATION
7TB
8FD
FR3
ACYCR
ID FETCH-LOGICAL-c333t-9c64bb44eec54dbb95697c6b7bd195b84d553f7c07eeb26f4bdae441978d69023
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589191500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1738-494X
IngestDate Wed Oct 15 11:54:43 EDT 2025
Tue Dec 02 09:50:53 EST 2025
Sat Oct 18 23:18:34 EDT 2025
Sat Nov 29 07:10:37 EST 2025
Wed Oct 15 10:49:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords SAHP
CRITIC-TOPSIS
MOMVO
INGO-XGBoost
Process parameters
CCF
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-9c64bb44eec54dbb95697c6b7bd195b84d553f7c07eeb26f4bdae441978d69023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3261121066
PQPubID 326249
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10766290
proquest_journals_3275389663
proquest_journals_3261121066
crossref_primary_10_1007_s12206_025_0946_2
springer_journals_10_1007_s12206_025_0946_2
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2025
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References Y Konuskan (946_CR7) 2024; 130
V V Reddy (946_CR2) 2023; 11
M A Ganaie (946_CR6) 2022; 115
Y Ma (946_CR11) 2023; 128
H Youssef (946_CR15) 2024; 49
A Gupta (946_CR17) 2024; 426
A Mohammed (946_CR12) 2022; 34
B He (946_CR14) 2024; 45
S Mirjalili (946_CR21) 2017; 134
D V Rosato (946_CR24) 2012
J Zhou (946_CR19) 2022; 21
D Zhang (946_CR1) 2022; 62
I D Mienye (946_CR10) 2022; 10
N Mentges (946_CR8) 2024; 64
C Wu (946_CR13) 2024; 254
R Farooque (946_CR5) 2021; 43
E M Golafshani (946_CR23) 2021; 291
N Zhao (946_CR3) 2022; 120
J Tinz (946_CR4) 2023; 19
N Mentges (946_CR9) 2023; 264
C Li (946_CR20) 2022; 42
W Xu (946_CR22) 2023; 146
R Li (946_CR16) 2024; 360
F Lin (946_CR18) 2022; 56
References_xml – volume: 42
  start-page: 563
  issue: 6
  year: 2022
  ident: 946_CR20
  publication-title: Journal of Polymer Engineering
  doi: 10.1515/polyeng-2021-0242
– volume: 11
  start-page: 014003
  issue: 1
  year: 2023
  ident: 946_CR2
  publication-title: Surface Topography: Metrology and Properties
– volume: 115
  start-page: 105151
  year: 2022
  ident: 946_CR6
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105151
– volume: 134
  start-page: 50
  year: 2017
  ident: 946_CR21
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.07.018
– volume: 56
  start-page: 491
  issue: 5
  year: 2022
  ident: 946_CR18
  publication-title: Materials and Technology
– volume: 146
  start-page: 110650
  year: 2023
  ident: 946_CR22
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110650
– volume: 360
  start-page: 122767
  year: 2024
  ident: 946_CR16
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2024.122767
– volume: 43
  start-page: 441
  year: 2021
  ident: 946_CR5
  publication-title: Materials Today: Proceedings
– volume: 34
  start-page: 8825
  issue: 10
  year: 2022
  ident: 946_CR12
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2021.11.001
– volume: 426
  start-page: 136
  year: 2024
  ident: 946_CR17
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2024.136182
– volume: 264
  start-page: 110868
  year: 2023
  ident: 946_CR9
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2023.110868
– volume: 254
  start-page: 111386
  year: 2024
  ident: 946_CR13
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2024.111386
– volume: 49
  start-page: 644
  year: 2024
  ident: 946_CR15
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.10.174
– volume: 10
  start-page: 99129
  year: 2022
  ident: 946_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3207287
– volume: 19
  start-page: 200176
  year: 2023
  ident: 946_CR4
  publication-title: Resources, Conservation & Recycling Advances
  doi: 10.1016/j.rcradv.2023.200176
– volume-title: Injection Molding Handbook
  year: 2012
  ident: 946_CR24
– volume: 45
  start-page: 101216
  year: 2024
  ident: 946_CR14
  publication-title: Transportation Geotechnics
  doi: 10.1016/j.trgeo.2024.101216
– volume: 130
  start-page: 2957
  issue: 5
  year: 2024
  ident: 946_CR7
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-023-12879-9
– volume: 62
  start-page: 3470
  issue: 10
  year: 2022
  ident: 946_CR1
  publication-title: Polymer Engineering & Science
  doi: 10.1002/pen.26119
– volume: 291
  start-page: 123314
  year: 2021
  ident: 946_CR23
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2021.123314
– volume: 64
  start-page: 154
  issue: 1
  year: 2024
  ident: 946_CR8
  publication-title: Polymer Engineering & Science
  doi: 10.1002/pen.26536
– volume: 120
  start-page: 85
  issue: 1–2
  year: 2022
  ident: 946_CR3
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-022-08859-0
– volume: 128
  start-page: 4703
  issue: 9
  year: 2023
  ident: 946_CR11
  publication-title: Process Window and Machine Learning
– volume: 21
  start-page: 509
  issue: 5
  year: 2022
  ident: 946_CR19
  publication-title: International Polymer Processing
  doi: 10.3139/217.0039
SSID ssj0062411
Score 2.3731704
Snippet During the injection molding of sensor housings, plastic parts often suffer from warpage deformation and volumetric shrinkage. To address this, Moldflow...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 6171
SubjectTerms Accuracy
Control
Cooling
Datasets
Deformation
Dimensional stability
Dynamical Systems
Engineering
Housings
Industrial and Production Engineering
Injection molding
Integrated approach
Mechanical Engineering
Multiple objective analysis
Optimization algorithms
Original Article
Pareto optimization
Process parameters
Science
Sensors
Simulation
Support vector machines
Vibration
Warpage
기계공학
Title Multi-objective optimization of injection molding process using interpretable extreme gradient boosting model based on improved north eagle optimization algorithm
URI https://link.springer.com/article/10.1007/s12206-025-0946-2
https://www.proquest.com/docview/3261121066
https://www.proquest.com/docview/3275389663
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003253963
Volume 39
WOSCitedRecordID wos001589191500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2025, 39(10), , pp.6171-6180
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HdpDC6WoSymyBKciS4nj2PGxqopaqUJVW9DerPiRNOxugrKhP4hfythJ2ILgUE5J5MSJ7PE382UeRuiYgWBk2kYkNaklLHaG6NhXwpRZ7AFTR3moM_tdnJ1l06n8MeRxL8do99ElGZB6lexGqWe_NCVASTgB3N0EbZf5_Rp-_roY4ZeDSgosS8BKZpJNR1fmY13cU0brdVvcszMfuEaDxjl9_axv3UavBgMTf-olYgetufoNevlP2cFddBOybkmjL3u0ww3gxmJIyMRNgas6tMDFondO4as-nwD7MPkSV3eRinruMMC7_8mIyzaEj3UYDPelj6bGYZsd7BWlxdBZFX5gwHntnUXY5eX8wbvzedm0Vfdn8Radn375_fkrGfZqICZJko5Iw5nWjDlnUma1BtolheFaaBvLVGfMpmlSCBMJB1yeF0zb3IEpBiTWAkGnyR7aqJvavUNYRoYyp_PcCYAXJ7RgWUGNsVLQIrJ8gj6Ok6au-pIcalV82Q-8goFXfuAVnaAjmFY1M5XyhbT9sWzUrFVAF77BM4JzKqMJOhinXQ1reKnAsI19eTXOn2gGppcBW0wm6GSUglXzk1-0_193v0cvqBejED54gDa69tp9QFvmb1ct28Mg-bcWNQGN
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQQIO5S2WtmAJTiBLiePY8bGqWrXqsqqgoL1Z8SMhdDepsoEfxC9l7CTdtmoPcEoiJ47lx8x8npnPCH1gMDEybSOSmtQSFjtDdOyZMGUWe4GpozzwzE7FbJbN5_J0yONejdHuo0sySOp1shulHv3SlAAk4QTk7n0GCssT5n_5-n0UvxxUUkBZAlYyk2w-ujJvq-KaMrpXt8U1O_OGazRonMMn_9XWp2hrMDDxXj8jnqENVz9Hj6_QDr5Af0LWLWn0z17a4QbkxnJIyMRNgas6lMDDsndO4Ys-nwD7MPkSV5eRinrhMIh3v8mIyzaEj3UYDPeVj6bG4Zgd7BWlxVBZFTYw4L72ziLs8nJx49_5omzaqvuxfIm-HR6c7R-R4awGYpIk6Yg0nGnNmHMmZVZrgF1SGK6FtrFMdcZsmiaFMJFwgOV5wbTNHZhiAGItAHSavEKbdVO71wjLyFDmdJ47AeLFCS1YVlBjrBS0iCyfoI_joKmLnpJDrcmXfccr6HjlO17RCXoPw6rOTaU8kba_lo06bxXAhWP4RnBOZTRBO-Owq2ENrxQYtrGnV-P8jmJAehmgxWSCPo2zYF18Z4ve_NPb79DDo7PPUzU9np1so0fUT6kQSriDNrv2l9tFD8zvrlq1b8Mq-Asu5gRx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKi1B74I26UMASnEBWE8ex4yOCrqioVpV4aG9W_EgI3U1W2bQ_qL-UsZOwtGoPiFMSOXEsezyezzPzGaG3DAQj0zYiqUktYbEzRMeeCVNmsVeYOsoDz-yJmM2y-VyeDuecrsdo99El2ec0eJamujtc2eJwk_hGqUfCNCUATzgBHbzDfBy9h-tff4yqmMPyFBCXgFnNJJuPbs2bqriyMN2p2-KKzXnNTRpWn-mD_273Q3R_MDzxh15SHqEtVz9Ge3_RET5BlyEblzT6V68FcQP6ZDkkauKmwFUdSuBh2Tut8KrPM8A-fL7E1Z8IRr1wGNS-33zEZRvCyjoMBv3aR1njcPwO9guoxVBZFTY24L72TiTs8nJx7d_5omzaqvu5fIq-T4--ffxMhjMciEmSpCPScKY1Y86ZlFmtAY5JYbgW2sYy1RmzaZoUwkTCAcbnBdM2d2CiAbi1ANxp8gxt103t9hGWkaHM6Tx3AtSOE1qwrKDGWCloEVk-Qe_GAVSrnqpDbUiZfccr6HjlO17RCXoDQ6zOTKU8wba_lo06axXAiGP4RnBOZTRBB6MIqGFurxUYvLGnXeP8lmJAgBmgyGSC3o8SsSm-tUXP_-nt1-je6aepOjmefXmBdqmXqBBheIC2u_bcvUR3zUVXrdtXYUL8BsR1DVU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+injection+molding+process+using+interpretable+extreme+gradient+boosting+model+based+on+improved+north+eagle+optimization+algorithm&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.date=2025-10-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%B0%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=1738-494X&rft.eissn=1976-3824&rft.spage=6171&rft.epage=6180&rft_id=info:doi/10.1007%2Fs12206-025-0946-2&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10766290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon